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Abstract 

We present a numerical algorithm 
for the calculation of phase velocities 
of acoustic surface and bulk waves in 
anisotropic piezoelectric materials. 
The mathematical model is based on 
fundamental partial differential 
equations in three spatial dimensions 
which are the equations of motion and 
Poisson's equation. We present examples 
for LiNb03 and Quartz. 

1. Introduction 

In recent years modeling of wave 
propagation phenomena in anisotropic 
piezoelectric materials has become 
eminently important for surface acoustic 
wave device characterization and design. 
Most of the common computer programs for 
the analysis of the extrinsic device 
behaviour require on input the phase 
velocity of the surface wave [l]. In 
many cases the decay of the surface wave 
into bulk as well as the properties of 
the bulk waves in the sagittal plane are 
also of great interest. As experimental 
results are difficult to obtain for 
arbitrary crystal cuts the numerical 
calculation of phase velocities is an 
important tool for the investigation of 
less common materials and crystal cuts. 

There exist some publications 
dealing with phase velocities of surface 
and bulk acoustic waves [2,3,4] but the 
authors in general postulate a pure 
exponential decay of the partial waves 
whose linear combination yield the 
surface wave. Our approximation is more 
rigorous as we do not anticipate the 
depth dependency in any way. For the 
calculation of the bulk modes we employ 
an abstract mathematical scheme rather 
than a wave-"ansatz". 

Our computer program in which we 
have implemented the two methods is very 
flexible with respect to different 
materials and crystal cuts. The 
structure and the actual values of the 
material dependent tensors are stored in 
a database for most of the common 
materials. The input data are the type 
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of material, the Euler's angles of the 
crystal cut and the kind of wanted 
calculation: either the surface wave 
solution or the plane bulk modes in the 
sagittal plane. In this paper a 
comparison is shown between the surface 
wave velocity and the velocities of the 
bulk shear modes on rotated Y-cut of 
LiNbOj. Furthermore the bulk wave 
velocity curves for Quartz are 
demonstrated. 

2. The Mathematical Model 

The mathematical model is based on 
the partial differential equation system 
in three spatial dimensions (j=1,2,3) 
consisting of the equations of motion 
(1) and Poisson's equation (2). It is 
to be noted that standard tensor 
notation as well as Einstein's summation 
convention is used. The derivation of 
this system from the fundamental 
equations describing acoustic wave 
propagation in arbitrary piezoelectric 
materials can be found in [5]. 

'ijkl .a2uk/axlaxi - 
- ekij-a2P/axkaxi = q.a2uj/at2 (1) 

ei -a2u k/axlaxi - 
- tik-a2~hxkaxi = o (21 

U denotes the mechanical displacement, 0 
the mass density and Q the electric 
potential. The fourth rank tensor c is 
the elastic stiffness tensor, the third 
rank tensor e the piezoelectric tensor, 
and the second rank tensor E the 
dielectric tensor in the actual i.e. 
rotated coordinate system. 

Now we reduce the system to the two 
space dimensions x=xl and 22x3 by 
assuming negligible derivation of all 
parameters in direction perpendicular to 
the sagittal plane and we define the 
solution vector s which includes the 
mechanical displacement vector U and the 
electric potential Q ( 4 ) .  This 
procedure leads to the following set of 
equations: 

1983 ULTRASONICS SYMPOSIUM - 1157 



Assxx + (B+B T )-sXz + C ' s Z z  = Q*stt 

t>O, x e R, z<O (3) 

( 4 )  

A, B, C, Q are 4x4 matrices, A and 
C are symmetric, and ET is the transpose 
of B. The matrix B+BT is obviously 
symmetric too. Q is a diagonal matrix 
with the entries 9 ,  9 ,  9 ,  0. 

T 
s = (U1,U2'U3'lp) 

3 .  The Surface Wave Velocity 

We investigate surface acoustic 
waves on free surfaces. This is not a 
fundamental restriction because for 
metalized surfaces one has only to 
change the boundary conditions. 

