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Abstract

We ©present a numerical algorithm
for the calculation of phase velocities
of acoustic surface and bulk waves in
anisotropic piezoelectric materials.
The mathematical model is based on
fundamental partial differential
equations in three spatial dimensions
which are the equations of motion and
Poigsson's equation. We present examples
for LiNbO3 and Quartz.

1. Introduction

In recent years modeling of wave
propagation phenomena 1in anisotropic
piezoelectric materials has become
eminently important for surface acoustic
wave device characterization and design.
Most of the common computer programs for
the analysis of the extrinsic device
behaviour require on input the phase
velocity of the surface wave [1]. 1In
many cases the decay of the surface wave
into bulk as well as the properties of
the bulk waves in the sagittal plane are
also of great interest. As experimental
results are difficult to obtain for
arbitrary crystal cuts the numerical
calculation of phase velocities is an
important tool for the investigation of
less common materials and crystal cuts.

There exist some publications
dealing with phase velocities of surface
and bulk acoustic waves [2,3,4] but the
authors in general postulate a pure
exponential decay of the partial waves
whose 1linear combination yield the
surface wave. Our approximation is more
rigorous as we do not anticipate the
depth dependency in any way. For the
calculation of the bulk modes we employ
an abstract mathematical scheme rather
than a wave-"ansatz".

Our computer program in which we
have implemented the two methods is very
flexible with respect to different
materials and crystal cuts. The
structure and the actual values of the
material dependent tensors are stored in
a database for most of the common
materials., The input data are the type
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of material, the Euler's angles of the
crystal cut and the kind of wanted
calculation: either the surface wave
solution or the plane bulk modes in the
sagittal plane. In this paper a
comparison 1is shown between the surface
wave velocity and the velocities of the
bulk shear modes on rotated Y-cut of
LiNbOj3. Furthermore the bulk wave
velocity curves for Quartz are
demonstrated.

2. The Mathematical Model

The mathematical model is based on
the partial differential equation system
in three spatial dimensions (j=1,2,3)
consisting of the equations of motion
(1) and Poisson's equation (2). It is
toc be noted that standard tensor
notation as well as Einstein's summation
convention 1is used. The derivation of
this system from the fundamental
equations describing acoustic wave
propagation in arbitrary piezoelectric
materials can be found in [5].
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u denotes the mechanical displacement, §
the mass density and ¥ the electric
potential. The fourth rank tensor c is
the elastic stiffness tensor, the third
rank tensor e the piezoelectric tensor,
and the second rank ‘tensor £ the
dielectric tensor in the actual i.e.
rotated coordinate system.

Now we reduce the system to the two
space dimensions x=x; and z=x3 by
assuming negligible derivation of all
parameters in direction perpendicular to
the sagittal plane and we define the
solution vector s which includes the
mechanical displacement vector u and the
electric potential L (4). This
procedure leads to the following set of
equations:
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T = .
A Sxx + (B+B") sxz + C sZZ =9 stt

t», x € R, 2€0 (3)
s = (u,,u,,u ,Q)T (4)
1772’73

A, B, C, Q are 4x4 matrices, A and
C are symmetric, and BT is the transpose
of B. The matrix B+BT is obviously
symmetric too. Q is a diagonal matrix
with the entries ¢, ¢, ¢, O.

3. The Surface Wave Velocity

We investigate surface acoustic
waves on free surfaces. This is not a
fundamental restriction because for
metalized surfaces one has only to
change the boundary conditions.

In the medium (air) above the
surface the Poisson equation simplifies
to the Laplace equation (5). The
transition condition between crystal and
air is given by the fact that there does
not exist any charge on the interface.
Thus, the divergency of the electric
displacement has to vanish there (6).
The component of the electric
displacement perpendicular to the
surface is called D3 for the crystal and
Dyjy for the air. The surface boundary
conditions for the mechanical
displacement result from the fact that
all force components perpendicular to
the surface have to vanish (7).

Aw,ir =0 (5)
Div D=0 = D3 = Dajy for z =20 (6)
T3j =0 for z = 0 (7Y

By substituting the linear

piezoelectric constitutive relations (8)
and (9) into equations (6) and (7) one

obtains the system of boundary
conditions (10).

Ti5 = Cijk1°5k1 ~ ©nij En (8)
Dm = emkl'skl * :mn'En (9)
Brsy + C*s,; = (0,0,0,Dai.)7T (10)

Our model of the surface wave is a
linear combination of partial waves
(11). In contrast to other authors we
do not assume a pure exponential decay
of these partial waves into the depth
but we allow a general function g(z).
(It should be mentioned that g is a
vector with 4 components.)
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s = eJ(kx - W t).q(z) (11)

First we have to eliminate the
right hand side vector of equation (10).
For that purpose we calculate the
solution of the Laplace equation (12).

gair = ay-ekZ + aj-e7kz (12)

The constant aj; must vanish because
the limit of g,i,(2) for z ¥ + whas to
be zZero. a is estimated by a
comparison of g5ij, with g4 for z = 0 and
we obtain an expression for Dgi, (13).

Dair = E5ir k¥ for z = 0 (13)
g(z) = £&) = £(ikz) (14)
It is advantageous to make a

transformation of the z-coordinate by
introducing the new function f (14).
Substituting equation (11) into (3),(10)
and equation (13) into (10) vyields a
homogeneocus system o©f four ordinary
differential equations of second order
(15) with the boundary conditions (16)
and (17).

