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PROCESS AND DEVICE MODELING FOR VLSI

ABSTRACT - The appearance of Very Large Scale Integration
caused a pronounced interest in concentrating on process
and device modeling. The fundamental properties which
represent the basis for all device modeling activities are
summarized. The sensible use of physical and
technological parameters is discussed and the most
important physical phenomena which are reguired to be
taken into account are scrutinized. The assumptions
necessary for finding a reasonable trade-off between
efficiency and effort for a model synthesis are
recollected. Methods to bypass 1limitations induced by
these assumptions are' pin-pointed. Formulae that are
applicable in a simple and easy way for the physical
parameters of major importance are presented. The
necessity of a careful parameter-selection, based on
physical information, 1is shown. Some glimpses on the
numerical solution of the semiconductor equations are
given. The discretisation of the partial differential
equations with finite differences is outlined.
Linearisation methods and algorithms for the solution of
large sparse linear systems are sketched. Results of our
two dimensional MOSFET model - MINIMOS - are discussed.
Much emphasis is laid on the didactic potential of such a
complex high order model.

INTRODUCTION

It was in the early 1960's when the first integrated circuits
which just contained a few devices became commercially available.
Since then an evolution has taken place so that the manufacture of
integrated circuits with about 500.000 transistors per single chip
is possible nowadays. This upcoming Very-Large-Scale-Integration
(VLSI) certainly revealed the need of a better understanding of
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the basic device physics. The miniaturization of the single
‘transistor, which is one of the inseparable preconditions of VLSI,
brought about a collapse of the classical device models, because
completely new phenomena emerged and. even dominated the device
behavior. One consequence of this evidence led to an unimaginable
number of suggestions of how to modify the classical models to
incorporate various of the new phenomena. Additionally new
activities have been initiated to explore the physical principles
which make a device operationable. The number of scientific
publications which utilize the terms “device analysis®, “device
simulation® and “device modeling™ (c.f./3/, /53/, /79/) has been
increasing incredibly. .

The characteristic feature of early modeling was the
separation of the interior of the device into different regions,
the treatment of which could be simplified by various assumptions
like special doping profiles, complete depletion and
quasineutrality. These separately treated - regions were simply
connected to produce the overall solution. If analytic results
are intended, any other approach is prohibitive. Pully numerical
modeling based on partial differential equations /156/ which
describe all different regions of semiconductor devices in one
unified manner was first suggested by Gummel /69/ for the one
dimensional bipolar transistor. This approach was further
developed and applied to pn-junction theory by De Mari /39/, /38/
and to IMPATT diodes by Scharfetter and Gummel /129/.

The first two dimensional numer ical analysis of a
semiconductor device was carried out by Kennedy and O'Brien /82/
for the junction field effect transistor. Since then two
dimensional modeling has been applied to fairly all important
semiconductor devices. There are 8o many papers of excellent
repute that it would be unfair to cite only a few. The first
results on three dimensional device modeling have been published
recently. Transient analysis have been performed by e.g. /90/,
/107/ and models for three space dimensions have been announced by
e.g. /27/, /164/, /165/. ’

PROCESS MODELING

To enable the simulation of the electric behavior of a device
the configuration of the device (i.e. geometry and composition of
the material it is made of) is, obviously, one of the prerequisite
pieces of input information. Optimal design of a device
necessitates the capability to predict the effect of modifying any
of the various process steps involved in device fabrication. One
principle barrier for predictive device simulation is the
uncertainty of the results of process models due to still
inadequate understanding of their underlying solid-state physics
and chemistry. Particularly in the development of devices for
integrated circuits and their technology, the need for process
models is growing dramatically due to the tight coupling of two
and three dimensional device effects with the doping profile /49/.
Owing to these purposes, many. computer programs capable of
modeling quite generally the various processing steps of device
fabrication have been developed, and they have proven to be
extremely valuable tools, e.g. ICECREM /122/, /123/; LADIS /151/;
MEMBRE /112/; RECIPE /138/; SUPRA /29/, /84/, /85/, /102/ and the



extraordinarily well established SUPREM program /7/, /8/, /102/,
/101/, /119/.

Apart from lithography which may be viewed as a fixed process
that simply provides flexibility in layout /117/, /118/, the
primary fabrication processes which determine the electrical
characteristics of semiconductor devices, in particular silicon
devices, are ion implantation, diffusion and thermal oxidation.
Epltaxy, etching and deposition can certainly play an essential
role in device fabrication as well. However, as the field of
process modeling is extraordinarily wide and difficult, only the
above cited process steps will be discussed here. Furthermore, it
should be noted that only a small review of the most important
models can be presented here due to the complexity of the
underlying phenomena. The aim here is just to give a flavor on
what problems have to be dealt with in providing  this
all-important input for device simulation. We also shall restrict
ourselves to silicon processing.

Ion Implantation

Ion implantation is the most applied doping technique in the
fabrication of silicon devices, particularly integrated devices.
Implanted profiles are usually described by means of a
distribution function f(x) and four characteristic gquantities
which arﬁx}he mean value or projected range sz
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These quantities can either be calculated /88/, /19/ or
reasured /122/.

At present the most universal distribution function is the
Pearson type IV frequency function which has been introduced by
Hofker /74/ for process modeling. It is based on the differential
equation:
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The shape of f(y) varies considerably with b,, and b,. The
form of solution of (5) evidently depends on 8 n&ture af the
roots of the equation:

bg.+ byy + bp-y2 = 0 (10)

However, only the so-called Pearson type IV distribution can
be used for modeling implantation profiles. 1In this case (10)
does not have real roots which gives the restriction:

0 < P12 < 32

39-P,2 + 48 + 6- (P12+4)3/2 (11)

32 - 2

'2 >
Obeying this restriction the general solution of the
differential equation (5) is given by:
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The constant K is the normalization constant to account for

the incorporation of the total implantation dose. It can wusually
be determined only by numerical integration.

cexp (- )) (12)

Diffusion

By means of diffusion processes one can obtain a desired shape
of the distribution of dopants incorporated into the semiconductor
by, e.g., ion implantation or which are deposited at the surface



as a paste, fluid or gas of high concentration. The diffusion of
dopants in semiconductors is described by the two laws of Fick,
which read: - :

3; = -pj-(grad Ctj - zj- I - (Ct; - Ccj)-grad @) (13)
kT

ace

_ﬁi +aiv3 =0 ‘ (14)

Ct. is the total concentration; Cc¢., 1is the electrically
inactide part of the concentration, i.e. the concentration of
dopants which is not well incorporated in the silicon lattice and,
thus, is not ionized (e.g. neutral clusters). J. denotes the
impurity flux; 2z, is the charge state of the impurlty (+1 for
singly ionized “acceptors, -1 for singly ionized donors). D
represents the diffusion coefficient which depends, in general, ofi
all sorts of quantities as we shall discuss later. P is the
electrostatic potential. The index i of all above cited
quantities denotes the i-th impurity type as there is usually more
than one kind of impurity incorporated into the silicon when a
diffusion process is performed.

By substituting (13) into (14) we obtain the classical form of
the diffusion equation, a continuity equation, for the i-th
dopant. :

dce; div [D;- (grad Ct z2:;-_ 9 .(ct Ccy) *grad ¥ )} (15)
= div [D:+ _gz...9. - .qra
_‘.t__ i*\g i i kT i il g o

The electrostatic potential ¥ is determined by the Poisson
equation:

div grad $=g-(n-p-C) . (16)

The quantity C represents the total net concentration of all
ionized impurities. For a system with k impurities we have:

k
c=- & 2zj:(Ctj - Ccjy) (17)
i=1

Note that in (17) the influence of, e.g., charged vacancies is
neglected. In all process modeling programs I am familiar with
the Poisson equation 1is not solved as an elliptic differential
equation, but rather assuming vanishing space charge and Boltzmann
statistics. The electrostatic potential can then be calculated
explicitly.

k-T C
v = T-arsi.nh( 2 ) (18)

nj

n denotes the intrinsic concentration at the process
tempe%ature. It may be modeled as depending on the concentration
of dopants, thus, representing an effective intrinsic
concentration. The assumption of vanishing space charge is very
poor when considering the coupled diffusion in a structure with
pn-junctions. This problem is stressed in /5/.