In the medium (air) above the 
surface the Poisson equation simplifies 
to the Laplace equation (5). The 
transition condition between crystal and 
air is given by the fact that there does 
not exist any charge on the interface. 
Thus, the divergency of the electric 
displacement has to vanish there (6). 
The component of the electric 
displacement perpendicular to the 
surface is called D3 for the crystal and 
Dair for the air. The surface boundary 
cond i t ions for the mechanical 
displacement result from the fact that 
all force components perpendicular to 
the surface have to vanish (7). 

- 
Div D = 0 = D3 = Dair for z = 0 (6) 

T3j = 0 for z = 0 (7) 

By substituting the linear 
piezoelectric constitutive relations (8) 
and ( 9 )  into equations (6) and (7) one 
obtains the system of boundary 
conditions (10). 

Tij = cijkl'Skl - eni j 'En 

Dm = e mkl"k1 + 'mn'En 

B*sx + C-s ,  = (O,O,O,Dair)T (10) 

(8) 

(9) 

Our model of the surface wave is a 
linear combination of partial waves 
(11). In contrast to other authors we 
do not assume a pure exponential decay 
of these partial waves into the depth 
but we allow a general function g(z). 
(It should be mentioned that g is a 
vector with 4 components.) 

(11) 

First we have to eliminate the 
right hand side vector of equation (10). 
For that purpose we calculate the 
solution of the Laplace equation (12). 

s = .I (kx - UI t) .g(z) 

The constant a1 must vanish because 
the limit of gair(z) for z + CD has to 

a2 is estimated by a be zero. 
comparison of gair with 44 for z = 0 and 
we obtain an expression for Dair (13). 

Dair = Cair-k-v for z = 0 (13) 

g ( z )  = f(() = f(jkz) (14) 

It is advantageous to make a 
transformation of the z-coordinate by 
introducing the new function f (14). 
Substituting equation (11) into (3), (10) 
and equation (13) into (10) yields a 
homogeneous system of four ordinary 
differential equations of second order 
(15) with the boundary conditions (16) 
and (17). 

(A-v2*Q)*f + (B+BT).f' + C*f" 0 (15) 

(B+F)-f(f) + C - f ' ( f )  = 0 for (=0 (16) 

s(x,(,t) = 0 for f + -j-m (17) 

The pure imaginary matrix F is 
coming from the dielectric displacement 
on the surface (13). 

It is very important to state that 
the unknown phase velocity v is a 
parameter of the equation system ( 1 5 ) .  
Therefore, an iterative algorithm must 
be applied: First, one has to give an 
initial guess for the phase velocity (a 
very good initial value is the phase 
velocity of the slower bulk shear mode); 
second, one must calculate the solution 
of the ordinary differential equation 
system, and third, one has to check if 
the boundary conditions can be satisfied 
with this solution. If the boundary 
conditions are not satisfied it is 
necessary to change the velocity and to 
repeat the whole procedure. 

To solve the ordinary differential 
equation system we transform it into 
first order defining the solution vector: 
h as follows: 

hi = f 

h' = H*h with h = (h1,h2)~ (19) 
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The f i r s t  o r d e r  s y s t e m  ( 1 9 )  i s  
c h a r a c t e r i z e d  by t h e  complex  8x8 m a t r i x  
H .  H l l r  H12.S. d e n o t e  t h e  4x4 
s u b m a t r i c e s  of H.  

The s o l u t i o n  o f  t h e  s y s t e m  ( 1 9 )  i s  
g i v e n  by e q u a t i o n  ( 2 0 )  w i t h  t h e  l i n e a r  
c o m b i n a t i o n  v e c t o r  q. Owing t o  t h e  
c h o s e n  f i r s t  o r d e r  t r a n s f o r m a t i o n  
homogeneous boundary  c o n d i t i o n s  ( 2 1 )  and  
( 2 2 )  have  to  be s a t i s f i e d  by t h e  
s o l u t i o n .  

