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Abstract 

We present an “Ab Initio“ transient 
analysis of acoustic wave generation in 
piezoelectric materials which takes 
account of second order effects. The 
computer program we have developed for 
that purpose solves the fundamental 
differential equations in two space 
dimensions with the corresponding 
mechanical displacements and the 
electrical potential as dependent 
variables by a semi-implicit finite 
difference scheme rather than by wave 
approximations. This has become 
possible with acceptable usage of 
computer resources only by introducing a 
novel form of boundary conditions for 
the quasi infinite sagittal plane to 
avoid reflection phenomena. We present 
numerical results for YZ-LiNb03 and 
ST-Cut of Quartz. 

1. Introduction 

With the increasingly widespread 
use of surface acoustic wave (SAW) 
devices, particularly filters, modeling 
of wave propagation phenomena in 
anisotropic piezoelectric materials has 
become eminently important. However, 
almost all modeling activities have been 
concentrated on the simulation of the 
extrinsic device behaviour. We present 
an “Ab Initio” analysis - not a simple 
simulation - of wave effects without 
neglecting second order effects, like 
bulk wave generation, diffraction, 
interaction of surface waves and bulk 
waves. For that purpose we have 
developed a computer program for the 
solution of the fundamental partial 
differential equations which describe 
wave propagation in arbitrary, 
anisotropic piezoelectric media. 

There are many publications dealing 
with surface acoustic wave propagation 
but either the authors a priori 
postulate a wave approximation c 5 , 6 3  or 
simulate an infinite periodic structure 
[ 3 1 .  Our method is different since we 
do not anticipate the solution in any 

way. We solve the fundamental equations 
in two space dimensions - in the 
sagittal plane - by a semi-:mplicit time 
integration scheme using a novel form of 
boundary conditions for the quasi 
infinite domain. Therefore, we can 
correctly analyze the excitation of 
surface and bulk waves by just 
considering a relatively small area 
below the electrodes of the transducer. 
The input data for OUT program are the 
geometry of the transducer fingers, the 
substrate material and the Euler I s 
angles of the crystal cut. The 
structure and the actual values of the 
material dependent tensors are stored in 
a database for most of the common 
materials. However, the analysis of new 
materials is merely a matter of 
specifying the tensor data. One major 
objective of our investigation is the 
quest for physical insight into SAW 
devices to enable the development of 
simple analytic formulas for device 
characterization and design. The power 
of our analysis method lies in the 
general applicability with respect to 
the different materials and crystal cuts 
and the not neglected interaction 
between surface and bulk waves. For 
that reason our computer program can be 
used for instance to optimize a crystal 
cut by minimizing the acoustic power 
radiation in the bulk. Because of the 
chosen solution method the program could 
be extended to include non linearity 
effects. In this paper the transient 
behaviour of a transducer structure with 
four fingers is demonstrated for two 
different materials. 

2. The Physical Model 

The physical model is based on the 
fundamental set of equations describing 
acoustic wave propagation in an abitrary 
piezoelectric material consisting of 
equations of motion (l), the linear, 
strain-mechanical displacement relations 
(2) , Maxwell’s equations under the 
quasi-static assumptions (3,4) and the 
linear piezoel c ric constitutive 
relations ( 5 , 6 )  f15. It is to be noted 
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that standard tensor notation as well as 
Einstein's summation convention is used. 

n n-1 

n n-1 
2uij + uij 

2wij + wij 
0 

aTij/axi = Qa2uj/at2 (1) 
skl = (auk/ax, + aU,/axk)/2 
aDi/axi = o ( 3 )  

Tij = cijkl-Skl - enij-En 
Dm = emkl'Skl + 'mnSEn 

( 2 )  

( 4 )  

( 5 )  

( 6 )  

Ei = - a Q f l x  i 

- - 

T denotes the stress, 0 the mass 
density, U the mechanical displacement, 
S the strain, D the electric 
displacement, E the electric field, 0 
the electric potential. The fourth rank 
tensor c is the elastic stiffness 
tensor, the third rank tensor e the 
piezoelectric tensor, and the second 
rank tensor E the dielectric tensor in 
the actual i.e. rotated coordinate 
system. These three tensors are the 
result ( 7 , 8 , 9 )  of a transformation 08 
the unrotated quantities c , e , and I: 
according to Euler's transformation 
matrix V. 

