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Abstract - The extreme requirements of SAW filter 
design for stringent specifications demand the knowl- 
edge of the exact nonuniform charge distribution along 
the fingers, especially for narrow-aperture, curved-finger 
and for apodized transducers. To solve this problem 
we present a natural extension of our previously pub- 
lished work, developing a self-contained, comprehensive 
method for three dimensional (3D) electrostatic field anal- 
ysis of SAW transducers. The method is based on an 
analytically formulated Green's function and utilizes the 
advantages of the method of moments. No restrictions 
have to  be imposed on the substrate anisotropy proper- 
ties, the 2D topology of the fingers and the potentials 
applied to specific finger groups. Much effort has been 
devoted to  the solution of the problem with closed-form 
formulae making the method applicable to  SAW filter 
design with a reasonable amount of computing time. 
Computational results of SAW structures on YZ-L.I"bO3, 
rotated LiNbO3 and Quartz are presented, fully taking 
into account the influence of bus-bars. Considerable 
attention has been paid to the development of general 
guidelines for the design of SAW transducers. The de- 
pendence of the finger capacitances on the aperture width 
and  on the anisotropic properties of the substrate are 
tabulated for commonly used materials. 

I. Introduction 
In recent years design and technology of surface acoustic 
wave (SAW) interdigital transducers have achieved such a 
high standard, that for many cases of greatest practical in- 
terest,like apodized transducers, curved- finger transducers 
and transducers with small apertures, the two- dimensional 
field analysis of SAW filters (one-dimensional charge dis- 
tribution) cannot fulfill the imposed severe requirements. 
Therefore, the calculation of 3-dimensionit1 field distribu- 
tion (2-dimensional charge distribution) has become indis- 
pensible, especially for the accurate determination of the 
SAW diffraction pattern due to small overlap and to in- 
clude the influence of the bus-bars on the charge distribu- 
tion (transducer capacitance). As to our knowlegde the 
only serious work on this problem is due to Wagers 111. In 
his work, Wagers msumes transducer structures with two- 
dimensional periodicity. This fact reduces the range of ap- 
plicability of his method to unrealistic configurations. On 
the other hand the resulting formulae contain a great num- 
ber of double sums, which must be calculated numerically. 
As he has pointed out this process is very time- consuming. 
To overcome these restrictions we have developed a non- 
iterative semi- numerical method for 3D electrostatic field 
analysis of arbitrary thin metallic structures deposited on 
the surface of an anisotropic semi- infinite dielectric. 
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The aim of this paper is to present a method with a wide 
range of applicability, as we already shown for simpler cases, 

Using the two-dimensional Green's function in the wavenum- 
ber domain 15 the spectral domain representation and 
the point-matc 1; ing technique, a formalism with closed-form 
formulae has been developed. 
In what follows, firstly we will establish the basic relations 
and discuss the method of analysis. Then, applying this 
technique, we will present and discuss some of selected re- 
sults we have obtained. For Y Z  ~ LiNbO3, 128°rot.LiNb03 
and Quartz the influence of the aperture length and of the 
bus-bars as well as of the anisotropy of the substrate is 
illustrated by some graphs. 

121~ 131,141. 

11. Theory 
Consider a semi-infinite anisotropic dielectric characterized 
by (5). (g) is a three by three symmetric positive definite 
matrix (4],(6], i.e. 

€12 € 1 3  
(d = €0. p €22 (1)  

(2) 

(3) 

(4)  

( 5 )  

det (5 )  > 0 (6) 

€13 €23 €33 

€11 > o , e 2 2  > O , t 3 3  > 0 

€11 . €22  - €1z2 > 0 

€11 . €33 - €1z2 > 0 
2 

€ 2 2  . €33 - €23 > 0 

A set of infinitely thin electrodes (fingers) may be deposited 
on the plane surface of the substrate. There are no restric- 
tions imposed on the 2D- geometry of the fingers and on 
the finger potentials. The fingers are assumed to have neg- 
ligible sheet resistivity, Fig.1. 