(a-v2-fy-£ + (B+BT)-£' + C-£'' = 0 (15)

B+)-£(§) +c-£ (€ =0 for §=0 (16)

s(x,§,8) =0 for § # -j-0 (17)

The pure imaginary matrix F is
coming from the dielectric displacement
on the surface (13).

It is very important to state that
the unknown phase velocity v 1is a
parameter of the equation system (15).
Therefore, an iterative algorithm must
be applied: First, one has to give an
initial guess for the phase velocity (a
very good initial wvalue 1is the phase
velocity of the slower bulk shear mode);
second, one must calculate the solution
of the ordinary differential equation
system, and third, one has to check if
the boundary conditions can be satisfied
with this solution. If the boundary
conditions are not satisfied it is
necessary to change the velocity and to
repeat the whole procedure.

To solve the ordinary differential
equation system we transform it into
first order defining the solution vector
h as follows:

hy = £
hy = (B+F)+h] + C-hy' (18)
h' = H-h with h = (hy, hp)T (19)



Hyy = -C~l-(B+F)

Hyp = -7}
Hyy = v2-R - A + (BT-F)-Cl. (B+F)
Hyp = -(BT-F).c-1

The first order system (19) is
characterized by the complex 8x8 matrix
H. Hiy, Hig... denote the 4x4
submatrices of H.

The solution of the system (19) is
given by equation (20) with the linear
combination vector R. Owing to the
chosen first order transformation
homogeneous boundary conditions (21) and
(22) have to be satisfied by the
solution.

h = el-§p (20)
hy =0 for § ¥ -§-m (21)
hy = 0 for € = 0 (22)

Equation (20) 1is replaced by the
spectral dissecton (23). The matrix G
has as c¢olumn vectors the eigenvectors
of H and A is a diagonal matrix whose
elements are given by the exponentials
of the eigenvalues of H. (It should be
mentioned that it is not absolutely
necessary for A to be a diagonal but a

Jordanian matrix. This is essential
when H has multiple eigenvalues. This
special case is included in our

algorithm - as a lack of space it can
not discussed here in detail.)

B - g-AE-c1 (23)

At this stage the vector & in
equation ({20) is still not determined.
The question is now if there exists an R}
such that the solution satisfies the
boundary condition. For that purpose we
have to investigate the eigenvalues of
matrix H: eigenvalues with a positive
imaginary part never can satisfy the
boundary condition (21). If we arange
the elements of the main diagonal of
in the way that we take first the
eigenvalues with negative imaginary part
it can be shown that the second four
components of B must vanish (24). From
boundary conditon (22) follows then
straightforwardly that for an existing
surface wave the 4x4 submatrix Gy has
to be singular (25).

n, =0 (24)

Gyy°f; = 0 (25)

The numerical effort for checking
one given phase velocity to be the
solution of the surface wave problem can
be summarized as follows: assembling the
complex 8x8 matrix H, estimating its
eigenvalues and eigenvectors, and then
calculating the determinant of the 4x4
matrix Gjpi.

4. The Bulk Wave Velocities

To obtain the plane bulk modes
propagating in a given direction in the
sagittal plane we transform equation (3)
into polar coordinates (r,@) and form
the limit for r * o This procedure
yields a homogeneous system of four
ordinary differential eguations (26).

Prsyy = Rrset (26)

P = A-cos2d+ (B+BT) - sind-cos@+C-sind

Now we define the matrix Q by
equation (27). Then, the eigenvalues of
Q are the reciprocal squares of the
phase velocities and the eigenvectors of
Q are the corresponding displacement
vectors of the bulk modes.

g = p-1.9 (27)

It should be noted that the fourth
eigenvalue of Q is zero due to the quasi
static approximation for the electric
potential.

5. Results

Fig. 1 shows a comparison between
the surface wave velocity curve
(curve 1) and the velocity curves of the
bulk shear modes (curves 2) for the 1289
rotated Y-cut of LiNbO3j. It can clearly
be seen that the surface velocity is
stricly 1lower than the velocity of the
slower bulk mode. As in the following

drawings the scale in the middle
represents the absolute value of the
velocities in m/s. To present more

details the center does not indicate
zero but a defined minimum velocity.
Fig. 2 represents the velocity
curves of the quasi longitudinal bulk
modes for Quartz. The parameter of the
curves (0, 30, 60,...) 1is the Euler's
angle P, i.e. the curve with the index
0 is the velocity curve in the sagittal
plane (XZ-plane) of the unrotated
crystal. The horizontal line indicates
the X-direction of the crystal and the
number on the end of each ray is the
angle @ which defines the direction in
the sagittal plane. As all curves are
symmetric referring to the center the
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curves for 0° £ p =2 900 are drawn only
in the upper half and the curves for
90° = P = 180° in the lower half of the
plot.

Fig. 1
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Fig. 2

Fig. 3 shows the velocity curves of
the bulk shear modes for Quartz in the
same representation as Fig. 1. One can
extract from this drawing that for the
unrotated crystal (P = 0°) the two shear
modes in Z-direction (@ = 90°) have the
same phase velocity. Furthermore, one
can see that the behaviour of the bulk
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modes is

symmetric

with regard to the

YZ-plane.
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