E q u a t i o n  ( 2 0 )  i s  r e p l a c e d  by t h e  
s p e c t r a l  d i s s e c t o n  ( 2 3 ) .  The m a t r i x  G 
h a s  a s  column v e c t o r s  t h e  e i g e n v e c t o r s  
of H and  h is  a d i a g o n a l  m a t r i x  whose 
e l e m e n t s  a r e  g i v e n  by t h e  e x p o n e n t i a l s  
of t h e  e i g e n v a l u e s  o f  H. ( I t  s h o u l d  b e  
m e n t i o n e d  t h a t  it is n o t  a b s o l u t e l y  
n e c e s s a r y  for h t o  b e  a d i a g o n a l  b u t  a 
J o r d a n i a n  m a t r i x .  T h i s  is e s s e n t i a l  
when H h a s  m u l t i p l e  e i g e n v a l u e s .  T h i s  
spec ia l  case is i n c l u d e d  i n  o u r  
a l g o r i t h m  - as  a l a c k  of s p a c e  i t  c a n  
n o t  d i s c u s s e d  h e r e  i n  d e t a i l . )  

A t  t h i s  s t a g e  t h e  v e c t o r  9 i n  
e q u a t i o n  ( 2 0 )  is s t i l l  n o t  d e t e r m i n e d .  
The q u e s t i o n  is now i f  t h e r e  e x i s t s  a n  I\ 
s u c h  t h a t  t h e  s o l u t i o n  s a t i s f i e s  t h e  
b o u n d a r y  c o n d i t i o n .  F o r  t h a t  p u r p o s e  w e  
h a v e  to i n v e s t i g a t e  t h e  e i g e n v a l u e s  of 
m a t r i x  H: e i g e n v a l u e s  w i t h  a p o s i t i v e  
i m a g i n a r y  p a r t  n e v e r  c a n  s a t i s f y  t h e  
b o u n d a r y  c o n d i t i o n  ( 2 1 ) .  I f  w e  a r a n g e  
t h e  e l e m e n t s  of t h e  main  d i a g o n a l  of h 
i n  t h e  way t h a t  w e  t a k e  f i r s t  t h e  
e i g e n v a l u e s  w i t h  n e g a t i v e  i m a g i n a r y  p a r t  
i t  c a n  b e  shown t h a t  t h e  s e c o n d  f o u r  
componen t s  of r( m u s t  v a n i s h  ( 2 4 ) .  From 
b o u n d a r y  c o n d i t o n  ( 2 2 )  follows t h e n  
s t r a i g h t f o r w a r d l y  t h a t  f o r  a n  e x i s t i n g  
s u r f a c e  wave t h e  4x4 s u b m a t r i x  G~J h a s  
t o  be s i n g u l a r  ( 2 5 ) .  

1\2 = 0 ( 2 4 )  

The n u m e r i c a l  e f f o r t  f o r  c h e c k i n g  
o n e  g i v e n  p h a s e  v e l o c i t y  t o  be t h e  
s o l u t i o n  o f  t h e  s u r f a c e  wave p r o b l e m  c a n  
b e  summar ized  as  f o l l o w s :  a s s e m b l i n g  t h e  
complex  8x8 m a t r i x  H ,  e s t i m a t i n g  i t s  
e i g e n v a l u e s  and  e i g e n v e c t o r s ,  and  t h e n  
c a l c u l a t i n g  t h e  d e t e r m i n a n t  of t h e  4x4 
mat r ix  G 2 1 .  

4 .  The Bu lk  Wave V e l o c i t i e s  

To o b t a i n  t h e  p l a n e  b u l k  modes 
p r o p a g a t i n g  i n  a g i v e n  d i r e c t i o n  i n  t h e  
s a g i t t a l  p l a n e  w e  t r a n s f o r m  e q u a t i o n  ( 3 )  
i n t o  p o l a r  c o o r d i n a t e s  ( r , d )  and  f o r m  
t h e  l i m i t  f o r  r + m  T h i s  p r o c e d u r e  
y i e l d s  a homogeneous s y s t e m  of f o u r  
o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  ( 2 6 ) .  

