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Abstract: We present a method for the
calculation of charge, electrostatic
potential and capacitance for arbitrary,
finite SAW-structures. = Our method is
applicable for one and two dimensional
SAW-structures without any restrictions
on the finger geometry and allocation.
Analytical expressions for the charge
and potential distribution are derived
by using the method of moments and the
relation between charge and potential
spectral components. A semi-numerical
evaluation procedure with automatic
error estimation has been devgloped.
However, computation times are fairly
small (several seconds on a medium scale
computer), so that our technique is
feasible for actual development-oriented
SAW design. As a particular result the
influence of the end-fingers of SAW
transducers on the driving function for
surface waves are discussed.

1. Introduction

To our knowledge all previously
published techniques for the analysis of
charge distribution on the fingers of
sur face acoustic wave interdigital
transducers ({(SAW-IDT) rely on stringent
assumptions about the geometry and
driving potentials of the fingers.

Under the assumption of infinite
periodicity of the fingers Datta et. al
[1] have derived an analytical
expression for the element factor, which
is proportional to the Fourier transform
of the spatial charge distribution if
only one finger is activated. Using
this fundamental function the response
of an infinite periodic transducer can
be calculated. However, neither the
end-effects in a finite transducer with
periodic*© finger allocation nor the
effect of the aperiodicity can be
accounted for in this way.

Iterative solutions [2] are time
consuming. Predetermined functions for
charge-potential-interrelation 31 or
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for charge distribution with fitting
parameters [4] are not accurate enough
in general cases.

Using Fourier transform and moment
methods Ristic et.al [5] could show that
for one-dimensional representation of
SAW-IDTs with geometrical symmetry and
electrical antisymmetry conditions it is
possible to give closed-form expressions
for the elements of a
charge-potential-interrelation-matrix
(CPIM).

The problem of determining charge,
capacitance and field distribution
thereby reduces to inversion of the
(CPIM).

Reformulating and extending the above
solution procedure we show that, without
imposing any kind of restrictions on
electrical characteristics and geometry
it is possible to give closed-form
expressions for the (CPIM)-elements for
one- and two-dimensional representations
of SAW-IDTs including floating fingers
if necessary.

2. One-Dimensional case

The geometry of interest is shown in
Fig.1l:
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Fig.l One-dimensional representation
of SAW-IDT

There are NF metallic fingers deposited
on the surface of a semi-infinite
anisotropic dielectric.

Fig.2 showgs the j-th finger with a
nonequidistant discretisation. The
shaded regions are the i-th and
(j-M=i+[(j-1)-M+1l])-th substrips of the
j-th finger, with
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Fig.2 j-th finger

fm and 2d. are the midpoint-coordinate

ahd the w1d£h of the i-th substrip.

1.1 Solution procedure

* Derive the relation between the charge
and potential spectral components

( the Green function in the
wave-number space ) for the geometry
of interest (a semi-infinite

anisotropic dielectric in our case)

As is well known [5] the relation (1)

yields:
P = 6K Py ... (D
where
- 1
G (Ky)
X g (1+a) |Kyl
d...anisotropy factor.
The bar denotes Fourier
transformation.
* Approximate the spatial charge
distribution by a sum of
stepfunctions.

* Take the Fourier transform of the

resulting function:

5k =
pp 5 6,6,exp (jkEM - SINC (k,8,)

with i=1..NT )

Qo...normalization factor
0 ...unknown charge value
on i-th substrip (Fig.2)
'1‘ ...charge integral on
i-th substrip
NF...number of fingers
M...number of subdivisions
of one finger
( principially,with our
formalism this number may
vary from finger to finger)
NT...total number of
subdivisions
(NT=NF-M)

* Insert (2) in (1}
* Calculate the inverse Fourier

transform of the resulting function
which gives an expression for W(x) as
a function of e.d.

* Relate the poteﬁtial ¥(x) to that of

the NF-th finger

* A point matching procedure of the

potential $(x) gives:

QUED -p(ERD - 2 3 6,6,A(1, )

Q ...proportionality factor - (8)
* Formulate the charge neutrality
condition on the whole transducer:
S ANT,i)-0.6; - @ (&)
with
ANNT,i) =1 i=1..NT

The coefficients given by (3) and (4)
are the elements of (CPIM).

(3) and (4) are NT equations in NT
unknowns @ .

The capaciténce of the j-th finger can
be written by:

C, - Cp § |o(x)] dx
(j-th FINGER)
1.3. Error analysis

Fig.3 shows the i-th substrip of the
j-th finger.
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Fig.3 i-th substrip of
j-th finger

Now we replace the stepfunction
approximation of the charge density on
the i-th substrip by a linear function:

o(x) = s(ED+(x-cP-6" N ... (5)

The same procedure as before leads to
the (NT-1l) equations:

(ED -p(ERD = 2 6, ACi, PET()
.. (6)
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Et(3) are analytical solutions of
integrals, and represent the error
terms.