In the literature one can often find that field éhhanced



diffusion is accounted for with a so-called field enhancement
factor multiplying the diffusion coefficient. It should be notéd
that the approach using a field enhancement factor is only correct
if just one species ' of impurities is involved in the diffusion
process.

In the following I should 1like to discuss models for the
diffusion coefficient D.. It is well established that the
diffusion vehicles are th& intrinsic point defects of the lattice,
i.e. vacancies and interstitials /130/. Evidence exists that both
kinds of defects are important for the diffusion of dopants in
silicon. However, at this time there is a lack of mathematical
models describing the diffusion by interstitials. Therefore, the
following considerations are based on the vacancy mechanism.
Hence, the diffusion coefficient D, is assumed to be the sum of
several diffusivities /11/, where each accounts for the impurity
interactions with different charge states of lattice vacancies.

o - = +
Dj = D; + D;-V" + D V= + D -V* (19)

p? is the diffusion coefficient for the dopants of the. i-th
speciés diffusing with neutral vacan(nesé for those diffusing
with singly negative charged vacancies, io those diffusing
with doubly negative charged vacancies, an D, for those diffusing
with singly positive charged vacancie3. . Other types of
configurations are certainly also imaginable; howeyer, tge cited
ones are considered to be most relevant. V , V" and V' are the
concentrations of singly negative, doubly negative and -singly
positive charged vacancies normalized by the concentration of
neutral vacancies. These concentrations can be modeled under the
validity of Boltzmann statistics as:

=2, v"=( )2, vt = P ©(20)
nj nj .

n and p denote the electron and hole concentrition,
respectively. The individual diffusion coefficients D; are
usually given as expressions in Arrhenius form:

Ex
Di = D jrexp(- 24 (21)
k-T

Numerical valuesx for the prefactors DX, and the so-called
activation energxes.E are summarized in ? 4/, /55/, /119/,
/134/.

Although the model (19) for the diffusion coefficient is
already quite sophisticated, it has to be applied very carefully.
An additional modification, wusually an enhancement, of the
diffusivity takes place in oxidizing ambients as will be discussed
in the next section. If the dopant concentration becomes so high
that it approaches its solubility limit in silicon - this is the
case in many practical applications - the impurities are
considered to precipitate or to cluster, and they will,
supposingly, not diffuse. However, quantitative statements are
very difficult to make at the moment. The interested reader
should carefully check the, hopefully, forthcoming literature on
-4hat problem and related ones. Currently, the most £freguently
‘ugsed model which describes the relation between the total



concentration Ct and - the electrically inactive (e.g. cluster)
concentration Cc is based on the following differential equation.

_g% = m-kce (Ct - Cc)® - kd-Ce (22)
kc and kd are the clustering and declustering rate,
respectively. These are usually assumed to be temperature

dependent. m is the cluster size, i.e., the number of impurity
atoms which form an electrically inactive complex, the cluster.
However, in /152/ it is explained, particularly for arsenic, that
the allowence for electrically charged clusters seems to improve
the agreement with experimental results. Different types of
charged and uncharged clusters are further considered in /68/.
These effects become significant when 5he _gopant concentration
reaches the solubility limit (e.g. 3°10°"cm for arsenic at 1000
Celsius). I should 1like to speculate that in essence these
statements are correct, but in order to derive models which are
applicable for engineering purposes much more investigatory work
has still to be carried out.

Very often it is assumed that the effect of dynamic clustering
and declustering is negligible. Then we obtain an algebraic,
equilibrium cluster relation between the total and the
electrically active concentration.

Ct = (Ct - Cc) + Pc-(Ct - Co)l (23)
Pc = m-;g' (24)

Numerical values and the temperature dependence of the
equilibrium cluster coefficient Pc are presented in the report

/119/.

Oxidation

The thermal oxidation of silicon is one of the most important
processing steps for the fabrication of modern devices. All
existing models for oxide growth are based on the work of Deal and
Grove in 1965 /40/. Their basic idea was the assumption of a
steady state situation between three fluxes.

Fl1 = h- (C* - CO) ' (25)
ic co - ci

F2 = —Deg- & Do 26
= Xox (26

F3 = kg-cl : (27)

Fl 1is the flux 8f oxidant from the bulk of the gas to the
gas-oxide interface. ¢~ is the concentration of the oxidant at
the oxide surface; C 1is the concentration of the oxidant in the
oxide, which will be in equilibrium with the partial pressure in
the bulk of the gas; and h is the gas phase mass transfer
coefficient.

F2 denotes the flux across the oxide, which is assumed to be
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purely diffusive. cl is the oxidant concentration in the oxide it
the oxide-silicon interface; X, x [epresents the oxide thickness.

F3 1is the flux corresponding to the oxiaation reaction at the
oxide-silicon interface. k represents the chemical surface
reaction rate /67/. in the steady state condition these three
fluxes are identical and can be expressed:

k .

F = s .c* (28)
ks , kg* Xox
= B

The flux of oxidant reaching the oxide-silicon interface is
described by the differential egquation:

dx .
Np- d:" = F _ (29)

1+

N, is the number of oxidant molecules incorporated into a unit
volum% of oxide. The solution of (29) is:

Xox (t) = i(g_mox(o;ﬂ +Bet - ; (30)

with:
1,1

A= 2D + 31
(E; E) (31)
*

B = 2DC (32)

Ny .

B is refered to as the parabolic growth rate coefficient
because for large t (8.9) approaches:
A2
2
X, t) = B-t t > — 33
ox* (t) ’ rey ) (33)

For small time we observe that B/A describes a linear growth
rate:

2
Xox(t) =Bt + 1), t<<® vt (34)
A 4-B

By proper modeling of the growth rate coefficients, many
ambient attributes can be accounted for (composition, pressure,
cea)e However, for very thin oxides the flux models (25) to (27)
appear to be oversimplified and have to be modified /76/, /119/.
An enmpirical formula for thin oxide thicknesses corresponding to
(29) reads: .
- t t

B + Kjrexp(- ) + Kp-exp(- )

Axoyx ) 1°exp q 2 P 17

. : (35)
t 2'%x0x + A

A and B are defined in (31) and (32), respectively. The two
supplementary terms compared to (29) involve functions decaying
exponentially in time which dominate, as it has been confirmed by
‘Bbservation of an extensive collection of expérimental data /119/,
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oxide growth in the 2nm and 20nm regime, respectively. One can
expect, however, that many more modifications of this type will be
introduced in order to account heuristically for effects which can
be seen experimentally but have not been understood completely on
a theoretical basis. As excellent reviews on the many problems of
oxidation /119/, /120/ can be recommended. A more fundamental
treatment of the kinetics of oxide growth, which is based on the
solution of the Navier-Stokes hydrodynamic equation, has
fortunately begun /28/. The most complete models for the growth
rate coefficients B/A and B have been summarized in /103/, /119/.

Another effect which has to be considered in the context of
oxidation is the impact on the diffusion coefficient. It has been
observed by several authors, e.g. /6/, /96/, /97/, that the
diffusivity is enhanced. This enhancement is, most plausibly,
based on diffusion mechanisms additionally to the vacancy
diffusion mechanisms which we have outlined in the last section.
The additional mechanism is due to intrinsic interstitials emitted
from the oxidized surface as suggested by Hu /75/ and proved
experimentally by, e.g. Antoniadis and Moskowitz /9/, /10/. Some
theoretical considerations on this subject can be found in /100/.
It is not clear at present how the vacancy and the interstitialcy
mechanism interact, or which one dominates, in the temperature
range [800,1000]C /58/. Therefore, we have restricted ourselves
solely to the vacancy diffusion mechanism in the 1last section.
However, by postulating an enhancement of the interstitial
concentration and their self diffusion during oxidation /6/, /11/,
/12/ an increase in the diffusivity of dopants is sound.
Taniguchi et al. /147/ have suggested modifying the diffusivity
of boron and phosphordl, particularly, with the following
empirical expression:

Xox,0,3 x 2,08eV
= + K- . - - -l 3
D = Dy + K- ( t ) exp ( Epa e ) (36)

( 1,7
<100> 3,08-10-3 ™’
! 0,7

(
(
K= (37)
(
(

5

1,7
<111> 2,67-10-3 2
’ ——U’-a’s ;

D_ is the effective diffusion coefficient for inert ambients;
x deflotes the distance to the oxide-silicon interface; K is a
constant derived from fits to experimental data. The qualitative
dependence of the oxidation enhanced diffusion coefficient upon
the oxide growth rate, the distance to the interface and
temperature is plausible. Therefore, pragmatically, such a model
can prove to be very valuable, but it clearly demonstrates how
poorly the diffusion kinetics are understood. It should be noted
that oxidation retarded diffusion has also been observed
experimentally, e.g. /119/. This effect can be made plausible by
the allowance of vacancy consumption by interstitials during
oxidation. Similar models to (36) can be found in /8/, /119/,

/122/, /123/.