(71 'i j k l  = Vir'Vjs'Vkt'~lq'crstq 
eijk = Vir'Vjs'Vkt'erst (8) 

0 

0 

Eij = Vir'V j s * E y s  ( 9 )  

By sustituting ( 2 )  and ( 4 )  into 
equations (5) and (6) and then 
eliminating the mechanical stress T and 
the electric displacement D one obtains 
a system of partial differential 
equations in three space dimensions 
(j=1,2,3) which consists of three 
mechanical wave equations (10) and 
Poisson's equation (11). 

The surface boundary conditions for 
the mechanical quantities result from 
the fact that the force component 
perpendicular to the surface plane 
vanishes, i.e. T = 0 ( j = 1 , 2 . , 3 ) .  Fo r 
Poisson's equatiai the surface boundary 
condition is derived from the fact that 
the electrical displacement D3 vanishes. 

Now we reduce the system to the t w o  
space dimensions x=x and z=x and we 
define the solution ve&tor s w?th its 
components U (mechanical displacement in 
x-direction), w (mechanical displacement 
in z-direction) , and 9 (electrical 
potential). This procedure leads to the 

following set of equations and the 
surface boundary condition: 

9-stt = A'sxx + B-sxz + C.szz, 
t)O, x 8 R I  z<O (13) 

Desx + E*s = 0 (14) z 

A, B, C, D, E are 3 x 3  matrices and 
B, C, E are symmetric. P is a 

:;agonal matrix whose main diagonal has 
the entries 9 ,  q ,  0. The boundary 
condition (14) holds for the 
u,w-equations for all x c R and for the 
third ( ip) equation on the free surface 
and 9 = V .  (t) on the i-th finger. 

1 

3 .  The Numerical Algorithm 

The equations for the mechanical 
displacements (i.e. the first two 
equations of (13)) can be classified as 
hyperbolic, the last equation (i.e. the 
equation for the electric potential) is 
elliptic, therefore (13) is a coupled 
hyperbolic-elliptic system of (three) 
differential equations. 

We employ the following 
discretization: 

L 

- zuij n + ui-ljl n 

n 

n n r.2 j + l  - 2uij + uij-ll 

( 1 5 )  
n 

for i=O,?l,?2,...., j=-l,-2,..., and 
n=1,2,3 ,... We denoted h = A x  = 62 
and k = A t. U?.., wn., e. are approxi- 
mations to u(~~ih,&~jh,k~nk) , w(x=ih, 
z=jh, t=nk) and V(x=ih,z=jh,t=nk) 
respegtivelg. T e initial conditions 
are u = w = 4j = 0 .  ij i j  
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The Neumann boundary conditions 
(14) are discretized fully implicitly, 
that means at the (n+l)-time level, and 
discrete Dirichlet boundary data for 
are imposed at the fingers. We remaha 
that also the potential equation is 
fully implicit in (13). 

Fouri r analysis as described in 
reference e 7 1  shows that this difference 
scheme is stable (that means solutions 
do no blow up for h,k+O at a fixed time 
t ) if the grid spacings h,k are chosen 
soch that 

holds, where ? ( A ) ,  o(C) denote the 
spectral radii of A and C respectively 
this is proven rigorously in reference 

t 4 1 )  . Then the scheme (13) is first 
order accurate in time and second order 
accurate in space. 

Artificial boundaries have to be 
introduced in the sagittal plane in 
order to obtain a finite-dimensional 
linear system of equations from (13) and 
from the discrete boundary conditions at 
the surface for each time step. The 
obvious way to do this is to solve (13) 
in a rectangle (which includes all 
fingers) and to impose zero Neumann or 
Dirichlet boundary conditions at those 
boundaries of the rectangle which do not 
coincide with the surface. This 
approach, however, leads to reflections 
as soon as a wave hits the artificial 
boundary and therefore has to be 
abandoned. 