These terms are of the order of some mV
if the driving potentials of the fingers

are some volts. Therefore a
non-equidistant discretisation of the
fingers with a stepfunction

approximation 1is accurate enough for
most cases of interest in practice.

1.3. Applications

The theory developed here can be applied
to a variety of applications including:

halfspace structures
plate structures
striplines

multilayer structures

* * * ¥

It is worth noting that complex
structures lead to difficult Green
functions in wave-number space. The
elements of the (CPIM) are integrals,
their complexity depending on the Green
function. Themfore it 1is not always
possible to give closed-form solutions
for these integrals.

2. Floating fingers

To simplify the discussion we consider a
3-finger transducer with one floating
finger. All fingers are divided into 2
subsections Fig.4:
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Fig.4 One floating finger
neighboured by two
active fingers

Boundary condition for a
finger:

The potential of a floating finger which
is not known a priori, has to be
determined in a way such that the whole
charge on it is zero.

This charge neutrality condition for the
floating finger in Fg.4 gives:

- 0363‘6464 = ﬂ

floating

V2]

One can easily show that the matrix in
(8) represents the (CPIM) of Fig.4.
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It should be noted that the unknown
potential ¢ and the <charge integrals
@.0. can be calculated simultaneously.
According to the matrix equation (8) we
conclude that the inclusion of floating
fingers requires only to increase the
rank of (CPIM) by the number of floating
fingers in a very simple manner:

The additional rows and columns
describing floating fingers are
diagonally symmetric and have elements
that are -1 or 0.

Ala - o . L A D 6164
@ 676,
-1 0363
-1. 6464 =
Asy - . . . A5, @ 6565
1 11111 0] |66,
@ P-1-1 0 0 /] C
P1~P3
P1793
Pz
= -Qs
- 93
)
. . (8)
3. Two-Dimensional case
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Fig.5 Two-dimensional
representation
of SAW-IDT

As in the 1-Dim. case we have to find
the 2-Dim. Green function G(k_,k.) in
the wave-number domain. As e§pl¥ined
for the 1-Dim. case it relates the
spectral components of the potential to
the charge:

9 (kx.ky) = Glky.ky) - o, (ky. ky)
AN

One can show that G(kx,ky) has the form:




é(kx,ky) - 1
€a [\/k§+k$ +\/a1k§+azk§+2a12kxky ]

... (1D

¢1,¢2,¢12...anisotropy factors.

The same solution procedure as in the
1-Dim. case furnishes the elements of
(CPIM), which are sums of integrals. We
can show that these integrals also can
be calculated analytically. Due to
space limitations this cannot be
presented here.

4. Results

Now we present some of the results we
obtained using the preceding theory in
the one-dimensional case.

Fig.6 shows a transducer with one active
finger and i grounded fingers to the
left and Jj grounded fingers to the
right. This is denoted by (i-1-3).
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Fig.6 Transducer with one
active finger

Fig.7 shows the definition of the
metallisation ratio in a transducer with
a finite number of fingers deposited
equidistantly on the surface.
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Fig.7 Definition of
metallization ratio
Fig.8 shows a finger devided into
M-subsections.

ola

i
|
!
|

Fig.8 j-th finger divided
into M substrips

With these definitions of (i-1-j):; @ and
M we can now discuss the curves depicted
in figures 9 and 10 in greater detail.
The curves rfyiesent the excitaton
functions @ (k) k for the first eight
harmonics in dependence of the
wave-number in a normalized form.

In the case of infinite periodicity,
these excitation functions degenerate to
the well known element-factor. The
curve at the top of Fig.9 corresponds to
the element-factor of an infinitely
periodic transducer as published in [1].
This means that the infinite periodicity
can be simulated using only few fingers.
Fig.9 shows that the first finger
(bottom curve in the figure) yields a
spectrum which is completely different
from that of other fingers. Fig.10
shows the combined influence of left and
right end-fingers.
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Fig.9 Influence of left
end-fingers
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Conclusion

We have presented a method for
calculation of the charge density on the
fingers of a generalized finite SAW-IDT.
The elements of the
charge-potential-interrelation matrix
(CPIM) have been calculated in a
closed-form, so that the problem of
determining the charge density on the
fingers essentially reduces to inversion
of the (CPIM). A simple extension of

(CPIM) allows the inclusion of floating
fingers. It has been claimed that the
elements of (CPIM) in the 2-Dim. case
can also be calculated analytically.
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Fig.1l0 Influence of left and
right end-fingers
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