DEVICE MODELING . E

"The most familiar model of carrier transport in a
semiconductor device has been proposed by Van Roosbroeck /156/.
It consists of Poisson's equation (38), the current continuity
equations for electrons (39) and holes (40) and the current
relations for electrons (41) and holes (42)

div€grad YW= -g*(p~n+C) . (38)
div3 = -q-(G-R) + q-8n/3¢ ' (39)
div 3p =g (G-R) - q-.p/at T (40).
3n = —q-( ’n-n-grad ¥ - D -grad n) (41).
3 =g ( P, p'grad W+ D cgradp) (42)

These relations form a system of coupled partial differential
equations. Poisson's equation, which is one of Maxwell's laws,
describes the <charge distribution in the interior of a
semiconductor device. The balance of sinks and sources for
electron- and hole currents is characterized by the continuity
equations. The current relations describe the absolute value,
direction and orientation of electron- and hole currents. The
continuity equations and the current relations can be derived from
Boltzmann's equation by not at all trivial means. The ideas
behind these considerations cannot by presented here due to
limited space. The interested reader should refer to /156/ and
its secondary literature or text books on semiconductor physics
e.g. /21/, /73/, /131/, /139/.

However, it is of prime importance to note that the equations
(41) and (42) do not characterize effects which are caused by
degenerate semiconductors (e.g. heavy doping). /91/, /154/, /158/
discuss some modifications of the current relations, which
partially take into account the consequences introduced by
degenerate semiconductors (e.g. invalidity of Boltzmann's
statistics, bandgap narrowing). These modifications are not at
all simple and lead to problems especially for the formulation of
boundary conditions /113/, /157/. In case of modeling MOS
devices, degeneracy is, owing to the relatively low doping in the
channel region, practically irrelevant. For modern bipolar
devices, though, bearing in mind shallow and extraordinarily
heavily doped emitters, it is an absolute necessity to account for
local degeneracy of the semiconductor.

Just as further examples (41) and (42) do not describe
velocity overshoot phenomena which become apparent at feature
lengths of 0.1pm for silicon and 1pm for gallium-arsenide /61/;
and certainly no effects which are due to ballistic transport, the
existence of which is still questionable /72/, are included. The
latter start to become important for feature sizes below 0.01pn
for silicon and 0.1Pm for gallium-arsenide /60/. Considering the

L, _ftate of the art of device miniaturization, neither effect has to
" bother the modelists of silicon devices. For gallium-arsenide
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devices new ideas are mandatory for the near future /61/, /109/,
/108/. ’ . :

Assumptions and Discussion of Parameters

It is imperative to discuss the parameters of the
semiconductor equations to get some insight into the complexity of
that mathematical model and the difficulty of a more or less
rigorous solution.

The permittivity £ in Poisson's equation in the most general
case is a rank two tensor. Because all common semiconductor
materials grow in cubic crystal structure and because silicon-
dioxide is amorphous no anisotropy exists and the permittivity can
be treated as a scalar gquantity. Furthermore, one can savely
assume that the permittivity is homogenous with sufficient
gccuracy for even degenerate semiconductors.

The electrically active net doping concentration C -in
pPoisson's equation is the most important technological parameter.
To obtain this quantity by mathematical analysis /49/ is at least
3s cumbersome as to accurately analyze some semiconductor device,
because the physics of the technological processes which determine
the doping concentration still lacks basic understanding. The

eed of modeling in this area is drastically increasing in view of

LSI devices. One-dimensional process modeling is fairly well
established nowadays, but two-dimensional simulation is just
appearing /49/, /151/. Some glimpses of modeling doping profiles
with handy analytical expressions are given in e.g. /133/. One
assumption which is usually made with satisfactory success (at
room temperature) is the total ionization of all dopants (43).

+ -
C =Ny - N, =N - N, (43)

As long as the Permi level is separated several thermal
voltages from the impurity 1level, this assumption holds quite
nicely. For modern bipolar transistors, however, 1t certainly
becomes questionable for the emitter region (degenerate material).

The electron density n and the hole density p are commonly
assumed to obey Boltzmann's statistics (44).

n= ni-e(v_ ¥5) /U p = ni°e(’P - ¥ /up (44)

This assumption principally neglects degeneracy; but moderate
degeneracy can be included /52/ by introducing an effective,
doping dependent intrinsic number (45).

n, = ni(T,N) (45)

1
52.7K'(1n(N/1017cm-3)+q(1n(N/1017cm_3))2 +0.5) /T

ni(T,N) = ni(T)-e

16

ng(T) = 3.88:10 cm™3. (z/K) 3. ¢ 7000K/T

N = ND + NA
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The temperature dependence of the intrinsic number is based on
the influence of the effective carrier masses and the bandgap.
More elaborate formulae for these effects which might be
imperative for low temperature applications can be found in /62/.
The formula for bandgap narrowing in (45) was first suggested by
Slotboom /136/. For a doping concentration of 1.3-1017 cm=3  the
intrinsic number has already increased by twenty percent.

The mobility of electrons Pn and holes Jp is in principle a
rank two tensor function of many arguments. One ends up with a so
called “mobility"” after averaging and combining various physical
mechanisms which are still not analyzed thouroghly enough to be
modeled satisfactorily /77/.

Another assumption which is unfortunately not at all free of
doubts is the validity of the Einstein-Nernst relations (46).

D, = P, Uy D, = pp Up (46)

Some gquidelines on how to extend these relations for
degenerate material are given in e.g. /14/. It is important to
remember that the current relations (41) and (42) do not
differentiate  between lattice temperature and electron
temperature. Therefore, if one has to deal with hot electrons in
a precise manner, the current relations have to be updated; in
particular the mathematical structure of the diffusion current
term has to be refined.

The last parameter which remains to be dealt with for a
qualitative characterization is the net generation/recombination
rate (G-R) in (39) and (40). This quantity has to describe a
number of physical processes which are responsible for
generation/recombination of electron-hole pairs. These processes
and their interactions are also not analyzed to a satisfactory
level so that one has to use heuristic expressions for a model
wvhich is at 1least plausible in the underlying physics. Some
suggestions for these formulae will be given in section 2.4.

Additional Assumptions for MOS-Models

The fundamental semiconductor equations describe the internal
behavior of any semiconductor device. However, for certain
devices these equations may be simplified without significant loss
of accuracy. As the MOSFET is a minority carrier device, the
current is given mainly by the continuity equation of one carrier
type. If avalanche is neglected, only little carrier generation
occurs in the MOSFET.

Therefore, the egs. (39)-(40) may be rewritten as

aiv 3n =0 (47)
3 =0

p (48)
for the n-channel device and

aiv 3p =0 (49)
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3 =0 - (50)

‘for the p-channel device. However, it should bé kept in mind
that these assumptions are wvalid only if the avalanche effect is
negligible (see chapter 6).

The channel width of a MOSFET is usually (often) much larger
than the depletion widths. As a consequence the . partial
derivatives in that direction can be neglected and the
senmiconductor equations reduce to two dimensions. The neglection
of the derivative of the potential in source-~drain direction is a
proper assumption only for long-channel devices. The so called
“gradual-channel approximation®™ was the basis of a 1lot of one-
dimensional models. These models fail to predict accurately the
_behavior of modern miniaturized devices.