N o w  w e  d e f i n e  t h e  m a t r i x  Q by 
e q u a t i o n  ( 2 7 ) .  Then, t h e  e i g e n v a l u e s  o f  
Q a re  t h e  r e c i p r o c a l  s q u a r e s  o f  t h e  
p h a s e  v e l o c i t i e s  and  t h e  e i g e n v e c t o r s  of 
Q a re  t h e  c o r r e s p o n d i n g  d i s p l a c e m e n t  
v e c t o r s  o f  t h e  b u l k  modes. 

Q = p-1.9 

I t  s h o u l d  be n o t e d  t h a t  t h e  f o u r t h  
e i g e n v a l u e  of Q is z e r o  d u e  t o  t h e  q u a s i  
s t a t i c  a p p r o x i m a t i o n  f o r  t h e  e l e c t r i c  
p o t e n t i a l .  

5. R e s u l t s  

F i g .  1 shows a c o m p a r i s o n  be tween  
t h e  s u r f a c e  wave v e l o c i t y  c u r v e  
( c u r v e  1) and t h e  v e l o c i t y  c u r v e s  o f  t h e  
b u l k  s h e a r  modes ( c u r v e s  2 )  for  t h e  128O 
r o t a t e d  Y-cut of L i N b O j .  I t  c a n  c l e a r l y  
be s e e n  t h a t  t h e  s u r f a c e  v e l o c i t y  is 
s t r i c l y  lower t h a n  t h e  v e l o c i t y  of t h e  
slower b u l k  mode. A s  i n  t h e  f o l l o w i n g  
d r a w i n g s  t h e  scale  i n  t h e  m i d d l e  
r e p r e s e n t s  t h e  a b s o l u t e  v a l u e  o f  t h e  
v e l o c i t i e s  i n  m / s .  T o  p r e s e n t  more 
d e t a i l s  t h e  c e n t e r  d o e s  n o t  i n d i c a t e  
z e r o  b u t  a d e f i n e d  minimum v e l o c i t y .  

F i g .  2 r e p r e s e n t s  t h e  v e l o c i t y  
c u r v e s  of t h e  q u a s i  l o n g i t u d i n a l  b u l k  
modes f o r  Q u a r t z .  The p a r a m e t e r  of t h e  
c u r v e s  ( 0  , 30 , 6 0 , .  . .)  is t h e  E u l e r ' s  
a n g l e  y, i . e .  t h e  c u r v e  w i t h  t h e  i n d e x  
0 is t h e  v e l o c i t y  c u r v e  i n  t h e  s a g i t t a l  
p l a n e  (XZ-plane) of t h e  u n r o t a t e d  
c r y s t a l .  The h o r i z o n t a l  l i n e  i n d i c a t e s  
t h e  X - d i r e c t i o n  of t h e  c r y s t a l  a n d  t h e  
number on  t h e  e n d  o f  e a c h  r a y  is t h e  
a n g l e  d which  d e f i n e s  t h e  d i r e c t i o n  i n  
t h e  s a g i t t a l  p l a n e .  A s  a l l  c u r v e s  a r e  
s y m m e t r i c  r e f e r r i n g  t o  t h e  c e n t e r  t h e  
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curves for Oo y .̂ 90° are drawn only 
in the upper half and the curves for 
90° * y * 180° in the lower half of the 
plot. 

90 
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270 

Fig. 1 

90 

I20 I 60 

270 

Fig. 2 

Fig. 3 shows the velocity curves of 
the bulk shear modes for Quartz in the 
same representation as Fig. 1. One can 
extract from this drawing that for the 
unrotated crystal (y = 00) the two shear 
modes in Z-direction (d = 900) have the 
same phase velocity. Furthermore, one 
can see that the behaviour of the bulk 

modes is symmetric with regard to the 
YZ-plane. 

90 

270 

Fig. 3 
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