...................................... - - - - . - -  ..... - - -  

Fig.1 Geometry of interest 
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With regard to the above conditions and assuming a time 
variation as e l w t ,  we will now formulate the problem and 
establish the basic equations. 
T h e  problem is to  find a n  efficient method for the calcula- 
tion of the three-dimensional field distribution for configu- 
rations as sketched in Fig.1. As we will see, the whole field 
problem is uniquely determined if the charge distribution 
on the fingers is evaluated. This is due to the fact that  
the active zone, which controls the field distribution only 
resides on the interface. 
In free space the Maxwell Eqs. (7), (9) and the constitutive 
Eq. (8) are valid 

if = 34, (7)  

Correspondingly in the substrate we have 

T h e  solution of the system of Eqs. (7)-(12) has to  be sub- 
jected to  the following boundary conditions: 

i) 

Eqs. (13.) and (14) ensure that  the potential in the direction 
perpendicular to the free space-substrate interface vanishes 
for IzI 4 00. 

ii) 
be bounded, (15). 

The  potential on the interface is continuous and must 

@(z,y) denotes the spatial variation on the surface of the 
substrate. 

i i i )  The  difference between the normal components of the 
dielectric displacement on the interface equals the spatial 
distribution of the charge density(l6) 

Insertion of (7) in (8) and (8) in (9) results in the Laplace 
equation in free space 

d z z  f d,, + #h = 0 (17) 
In a similar manner we obtain the Laplace equation for the 
substrate 

€11dzz+  6 2 2 d y V  + 633drz+ (18) + 2E12d2, + + 2623dy~ = 0 

By substitution one can show that  solutions of the form 

with 

satisfy (17). Because of the linearity of the system of equa- 
tions, the superposition principle holds and we get as a 
general solution for the Laplace equation in the free space 

Similarly one can show that  solutions of the form 

with 

and 

satisfy the Laplace equation in the substrate, which leads 
to the  general solution. 

-m -m 

(27) 
Now let us identify the physical meaning of X ( k , ,  k , )  and 
B ( k , , k , ) .  
For this purpose we specify d,(z,y,z) and 4s(z,y,z), re- 
spectively, for the limit cases z t O+ and 2 -+ o-,  obtainig 
(28) and (29) 

In accordance with (15) r$,(z,y,z = 0 + )  and 4 s ( z , y , z  = 
0 - )  at the left hand side of (28) and (29) are equal t o  
@(z, y) ,  which can be written in the form 

Consequently, (28) and (29) represent the two-dimensional 
inverse Fourier transformation of the potential distribution 
on the  interface and we obtain 

- 
A ( k , ,  k, )  = B(k, ,  k,) = d ( k z ,  k , )  (31) 

T h a t  means A(k,,  k ) and B ( k , ,  k,) are equal to  the spec- 
tral components of t i e  potential distribution o n  the surface. 
Using ( 7 ) ,  ( 8 ) ,  (21) and ( lo) ,  (11), (27) together with (31) 
and the boundary condition (16) we have 
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- 
G ( k z ,  k , )  is the Fourier transform of the potential distribu- 
tion on the interface if a point charge source located on the 
interface excites the medium, Fig.2. 

(32) together with (35) yields 

N 

? ( k z , k , )  = C a l G ( k z , k , ) P I ( k , , k , )  (38) 
1=1 

which is an approximation for 3 ( k z ,  k , ) .  Insertion of (38) 
in (37) and interchanging the order of summation and in- 
tegration yield 

2 +m + m -  4(.,Y,.) = C1=1ar. N ( 2 * )  s s G ( k Z , k , ) P l ( k Z , k , ) .  
-a2 -cc . e-3 k= e-JkyU e + ( z , k =  jky)"dk,d&, 

(39) 
Eq.(39) is the most important equation in our formalism. 
Once 01 has been evaluated, the whole field problem is de- 
termined uniquely. This is easily seen from (39) as fol- 
lows: Firstly, by means of (39) the potential 4(+-c,y,z), 
and then, applying (7) ,  (8), (10) and (ll),  the electrical 
field k(z, y, z )  and the electrical displacement fi(5, y, z )  in 
the  whole (x,y,z)-space can be calculated in a simple post- 
proccessing step. 