If the avalanche effect should be included, the assumptions
(47)~(50) are no longer valid and both continuity equations have
to be solved with inhomogeneity terms. As a consequence, the
ionization-generated majority carriers (holes for an n-channel
MOSFET) flow to the substrate as they are repelled from the source
and drain junctions. There are several options to account for the
voltage drop which is induced by the substrate current: (a) a
truly three-dimensional analysis; (b) extension of the simulation
over the entire bulk area; (c) extension of the two-dimensional
simulation over the depletion region and using an (effective) bulk
resistor (FPig. 1). If one wants to avoid excessive computing time
associated with (a), option (c¢) is to be preferred because it
allows inclusion of current spread into the third dimension and,
also, consumes less computing time than (b). In that way the
voltage drop across the parasitic bulk resistor simulates a more
positive bulk bias and, if large enough, is able to forward-bias
the parasitic bipolar npn transistor (according to source, bulk,
and drain). This causes a larger drain current and facilitates
the breakdown which then will occur at smaller drain voltages

/127/.

Deep Bulk

ATV IITHIIIGINTOIIIIIIII TSI IVIIGIIIIIVI

Bulk contact i g

Fig. l: Current flow in deep bulk
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In the following we should like to suggest an easy method to
estimate the value of the bulk resistor. It is assumed that the
current spreads at an angle of 45 degrees /18/ into both direc~
tions perpendicular to its flow (x- and z- direction in Pig. 1).
This assumption is arbitrary but not implausible, and, further-
more, if we neglect any diffusion current, we obtain the following
expression for the electric field in the deep substrate.

L 3 Is _ Ip (51)
y KA K(L+2y) (W+2y)

with KR standing for the conductivity of the substrate and A
the area of the current flow. L and W are channel 1length and
channel width, respectively. Integrating this equation along y
from the end of the simulation area d8 to the bulk contact we

obtain
i%’dv

-]
RBulk = IB

For L=W this equation simplifies to

- i 0 ER - 18 ) . o
8 s

a-a :
8
Rpulk = H(E+2d) (L+Zd,) ° (53)

This calculation is fairly crude compared to the elaborate so-
lution of the basic equations. However, any more precise cal-
culation would be very complicated and the present method is
gufficient to investigate the influence of the parasitic bulk
resistance at least qualitatively.

MODELS OF PHYSICAL PARAMETERS

Modeling Mobility

The mobility of carriers “is, as already mentioned, an
eminently complex quantity. Additionally it is an important
parameter, because all errors in the mobility 1lead to a
proportional error of the current through the multiplicative
dependence. This is certainly one of the primary results any
model should yield reliably. The formulae which will be given
below describe phenomenologically the mobility in silicon; the
subscripts n and p denote electrons and holes, respectively.

To model mobility at least plausibly, several scattering
mechanisms have to be taken into account, the basis of which is
lattice scattering. This effect can be described by a simple
power law /77/, /131/ in dependence of temperature (54).

P(T) = A-(T/R) I (54)
8 2 8 2

A = 7.,12:10" cm“/Vs A_ = 1.35-10° cm“/Vs

na2.3 P-2.2

9, . 9% .

The pure lattice mobility is reduced Ehrough the scattering
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processes at ionized impurities. (55) is a well established
formula which models temperature dependent ionized impurity
Scattering /26/ and electroa-hole scattering /52/. The latter is
extremely important -in low doped regions where high injection
takes place.

'Lr‘“ T) = Pp(T)ca + Py (1 - a) : (55)
1
1+ (T/300K) -(u/uo)c

a’

N = 0.67- (N + NA ) + 0.33<(n + p)

2
’ninn = 55, 24 cm /Vs ’minp 49.7 cm“/Vs
bn = -3.8 bp = -3,7
n> 0.73 c_=0.7
.1al7 -3 = .1nl7 -3
NOn = 1.072-10 cR “Op 1.606-10 CR

Similar expressions which have been partly deduced from
measurement and/or theory have been presented in /13/, /41/, /45/.
/87/, /129/.

To properly simulate the mobility in MOS transistors, one has
to deal with surface roughness and field dependent surface
scattering. /33/, /124/, /143/ presented interesting measured
results on inversion layer mobility; /150/, /149/ gave some
excellent ideas on how to treat theoretically these and other
scattering mechanisms; /163/ suggested a heuristic formula for
field dependent surface scattering which 1is applicable for
two-dimensional simulations, but whose adequacy is questioned in
/150/. However, we have developed (56) which models
phenorenologically with best fit to measurement surface roughness
as well as field dependent surface scattering /132/.

B (V1B B N,T) = P, (N, T) 56
LIS YI p' t' r LI ’ Y+b-yr
Y = Yo/ (+E /B )
b = 2+E./E.,
E_ = max(0 (E.-J_4E -3 ) /(3,243 2,172,
E = max(o-_;zx Jy EY Ty} I/ Iy +-:rY ) -
Yon = S- 10 cm yop = 4-10 cm
3
Epo 10 V/cm EpOp = 8-10 g/cm
Eiop = 1-8° 10° V/cm EtOp = 3.8-10° V/cm

In regions with a high electric field component parallel to
current flow, drift velocity saturation has to be taken into
account. (57) combines, also phenomenologically, this physical
effect and the lattice-impurity-surface mobility |using a
Mathiessen-type rule with a weakly temperature dependent
saturation velocity /25/, /771/, /78/.
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8,.-0.52 2

s 0.87 cr/s v, = 1.62-10 . cm/s
P, -2 , Dp = -1

. g
Ven = 1.53-107-T

Modeling Generation/Recombination

To simulate satisfactorily transfer phenomena of majority
carrier current and minority carrier current in just a simple
diode, it is an absolute necessity to model carrier recombination
and generation as carefully as possible. (58) represents the well
known Shockley—-Read-Hall term for modeling thermal
generation/recombination. The carrier lifetimes can be simulated
as being doping dependent /36/, /104/.

n.2 - pn '
i ~P , (58)
tn(p+pl)+tp(n+n1)

(6 -R)yp =

15cm-3

tn=3.95-1o'5s/(1+u/7.1-1015cm'3) tésa.52-10’5s/(1+u/7.1-1o )

Surface generation/recombination /70/ can be treated in a
fairly similar manner by (59). .

ni2 - p*n
8 (P+pl)/sn+(n+n1)/sp

(G-R) - dwy) (59)

. ‘(y) : Dirac-Delta function, y=0 denotes an interface

s, = 100 cm/s sp = 100 cm/s

Impact ionization can be modeled by an exponentially field
dependent generation term /31/, /32/. The constants in (60) are
essentially taken from /155/.

A XA

Ga - *A_ ‘exp ( - 2.3
n
B
+-I_3_E|_ oA e __L..Eal 60
T Aprexe (- 2R (60)
A, = 7-10° cn”} A = 1.588-10° em™?
B, = 1.23-10% v/cm B, = 2.036-10°% v/cm

It should be noted that this form of simulating avalanche is
relatively crude compared to more exact considerations, but the
underlying physical principles are so complex that a trade-off in

.accuracy and complexity 1leads to that type of formula. The
ionization probabilities o, for silicon as a function of the
electric field have been measured by various authors: Mc Kay /98/,
/99/, Miller /105/, Chynoweth /31/, /32/, Lee /83/, Moll /1l1i0/,
/111/, Ogawa /114/, Van Overstraeten /155/, Grant /63/, Dalal
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/37/. 'Their results are summarized in Fig. 2 for electrons and in
Fig. 3 for holes. Additionally, the measured results are compared
to theoretical results of Baraff /17/ (material constants from Sze
/144/, /145/). Also drawn in Fig. 2 and Fig. 3 are theoretical
limits published by Okuto /115/, /116/, which imply that all the
energy the carriers can obtain from the electric field is used to
generate additional carriers. Furthermore, the energy loss per
single ionization has been taken to be 1l.6eV for electrons and
1.8eV for holes {see also /71/). A more concise treatment of the
ionization probabilities has been undertaken theoretically by /4/,
/30/, /86/, /135/, /146/, /148/, /150/, /153/, /162/ and
"experimentally by /125/, /140/.

To analyze high injection conditions, Auger recombination has
to be included as an antagonism to avalanche generation. Already
the use of a simple formula 1like (61) in general gives
satisfactory results /34/, /36/, /50/, /52/.