Our approach is as follows. At 
first we split the saqittal plane into 
subdomains- as shown 
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V 

i; Figure-1. 
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Figure 1 

The surface boundary of the 
rectangle I contains all fingers. Then 
the unbounded subdomains 11-VI are 
transformed into finite domains and the 
(transformed) differential equations 
(13) are discretised in these (finite) 
auxiliary domains. For example, we make 

the following change of variables for 
the region 111: 

Thus I11 is mapped into the square 
C O ,  1 IxC-1 , o l .  The (transformed) 
differential equations are connected by 
the requirement that U, w, p are 
continuous across the boundaries of the 
subdomains. U, w, Q are assumed to 
vanish in x=*oo, z = - o o .  Note that 
X==OQ, z = - m  correspond to welldefined 
lines in the transformed region. This 
matching gives discrete boundary 
conditions for the difference scheme 
(15) on the free boundaries of the 
rectangle I. No reflections occur since 
the problem is discretized "on the whole 
sagittal plane". So this approach gives 
fully absorbing boundary conditions even 
when the grids in the transformed 
auxiliary domains are very coarse. Thus 
a linear system of equations (of 
approximate dimension 3 * (  IZ l/k)* 
(IX I+lX I )/h) has to be solved ak each 
timg steb. For this we use a so called 
"Line SOR" iterative method similarly to 
that used in the computer program 
package LINPACK K 21. 

The main advantage of the described 
difference method compared to the 
frequently used Fourier transform method 
is that the difference method can easily 
be applied to nonlinear elasticy laws 
while the Fourier method strictly relies 
on the linearity of the problem. 

4 .  Results 

We performed a transient analysis 
of a four finger transducer structure 
for two different materials namely 
YZ-LiNb03 and Quartz (ST-cut). The 
geometry data for both materials aye 
equal such that a fair comparism is 
possible. The distance between two 
neighbouring electrodes as well as the 
finger width amounts 250 ym. As 
described in the previous chapter we 
observe merely the sagittal plane. The 
applied voltage on the electrodes is a 
sinusoidal function in time with a 
horizontal tangent at t=O to get 
consistent initial values. After a 
quarter period the voltage is a sine 
function with an amplitude of 0.5 V. As 
we are mostly interested in surface 
waves we take the corresponding 
resonance frequency for both materials 
namely 3.5 MHz for LiNbOj and 3.2 MHZ 
for Quartz. 

Figure 2 shows the mechanical 
displacement w (with aspect to the 
"computational" coordinate z which is 
the Y-direction of the unrotated crystal 
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system) for LiNbO after 7 /4  periods in 
a quasi three-djmensional plot. The 
rectangular bottom of the drawing is the 
sagittal plane (see Fig. 1) whereas the 
third dimension represents the dependent 
variable. One can clearly see that the 
maximum displacement is on the surface 
and that the surface wave just leaves 
the boundary. 

9 

- a  

h P 

Figure 3 shows a distortion plot of 
Quartz after two periods. The left 
vertical boundary represents the 
surface. The wave amplitude decays fast 
in the depth of the material. The 
displacement is much smaller compared to 
LiNb03 as the piezoelectric coupling is 
small (note the unit vector on the right 
boundary of the figure). The plot 
clearly demonstrates that the surface 
wave consists of a transversal as well 
as a longitudinal component. 
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Figure 4 shows the electric 
potential distribution corresponding to 
Fig. 3. The unit is Volts (pay 
attention to the scaling factor on the 
right boundary). At this time the 
applied voltage on all electrodes is 
zero so that this plot represents the 
mechanical-electrical reaction. One can 
see that the surface wave passes the 
boundary without reflection and that the 
volume wave generation may not be 
neglected. 
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Figure 4 
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