111. Solution procedure 
Fig.2 Point charge source (a-) excitation of 
a semi-infinite anisotropic dielectric 

The  response of a linear system to a 6-disturbance is called 
the Green's function 171, Therefore ~ ( k , ,  A-,,) is the 
function in k-domain, fully characterizing the boundary 
value problem sketched in Fig.1. In [4] we h a w  exten- 
sively discussed the properties of c ( k z ,  k y ) .  It can also be 
shown that  G ( k z ,  k , )  directly can be Fourier transformed 
into G ( z , y ) ,  if one interprets the associated inverse Fourier 

Due to  the  fact that  the potential values only on metalized 
regions on the interface (x,y,z-0) are given, the next logical 
s tep is to  have an expression for the potential distribution 

on the  interface, which is valid for every (x,Y)- point on the 
interface. Using (39) and setting z = 0 we obtain 4 

+ w + m  

Q ( ~ , Y )  = C L ,  oi(&) _S, I, G ( k z , k w ) ~ ~ ( k ~ ~ k u ) .  (40) 
. e- lk="e-lkvudk,dk,  

integral in a distributional sense. Note that  by means of 
Eq.(32) we have found an expression for the spectral com- 
ponents of the  potential on the surface, $ ( k z ,  k , ) .  As is seen 
from (32),  $ ( k z ,  k u )  is composed of two parts, G ( k , ,  k , )  and 
p ( k z ,  k , ) .  While the first part explicitly is known (33),  we 
have to  find an approximate formula for p ( k z ,  k , ) ,  which is 
simply realized in section IV. At the present stage of discus- 
sion it is sufficient to assume, that  such an approximation 
exists 

N 

P ( k z ,  ky)  = CalPl(kz,  ky)  (35) 
I=1 

where 01 are the unknown charge values (see section IV). 
Note tha t  up  to  this point we have used two separate ex- 
pressions for the potential in free space and within the sub- 
s t ra te ,  respectively, (21) and (27).  To have a n  unified for- 
mula for the potential in the whole (x,y,z)-space it is nec- 
cessary to introduce the following function 

In (40) we now need an explicit expression for pr(k,,kW). 
T h e  next section is devoted to  this problem. 

IV. Approximation of the charge density 
In connection with the collocation method (point-matching 
technique), which in the next section will be applied to (40), 
the  commonly used basic functions for the approximation 
of the  unknown function (here charge density) are the pulse 
function, step function and triangle approximations . In 
this paper we will use the stepfunction approximation. In 
order to take into account the finger-edge singularities of 
the  charge distribution and in order to  reduce the com- 
puter resources we have used a non-equidistance discretiza- 
tion of the  fingers into subsquares, which is appropriate to  
our  problem. Assuming that  the transducer consists of N 
subsquares, and using the stepfunction approximation we 
obtain the following expression for the charge density 

I=1 where H(z) is the  Heaviside s tep function. Using (21), (27) 
and (36) we obtain (37),  which is valid in free space and 
within the substrate 

wherein PO is a normalization faktor, 01 is the unknown 
value of the  charge density on the l t h  subsquare and /1(z,y) 
is defined as follows 
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. IH(Y - YP) - f f ( Y  - Y f ) I  

zp, zf and yp, y; are the begin and end coordinates of the 
l t h  subsquare. Inserting (41) in (43) 

+w +w 
p ( k z , k v )  = J 1 p(x,y)e'kxzeJk~Ydzdy (43) 

- w  -w 

we obtain 

with 

E;" and qr are the mid-point coordinates of the 1"' sub- 
square. 2 . At1 and 2 . Aq, denote the x- and y-extensions 
of the 1 l h  subsquare. 
(44) is the aforementioned approximate formula for the 
P ( k z , k , ) .  