{G-R )Aug = (ni2 = pn) (Co°n + Cplp ) (61)

31 32

c, = 2.8-10° enb/s

cn®/s . ey = 9.9°107

Finally, all generation/recombination phenomena have to be
combined to one total quantity. The usual way to do so is to
simply sum up all terms (62). However, that means that no
interaction of the different phenomena does exist.

(G-R)yop = (G-R)yy + (G-R)g + (G-R), .0 + G, (62)
E
o - 3—s-x MC KRAT (1954)
~a w—u—x MILLER (1957
el @-2-@ CHYNGHETH (1958)
?;. -------- —_ 2=z LEE - SZE (1960)
—aa MOLL (1963
—n-x OGAWAR (1965)
— & e——o QVERSTRRETEN (1978)
=z 71 v—w—v GRANT (1973
o +—t—t BRRAFF - SZE (1962
I g »——x DALAL (1969
5 " 4 _ S— LIMIT (OKUTO 1972)
(e
— 8
G o~
S
3
s|
Lo o o R N i R R — —
18876 [ 3 2.5 2 1.8 1

S
ELECTRIC FIELD =1€ tv/ew

Fig. 2: Ionization probabilities for electrons
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MILLER (1957)
CHYNOWETH (1958)
LEE - SZE (198Y4)
MOLL  (1963)

gGRuAR (196S)
QVERSTRRETEN (1978)
GRANT (1973}
BRARFF - SZE (13962)
LIMIT (OKUTO 1972)

LOG( ALPHAP )
3

]
e
1

— o

#8765 4 3 25 2 1.5
ELECTRIC FIELD =16 (vvcm

Fig. 3: Ionization probabilities for holes

ANALYTICAL INVESTIGATIONS ABOUT THE SEMICONDUCTOR EQUATIONS

In this chapter we present some of the existing analytical
results for the fundamental semiconductor equations.
Particularly, we are interested in the possible boundary
conditions, dependent variables and an appropriate scaling
approach. We shall discuss the structure of solutions to the
semiconductor equations, because these results are of importance
in both the theoretical and practical context, since ~ as we shall
see in the next chapter - the knowledge of the structure and
smoothness properties of solutions is essential indeed for the
development of a numerical solution method. '

Domain and Boundary Conditions

Most of the existing programs which solve the semiconductor
equations are restricted to a rectangular device geometry. This
is not essential as far as the analysis of the equations is
concerned. In this chapter we shall ssume that the equations
(38)~(42) are posed in a domain D of R’ (n=1,2,3) with a piecewise
smooth boundary 9. Equations (38)-(42) are subject to a mixed
set of Dirichlet and Neumann boundary condltlons. That means @D
consists of three parts 8p=3p denotes the part of
the boundary where the devx%e is gurrou%ded by insulating
material. There one assumes the boundary conditions:

$Wan|= In/An|= ¥p/dn|= 0o - (63)
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Here n] denotes the unit normal vector on 80 which exists
anywhere except at a finite number of_points (arbitrarily defined
corners of the simulation geometry). D, denotes the part of the
boundary corresponding to the ohmic cOntacts. There ¥, n and p
are prescribed. The boundary conditions can be derived - from the
applied bias W, and the assumptions of thermal equilibrium and
‘vanishing space Ehatge:

= A = 2 - Ld =
W= +%Wuire-4nr PRy, R-P-C=0 (64)

The last two conditidns in (64) éan be rewritten as:

2 2

n = (§ctran? + 012

p = (\I C2+4'n12 -C)/2

Modeling MOS devices one has also t account for controlled

jnsulator-semiconductor interfaces. D, denotes the part of the

undary which corresponds to such an 1nt3rface, There we - have
Eﬁe interface conditions:

(65)

3n°nl = 3;°nl =0
(66)
tsem"‘wa"'l'lsem N ci“s.a‘wanllins

Again n| denotes the normal vector on #p. € o and €,
denote the permittivity copstants for thi semicondiltor ana thE
insulator respectively. ‘q¥£nl| n and stnl|1ns denote the

se

onesided 1limits of the derivatives perpendicular to the interface
approaching the interface. Within  the insulator the Laplace
pquation: div grad ¥ = 0 holds.

Egpendent Variables

Por analytical purposes it 1is often useful to use other

yariables than n and p to describe the system (38)-(42). Two

ther sets of variables which are frequently employed are
‘h‘h"b) and (Y u,v) which relate to the set ($Y,n,p) by:

n = ni-e(H)/Ut, p= ni.e(’p"“/ut (67)
no=n- W0y, p= ni-e-qyut-v ‘ (68)

(67) can be physically interpreted as the application of
Boltzmann statistics. However (67) also can be regarded as a
purely mathematical change of variables so that the question of
the validity of the Boltzmann statistics does not need to be
considered. The use of (¥,¥,,%,) a priori excludes negative
carrier densities n and p, which y be present as undesired
nonphysical solutions of (38)-(42) if we use (W, n,p) or (Y,u,v) as
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dependent variables. As we will see later in this chapter- the
advantage of the set ($Yu,v) is that the continuity equations
{(39), (40} and current relations (41), (42) become self-adjoint.
This also has an important impact on the use of iterative schemes
for the solution of the evolving linear systems (cf. chapter S5).
However, owing to the enormous range of the values of u and v, the
sets (¥ n,p) or (¥¥,,¥) have to be prefered for actual
computations. We personally favour the set (Y,n,p).

Scaling

Since the dependent variables in the system (38)~(42) are of
different order of magnitude and show a strongly different
behavior in regions with small and large space charge the first
step towards a structural analysis of (38)-(42) has to be an
appropriate scaling. A standard way of scaling (38)-(42) has been
given by De Mari /39/. There W is scaled by the thermal voltage
U, n and p are scaled by n (similar to Mock /106/) and the
independent _variables afe scaled such that all multipying
constants in Poisson's equation become unity. Although physically
reasonable this approach has the disadvantage that n and p in
general are still several orders of magnitude larger than Y. A
scaling which reduces ¥, n and p to the same order of magnitude
has been given by Vasiliev'a and Butuzov /160/. This approach
makes the system (38)-(42) accessible to an asymptotic analysis
which is given together with applications in /92/, /95/ and /94/.
There n and p are scaled by the maximum absolute value of the net
doping C and the 1independent variables are scaled by the
characteristic length of the device. More precisely the following
scaling factors are employed.

quantity = symbol value

x 1 max (X-¥), %,¥ in D
L 4 Ug k-T/q {69)
n,p < max|C|

After scaling the equations become:

A2.4iv grad $=n-p-C (70)
div ( grad n - n'grad ¥ ) = -R
div ( grad p + pegrad ) = -R

Here, for simplicity only, P, and P, have been assumed to be
constant. It should be noted that ghe following analysis also
holds if the usual smooth dependence of P, and P, on n, p and grad
We.g./133/ is assumed. Since the independent vargable x has been
scaled, equations (70) are now poged on a domain 9 with maximal
diameter equal to one. The small constant multiplying the
Laplacian in (70).is the minimal Debye length of the device:

*12 - _E-Ut : (711)
lz-q-d
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1 and & are defined in (69). Thus for high doping (d>>1) p )
w111 be small. .For instance for g s licon device gi;h
characteristic 1length ZS’m and ¢=ig Ocn Ue compute for X
approximate room temperature T=300K: =4, 10‘

R denotes the scaled generation/recombination rate, which is
in general a (not necessariiy mildly) nonlinear function of n,
and grady. Thus different models of R may influence analysi
results quite dtastlcally. This is obviously to be expected as i
many operating conditions the device behavigr sgtrongly depends on
the net generation/zecombination R.

The Singular Perturbation Approach

(70) represents a singularly perturbed elliptic system with
perturbation parameter A. The advantage of this interpretation is
that - we c¢an now obtain information about the structure of
solutions of {(70) by using asymptotic expansions: In the
subdomains of DS where the solytions behave gmoothly we. expand
them into pawer series of the form:

o
vi@,d) = Evi@ AL, w=pn,p? (72)
i=0

which implies a smooth dependence on A.

C - the scaled doping - is smooth in these subdomains and
exhibits a sharp transition across the pn-~junctions in the device.
For the case of an abrupt junction this behavior is _represented by
a discontinuity across an n-1 dimensional manifold P:(x=x(s), s of
RM-1y {n the device. Thus r is a point in 1 dimension, a curve in
2 dimensions and a surface in 3 dimensions. Of course one curve
or surface has to be used for each junction. ;, Since the procedure
is the same for each of the junctions it is demonstrated only for
one junction. In the case of an exponentially graded doping
profile C consists of two parts:

c=¢C +C° (73)

where C"and C" are discontinous, C~ is piecewise smooth and C*
is exponentially decaying to zero away from r.

In the vicinity of I the expansion (72) is not valid and has
to be supplemented by a "layer" term according to the singular
perturbation analysis:

oD .
wEA) = Elvi@ + wila,t/A 1AL, w=wn,p T (74)
i=0 -

Here the following coordinate transformation has been
employed: For a point in the vicinity of I* s denotes the parameter
value at the neares point on and t denotes its distance
perpendicular to . Thus the solution of the semiconductor
equations exhibits internal layers at pn-junctions.



22

The w; and w; in (74) can now be determined separately and the
structure” of t $ solution is given by its Eartision into the
smooth part twi-A' and its rapidly varying part Tw?-Al. w; has to
satisfy the reduced equations: 1

0 =ng - p; -C” (75)
div (grad nj - ngegradyl) = -R” : (76)
div (grad pj + Pg-gradyf) = -R” (77)

Por the sake of simplicity but without loss of generality the
mobilities P, and P, have been assumed to be constant. “{75)-(77)
is subject to thg boundary conditions (63)-(66). Of course the
condition of vanishing space charge is redundant with (75). Since
. €” is discontinous at P and (75)-(77) represents a second order
system of _two equations four "interface conditions® have to be
imposed at I'. They are of the form:

nge gz = nge g, (78)
Pore®lzy = pye®iz g, (79)
Tonllzaz- = 3 rnllzaz, (80)
Yoo nllzaz- = 5 nllzoz, (81)

where
w|__ and wlx+ denote the onesided limits of w as .x ﬁends to I
§tqm %ach side¥ n] denotes the unit normal vector on I'. 3~ and
P are the zeroth order terms of the smooth parts of the (scaled)

o
electron and hole current densities.

3;0 = grad ng - ng-grad |
(82)

390 = grad pg + pg-grad Qg

(75)-(77) together with (78)-(81) and the boundary conditions
(63)-(66) define the reduced problem whose solution 1is an O(A)
approximation to the full solution away from I". As we will see in
the next chapter the reduced problem is a useful tool for the
development and analysis of numer ical methods, since it
(especially the conditions (78)-(81)) has to be solved implicitly
by any discretisation method which requires a reasonable number of
grid points. L

The equations for the rapidly varying parts w? reduce to
ordinary differential equations. That means that only derivatives
with respect to the "fast™ variable t/A occur. Since the rate of
decay of w] depends heavily on Y, the width of the layer grows
with the appiied voltage; a fact which is absolutely well known by
device physicists, but which becomes nicely apparent by the
singular perturbation approach.
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NUMERICAL SOLUTION OF THE SEMICONDUCTOR EQUATIONS

In this chapter we discuss some of the problems occuring in
the numerical solution of the semiconductor equations and the
analysis of existing numerical methods. From the viewpoint of
numerical analysis there are essentially three major topics to be
considered. The first one 1is the type of discretisation to be
used. There exist programs for both Finite Element and Finite
Difference discretisations of .the system (38)-(42). As outlined
in the previous chapter the solution exhibits a smooth behavior in
some subregions of the domain whereas in others it varies rapidly.
Thus a nonuniform mesh is mandatory and adaptive mesh refinement
is desirable. So the second topic is the question how to set up
the mesh refinement algorithm i.e. which quantities have to be
used to control the mesh. Each type of discretisation will lead
to a large sparse system of nonlinear equations and so the
solution of this system is the third topic.

For the sake of simplicity in nomenclature we shall only
consider the two-dimensional case in this chapter. However, all
results given in the following can be generalized to three
dimensions in a straightforward manner. So, the equations are
posed in a domain D of R? and x = (x,y)T denotes the. independent
variable.

Discretization Schemes

Using Finite Elements or Finite Differences one has to take
into account that Poisson's equation (38) is of a different type
than the continuity equations. Poisson's equation - in the
scaling of Markowich /92/ using the variables (@,u,v)

lz-div grad P = ev-u - e-v-v -C (83)

is a singularly perturbed elliptic problem whose right hand
side has a positive derivative with respect to ¥

Thus it is of a standard form (as discussed in e.g. /56/)
except for the discontinous or exponentially graded term C.
Equations of that type are generally well behaved and it suffices
to apply a usual discretisation scheme. In the case of Finite
Differences using the index convention given in Fig. 4 equation
{83) is discretized by:

A2, (aiv grad; W . = nyy = pyy - Clx;,yy) (84)

X
Eiv1/2,5 = Wi, 37,50 /0

(85)
Y =
hi = Xi417X40 kj = yj+l-yj
(div grad W ; . = z.(3§+1/2’j - Ej 12,5/ (hg+hy ) +
(gY - gy .
*2°(B] yu172 T Bi,g-1/2)/ (kytRyy) (86)
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Fig. 4: The index convention used

If one of the neighbouring gridpoints (x e11¥4) s
(x Y1) (xi,y 1) does not exist -~ as possxbi Ja terﬁxnatl ng
lifie apbroach /1} /2/ or in the Finite Boxes approach /59/ - (86}
has to be modified. In the case of Finite Elements classical
shape functions can be used (i.e. linear shape functions for
triangular elements, bilinear shape functions for rectangular
elements).

It turns out that the discretisation of the continuity
equations is more crucial than the discretisation of Poissons's
equation. The usual error analysis of discretisation methods
provides an error estimate of the form:

max Iw -w| <= c*H (87)

denotes the numerical approximation to w(x,y)= (thyp) H
denotgs the maximal gridspacing. The constant ¢ will in general
depend on the higher order derivatives of w. The sxngular
perturbation analysis /95/ shows that derivatives of ¥, n” and p°
in (74) are of magnitude o(A-3 ) - 0(2?4) locally near the junction
(A is defined 1in (71)). /95/ shows also that, even if a
nonuniform mesh is used, the amount of gridpoints regquired _to
equidistribute the error term in (87) can be proportional to A~
which is of course prohibitive. Therefore a discretisation scheme
is needed where the constant ¢ in (87) does not depend on the
higher derivatives of the rapidly varyxng terms ¥, n” and p~.
For the case of Finite Differences such 'a scheme was given by
Scharfetter and Gummel /129/. They approximate:

3n = grad n - n-grad W (88)
-
aiv ¥ = $37/Ax + 33¥/y = R (89)

by:
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X
Inirrzz,5 = ¥ W, 379,572 0 (054 50 1,970 -
- (ny $*0401, J)/2 W1, 5%, /0
(90)
y . . - -
Ing,jer2 = PO 5017 W 720 (ng 54070y, 50 7Ky
Tyt 5a) /20 a5 7K
¥P(s) = s coth(s)
2:(Thj41/2,5 - Tni-172,4)/ (hy+hy_y) +
+ 22385 54172 = TRy, 5-172)/ kytky) = Ry 3 (91)

The continuity equation for holes is discretized analogously.
Scharfetter and Gummel gave a physical reasoning for the
derivation of their scheme. Markowich et al. /95/ proved that in
one dimension the Scharfetter-Gummel scheme is uniformly
convergent. That means that the error constant ¢ in (87) does not
depend on_the derivatives of ¥, n” and p® in (74) and therefore
not on A. For two dimensions /95/ shows that the choice P(s) =
s*coth(s) is necessary for uniform convergence. Exponentially
fitted schemes 1like the Scharfetter-Gummel scheme have been
analyzed by Kellog /80/, /8l1/ and Doolan /44/ (for different
classes of problems). The reason for the uniform convergence of
these schemes is that inside the pn-junction layers the interface
conditions (78)-(8l) are satisfied automatically if Igtadqﬂ is
large and the gridspacing is not O(A).