V.Approximation of the potential distri- 
bution on the interface in closed-form 
Insertion of (44) in (39) leads to integrals which can be 
evaluated in closed-form. As a result we obtain 

From a computational point of view it is more efficient to re- 
gard the charge integrals olAEiAqI as the unknowns rather 
than the charge values 01 themselves, which results in a 
better condition of the resulting matrix. That is due to the 
fact that  we have used a non-equidistance discretization of 
the fingers. The higher the charge value on a subsquare, 
the smaller the area of the latter must be chosen to achieve 
values, of approximately the same order for the charge in- 
tegrals. Taking this into account, (50) can be the following 
form 

N 

@(z,Y) = CafAEiAqi .  21 (s,Y) (51) 
f = 1  

with 

and 

where we have used the scaling equation 

p o = 1  
2TEO 

As we have discussed in [5] integrals of the type 
I ~ ( p 1 ,  pz, p3, u1, u2) can be solved in closed-form. Details 
about the results, and much more theoretical discussion of 
the method will be published soon. 

VI. Point-mat ching technique 
Because the potential values on the discretized subsquares 
are given 

using the point-matching technique we obtain 
@ ( E k , q k )  = '$k (59) 

N 

@ ( E k ,  V k )  = UlAEf 21 ( E k r  qk) (60) 
I=l 

or the same in matrix form 
It 

- ' $ = A . g  (61) 

- -  ' $ = A . g  (62) 

Inclusion of the charge neutrality condition in [2] yields 

Finally, including the boundary conditions of the floating 
fingers, if such exist [ Z ] ,  we obtain 

- ' $ = A . .  (63) 

The matrix equation 63) corresponds to the CPIM, we 

tion 
have derived in[2] for t h e one dimensional charge distribu- 

Results 
Applying the above formalism, some of selected results will 
now be discussed. The first example (Fig.3) shows the in- 
fluence of the discretization (M is the number of subsquares 
on each finger) on the capacitance of the transducer con- 
sidered. 
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1 t 
U58 t lFI FI t 

In Fig.6 we see the influence of the bus-bars on the trans- 
ducer capacitance. 

V.8 12.0 28.8 28.0 36.8 
I 

- 2  

Fig.3 The influence of the discretization on 
the tranducer capacitance 

Figures 4 and 5 show the normalized transducer capaci- 
tance as a function of the overlap-length for Y Z  - LiNbOs, 
128' rot - LiNbOJ and Quartz. 

I8  30 58 18 98 

I t 

Fig.4 Normalized capacitance as a function 
of overlap-length 

I8 30 58 78 sa 
1 

20 

I I 
I 

U.8 12.8 28.8 28.8 36.E 

A ----- 
368 

# 
I - -  E - -  I 

8 
128 -- 

Fig. 6 

Finally the next two examples may graphically demonstrate 
the influence of the bus-bars, as well as the transverse end 
effects. Both transducers are deposited on Y Z  - LiNbOz. 

Fig.5 Normalized capacitance as a function of 
overlap-lengt h 
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I 

Fig.7 Charge distribution for a simple SAW 
structure on Y Z  - LiNb03 

Conclusion 
Using the Green’s function concept, point-matching tech- 
nique and spectral domain representation a self-contained, 
comprehensive method for three dimensional electrostatic 
field analysis of SAW transducers have been developed. 
T h e  method is a p  lied to  SAW structurw deposited on 
Y Z  - LiNbOj, 128 rot LiNb03 and Quartz. The influence 
of t h e  bus-bars as well as the anisotropy of the substrate 
on the  charge distribution (capacitance) are presented. 

t 

Fig.8 Charge distribution for The samc 
transducer as in Fig.7, bus-bars included 
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