The results for Finite Difference schemes suggest that a
similiar approach (like the exponentially fitted schemes) should
be used in the case of Finite Elements. This fact has been
intuitively observed by Engel /51/ for the one-dimensional case.
A modeling group at IBM has tried to make use of the Scharfetter-
Gummel scheme for Finite Elements in two and three space
dimensions /22/, /23/, /35/. However, we have the impression that
their approach needs still quite a bit of analysis, although it
has been used eéffectively by other modelists too e.g. /121/.
Macheck /89/ has tried to develop a more rigorous discretisation
for Pinite Elements using exponentially fitted shape functions.
He uses classical bilinear shape functions for § and

& (x,y) = [1 - W(x,7)]*[1 - P2(x,¥)] o (92)
& {x,y) = ®(x,y) (1 - Po(x,¥)]
3 (x,y) = P (x,y) * $(x,y)

as(x,y) = [1 - P (x,¥7)]° ¥ (x,y)
for u, and

Prix,y) = [1 - #1(x,7)]-[1 - @2(x,¥)] : (93)
Poix,y) = o1 (x,y) *[1 - @2(x,y)]
~P3(x,y) = - - @ (x,y) - €3(%,¥)

Patx,y) = [1 - @1 (x,7)] &3(x,¥)




for v, where :
- £(x, & , ' :
W(x,y) = £(x,g) A (94)

¥ (x,y) = £(y.2§')
o (x,y) = £(x,- g-,)

®2(x,y) = £(y,- ;g')

with: £(x,a) = (exp({ax)-1)/(exp(a}-1) ' (95)

The advantage of these shape functions is that they accomodate
nicely the layer behavior of the solution. They . degenerate into
the ordinary bilinear shape functions when the electric potential
is constant. In order to be able to switch from coarse to fine
grid spacing in different subdomains transition elements have to
be used /89/. However, no theoretical investigations have been
carried out so far to analyse the uniform convergence properties
of this method.

Grid Construction

Since subregions of strong variation of @, n and p alternate
with regions where these quantities behave smoothly (i.e. their
gradients are small) different meshsizes are mandatory in these
subregions. Thus the discretisation scheme should be able to
switch locally from a coarser to a finer grid. However, the
question arises which criteria should be used to generate the
mesh. If the user of a simulation program has to define his
elements or nodes a priori as input parameters, this could perhaps
be done by experience /24/. If - as it is the case for modern
user oriented programs - an adaptive mesh selection is desired,
mathematically formulated criteria are a “sine gqua non".
Generally such criteria should satisfy two conditions. First they
should not cause the program to construct more gridpoints/elements
than necessary to achieve a certain accuracy. Secondly they
should guarantee that a prescribed relative accuracy d is really
achieved once they are satisfied. A usual way to design adaptive
mesh refinement procedures is to equidistribute the local
truncation error of the discretisation scheme. In the case of
Finite Differences this error is proportional to the meshsize and
the third and fourth derivatives of ¥, n and p. Markowich /95/
however showed that it is practically not possible o
equidistribute this__quantity. In the case of a simple
MOS-transistor O(d-2A~2) gridpoints would be required. On the
other hand the singular perturbation analysis shows that the
solution of the difference scheme approximates the solution of the
reduced problem (75)-(77) even if this criterion is not satisfied
inside the layer regions (inversion layer and space charge
regions). Therefore the quantity to be equidistributed is the
discretisation error of Poisson's equation (i.e. the partial
derivatives of the space charge times the meshsizes). This
equidistribution can be relaxed inside the pn-junction layers by
‘e.g. simply limiting the number of gridpoints there.



Linearization Schemes

Each discretisation scheme (Finite Differences or Finite
Elements) will lead to a large sparse system of nonlinear
equations to be solved. The theory of iterative methods to solve
these equations is to a large extent 1ndependent of the wused
discretisation and so it is convenient to view the whole problem
as solving a nonlinear system of equations iteratively by solving
linear systems. The existing numerical methods can essentially be
divided into two classes: The first approach, a block nonlinear
iteration algorithm, is due to Gummel /69/ and uses the fact that
the current relations are 1linear in the variables u and v (as
defined in (68)). In these variables the equations become (again
we use the scaling of /89/):

A%.4iv grad Y = ev-u - e-w-v -C (96)
. + _ W .

divJ =R, J =e grad u 97)

div 3§ = -R, 3? = —e-qurad v (98)

Gummel's approach works as follows- Given (Qhu,v)k q**l is
computed by solving:

+1 . +1
lg-div,grad Q*+1 = eq} -uk - e_qr ~vk - C (99)

subject to the appropriate boundary conditions. Then uk+l and

vk+l are computed from:

(100)

+1
div Jk+l R{grad Qr+1,uk,vk), 3§+1 = q} *grad u k+1

(101) .

+1
div 3;+1 = ~R(grad Qr 1 k vk), J;+l = —Qﬁ grad v k+l

together with the boundary conditions for u and y. (100) and
(101) are two decoupled 1linear equations for u + and v
Poissons's equation (99) 1is nonlinear in this setting and
therefore it has to be solved 1terat1vely itself in each step by a
Newton like method. Since Newton's method is an inner iteration
within the overall iteration process (99)-(101) it may not be
necessary to let this inner iteration "fully converge"® /64/.

The advantage of Gummels's method is obvious. (99)-(101) can
be solved sequentially which decreases the required amount of
storage and computing time drastically for each step. However,
bad convergence ptopertles can be observed in the case of high
currents. This is explalned by viewing (99)-(101) as iterating
the map M:(uk k)’(u +1 ) where the evaluation of M involves
the solution of (99). Then the norm of the linearisation of M (as
an *operatog gctlng in the appropriate spaces) at the fixpoint
M{u*,v*)=(u*,v*) is proportional to the current densities /93/.

The second approach to the solution of the nonlinear equations
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(38)-(42) is a damped modified Newton method. To solve the
general equation F(x)=0 one computes the sequence <xX> by:

MK gk = _p(xK), kML o gk 4 KogK (102)

For the usual Newton method MK = F'(xK) and tK = 1 holds.
Bank and Rose /16/ have given criteria for the choice of the
damping parameters tx which guarantee global convergence.
Moreover they investigate how well jk has to approximate the
classical Newton step in order to get a certain rate of
convergence. They obtain that the rate of convergence is p
(1<p<2) if:

|ME.d* + F(x*)] = o(Jr(x¥) |P) (103)

holds asymptotically for k ¥ oo.

Alternatively Bank and Rose (15/ suggested MK = AKr + F'(xK)
where AK is proportional to |F(x%)]. Franz /59/ tested this
method with good success. However, he additionally chooses
damping parameters tX according to Deuflhard /42/, /43/.

Solution of Linear Systems

For any of the 1linearization procedures which have been
outlined in the last chapter a large sparse linear equation system
(104) has to be solved repeatedly.

A*x = Db : (104)

A has been derived by linearizing discretized PDEs. Hence A
has only five to nine nonzero entries per row and block (a block
is formed by the three discretized equations); A is very sparse.
For the solution of these special types of linear systems of
equations two classes of methods, can, in principle, be used:
direct methods which are based on elimination and iterative
methods. An excellent survey on that subject has been published
recently by Duff /46/. Classical Gaussian elimination is not
feasible for our systems of equations because the rank of A in
(104) is very large and A has many coefficients which are zero.
Therefore, modifications of the classical Gaussian elimination
algorithm have to be introduced to account for the zero entries.
There exist quite a few activities on that subject (c.f. /47/) and
powerful algorithms which treat the nonzero coefficients only are
available (so called sparse matrix codes). Another serious
drawback of direct methods 1lies in the fact that the upper
triangular matrix which is created by the elimination process has
to be stored for back substitution. This matrix usually has more
nonzero entries than the matrix A. Therefore, memory requirement
of direct methods is substantial. One advantage of the 1linear
systems obtained from the discretised semiconductor equations is
that no pivoting in order to maintain numerical stability is
needed. In spite of all drawbacks of direct methods, their major
advantage is high accuracy of the solution. However, we feel that
for the semiconductor problems iterative algorithms are to be
emphasized. Nevertheless we and many others have observed
difficulties with respect to the convergence speed of iterative
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methods, so that the direct methods, which require an exactly
predictable amount of computer resources, will always stay in
consideration.

The fundamental idea of relaxation methods (which are the best
established iterative methods) is the splitting of the coefficient
matrix A (104) into three matrices D, E, F (105).

A=D-E-F (105)

D denotes the diagonal entries of A; -E denotes a lower
triangular matrix which consists of all sub-diagonal entries of A;
and -F denotes ah upper triangular matrix which consists of all
super-diagonal entries of A.

With an arbitrary non singular matrix B which has the same
rank as A the linear system (104) can be rewritten to (106):

B-x + (A-B)*x = b , (106)

One obtains an iterative scheme by setting:

B-x**! = b - (a-B) -x* (107)
(107) can be solved for xk+1:
<t = (1-87l.a)-x* + B7Lop (108)

The scheme (108) will converge if condition (109) holds:

ez l.a) ¢ 1 (109)

(109) is a necessary and sufficient condition where ¢ denotes
the spectral radius /159/. Any relaxation method can be derived
by differently choosing the matrix B from the splitting of A
(105). The simplest scheme, the point-Jacobi method, uses D for
B. Matrix D is a diagonal matrix and, therefore, it is easily
invertible. The Gauss-Seidel method uses D-E for B. The matrix
D-E is a 1lower triangular matrix. Therefore one has only to
perform a forward substitution process for its 1inversion. The
successive overrelaxation method (SOR) uses a parameter W within
the range 10,2[. The iteration matrix B is defined:

B=D/w-E ) (110)

Since B is again a lower triangular matrix, its inversion is
instantly reduced to a substitution.

The major advantage of these iterative methods lies in their
simplicity. They are very easy to program and demand only Ilow
memory requirement. As already noted, they converge if condition
(109) holds. However, this is generally difficult to prove. A
sufficient condition for convergence is that A is positive
definite (111) which is the normal case for five-point-star

discretized PDEs.

xT-A*x » 0 for all x#0 (111)
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It should be noted again here that th§ current relations and
continuity equations are not self adjoint if (Y, n,p) are used as
variables (see (47), (48)). However, the transformation:

v, e-q’-v

n=e-y, p= N (112)
results in a similarity transformation of the iteration matrix
in (109).

Thus the spectral radius of the iteration matrix is not
influenced and the same convergence properties are obtained as if
the system had been discretized in its self adjoint form with
($,u,v) as variables.

Some point-iterative schemes can by accelerated quite
remarkably with the conjugate gradient method or the Chebyshev
method. An excellent survey on these topics can be found in /65/,

/66/.

Various activities .can be observed for the development of more
powerful algorithms with the advantages of iterative schemes. One
of the best known algorithms which has been established in
semiconductor device analysis is Stone's strongly implicit
procedure /142/. Stone's idea was to modify the original
coefficient matrix A by adding a matrix N (whose norm is much
smaller than the norm of A) so that a factorization of (A+N)
involves less computational effort than the standard decomposition
of A. Assuming this has been done, the development of an
iterative procedure is then fairly straightforward because the
equation can be written as:

(A+N) °x = (A+N)*x + (b-A-x) (113)

which suggests the iterative procedure:

+1

(a+N) -x**1 = (asn) -x* + (b-a-xK) (114)

When the right hand side is known and if (A+N) can be
factorized easily, (114) gives an efficient method for directly
solving for xk+l, Furthermore, one would intuitively expect a
rapid rate of convergence if N is sufficiently small compared to
A. We will refrain from explaining in detail Stone's suggestion
of how to choose the perturbation matrix N because this has been
done thoroughly in many publications e.g. /S57/, /137/, /142/. A
major disadvantage of Stone's method is that it is only applicable
for 1linear systems obtained by a classical Finite Difference
discretisation. It is not applicable for systems obtained by the
Finite Boxes approach /59/ or the general FPinite Element approach.

There exist a few algorithms which are similar to Stone's
method in terms of underlying ideas. The most attractive are the
method of Dupont et al. /48/, the “alternating direction implicit"
methods e.g. /20/, /57/, /161/ and the Fourier methods /141/,
/159/. However, most of these sophisticated algorithms lack
general applicability.

No matter which iterative method is used one has to deal with
the question of an appropriate termination (convergence)
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criterion. Usually (115) is applied with a properly chosen
relative accuracy €:

|xk+lixk] < €°|xk+1| (115)

Since increments still accumulate when (115) is already
satisfied we suggest to use (116) instead of (5.12):

[x¥*1oxX] < €125 (1- (6)) (116)

Q(G) can be estimated as iigolxk+1-xk[/|xk—xk-l|.

One disadvantage of all strongly implicit methods and also the
direct methods is that they cannot be implemented efficiently on a
computer with a pipe-line architecture (vector processor). Some
comments on that subject have been given in /46/.

AN EXAMPLE

The main power of a fully numerical model lies in its ability
to provide the distributions of all physical quantities in the
interior of a device. However, one has to bear in mind that the
only possible check of numerical calculations is an elaborate
comparison of experimental and theoretical results. The
particular example in this chapter is intended to highlight the
didactic potential of the fully numerical model MINIMOS.

Fig. 5 shows the doping profiles of two devices the
geometrical channel length of which is l1.6pm. The oxide thickness
is 30nm; the Jjunction depth 1is about .44p and the 1lateral
subdiffusion is about 0.23pPm. The profile on the right hand side
has just an additional channel implantation in order to suppress
the punch through effect. We shall now discuss some of the
internal physical quantities of these two devices for an operating
condition with OV at source, gate and substrate; and 7V at drain.
The picture on the right hand side of the next figures (Fig. 6,
Fig. 7 and Fig. 8) corresponds to the doping profile on the right
hand side of Fig. 5.

Fig. 6 shows the contour lines of the electric potential for
both devices. We can nicely observe a saddle point in the picture
on the 1left hand side, which is the typical indication of punch
through in weak inversion. This phenomenon has been reported for
many years by all authors working on multi dimensional MOS models.
The picture on the right hand side exhibits a well pronounced
barrier between source and the channel region, thus indicating a
proper subthreshold behavior.

Fig. 7 shows the electron distribution in a logarithmic scale.
The punch through channel is fully suppressed by the deep channel
implant. It also seems wortwhile to note that the qualitative
behavior of the electron density at the surface is identical for
both devices. '
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In Fig. 8 the lateral component of the electron current
density 1is given for both devices. The punch through channel is
even better visible than in the - last figure. The tongue-like
appearance of the lateral component of the electron current
density in the picture on the right hand side 1is typical for
devices functioning properly in the subthreshold region. It
should be mentioned, although it is trivial, that the scale of
these pictures differs more than four orders of magnitude. At the
chosen bias point (0V at gate, 7V at drain) no significant impact
jonization takes place in both devices. The reason for this fact
can be found in the absolute current level which is simply too low
/126/, [/128/. To demonstrate the influence of impact ionization
we have chosen the bias point with 0V at source and substrate, 1V
at gate and 7V at drain. All figures in the following correspond
to this operating condition. The pictures on the right hand side
of these figures are the simulation results obtained with
ionization coefficients set to zero.

Fig. 9 shows the electric potential. Almost no barrier exists
between source and channel, whereas an acceptable barrier is still
simulated when neglecting impact ionization.

In Fig. 10 the ionization rate is plotted in a quasi
logarithmic scale (109(1018+GA)—18). The peak value reads about
2.5-1027 pairs per cm3 and second.

The carrier densities are given in Fig. 11 and Fig. 12. A
large increase of the carrier densities due to avalanche
generation can be seen from these figures. This inrease results
not only from carrier generation but also from the rigid source-
substrate barrier lowering (cf. Fig. 9).
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CONCLUSION

The state of the art in modeling processes and the electrical
behavior of semiconductor devices has been sketched. The
underlying physics has been discussed and the importance of
increasingly sophisticated numerical methods has briefly been
outlined. 1It has become evident that only progress in basic
physics will 1lead to the development of models which are capable
of simulating device behavior more reliably and which will match
the technological advances of the recent device miniaturisation.
One highly important objective of a model, its ability to predict
the performance of a new device prior to having built the actual
device, can only be reached if the physical parameters of the
basic equations are analyzed even more thoroughly. This possibly
implies a complete re-evaluation of some commonly accepted
assumptions and approximations. The power of a numerical model to
predict device behavior has been demonstrated using our
MOS-transistor simulation program MINIMOS.
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