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Abstract — We have developed a Monte Carlo code for 2D-simulations of ion implantation which
allows fairly arbitrary geometries. To alleviate the problem of large computer times, we apply two
methods. First, in the case of complex geometries, most of the time is spent to detect, whether the
ions cross boundaries. This extra time—as compared with implantations in infinite targets—may
be almost eliminated by putting a grid over each region of the simulation area, and giving each grid
element the information whether an ion located inside this element may cross a boundary during
the next free flight path. Secondly, we use a precomputed table to evaluate scattering angles 4.
Tabulating cot % instead of 4, allows moderate table dimensions and small interpolation errors. In
a typical example presented in this paper, the execution time could be reduced by a factor of 4

using these methods.

1. Introduction

The Monte Carlo method is the most powerful tool for the simulation of ion implantation. For
instance, it poses no problem to treat ions correctly, which leave a mask edge laterally and re-
enter the target. This may significantly increase the dopant concentration near the mask edge as
compared with what is expected from the commonly used method of superposing point responses.
Another typical application of MC-simulations is a trench implantation, where the dopant concen-
tration on the shady side results from ions which have crossed the trench after being reflected at

the opposite wall.

The price one has to pay for Monte Carlo simulations is the large amount of computer time required.
Therefore it is worthwhile to pay particular attention to the efficiency of MC-codes. In this paper
we present two features of our code reducing computer time by about 60-80%. They have been
implemented in a code for amorphous targets, but are applicable to crystalline targets as well.
They will be described in Chapters 2 and 3. In Chapter 4 a typical example will be presented

which demonstrates the time savings.
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EQUIPMENT CORP. at Hudson, USA, and by the “Fonds zur Forderung der wissenschaftlichen Forschung”, project
543/16. Helpful discussions and critical reading of the manuscript by Prof. H. Pétzl are gratefully acknowledged.
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2. Grid

The key idea of the Monte Carlo method is to simulate a large number of ion trajectories. One

of them is shown in Fig. la, together with a rectangular simulation area. The computational

ion trajectory consists of many small straight lines, which represent the free flight paths between

subsequent collisions. It is essential for 2D-simulations that at least some of the ions may leave

the present simulation area and enter an adjacent region. For instance, the area of Fig. la could

represent a mask, adjoining a Si-region at the bottom and a vacuum region at the top and at the

right-hand side. Consequently, it must be checked before every collision, if the ion has crossed a

boundary during the preceding free flight path.

In the case of a rectangular area, this is a rather
simple task: One just has to compare the co-
ordinates of the ion with the coordinates of the
boundary lines. This may be generalized for con-
vex regions (bounded by polygons) to checking
whether the ion is located in proper half-planes.
The situation is getting more complicated when
concave areas are allowed. We have decided to
detect the crossing of boundaries by checking if
the free flight path intersects a boundary line.

In the simple example of Fig. la, 50% of the ex-
ecution time is spent for this purpose. For more
complex geometries this extra computer time—
as compared with implantations in unbounded
targets—increases linearly with the number of
boundary lines. However, it may be nearly elim-
inated by putting a grid over each region of the
simulation area. The idea shall be demonstrated
by the simple grid of Fig. 1b. The ion starts in
grid element 2. Now, if the ion is located in el-
ement 2, it is clear that it may not cross any
boundary but the top boundary within a single
free flight path (note that the free flight path L is
much smaller than the grid spacings). Therefore
3 of 4 checks may be saved. When the ion reaches
element 5, no checks need to be performed at
all, because the distance between any location in-
side element 5 and the nearest boundary is larger
than L.

Some improvement may be achieved by refining
the grid at the boundaries. The grid, as produced
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Fig. 1: a) lon trajectory within a rectangu-
lar simulation area.
b) Simple grid.
¢) Refined grid.



by our code, is shown in Fig. 1c. The execution

time is now nearly identical with that for infinite

targets and depends only slightly on the number

of boundary lines.

The grid should resolve the boundaries as well
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the grid generation is as follows: We start with an -
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equidistant grid (in our simple example it is a 4x4
grid, see Fig. 2), and try to remove proper lines. . . . .
For this purpose we assign to every grid element Fig. 2: fr;d g.e(ileratlon, starting from‘a

x4 grid (see text for explanation).
the information whether the minimum distance
between any location inside the element and the boundary is greater than the smaller one of the
horizontal and vertical grid spacing. Now we take the mesh lines one by one. We look at all pairs
of grid elements, which are lined up along the mesh line under consideration, each of them having
one element on the one side and one element on the other side of the line. For each of these pairs
we compare the information assigned to the two elements. If we find the same information in either
element, these elements may merge. If this is the case for all pairs along a line, the line is removed,
otherwise it is maintained. In Fig. 2 the dashed lines may be removed. For instance, elements 2/3
and 14/15 are “near” to the boundaries and 6/7 and 10/11 are “far” from the boundaries, so the
vertical dashed line may be removed. In contrast, the vertical line on the left may not be removed,

because element 5 is “near” to the boundaries whereas element 6 is “far” from the boundaries.*

Finally we assign to every grid element 1) the minimum distance d,,;,, from the boundaries and
2) which boundary lines are within the maximum free flight path Lz. The latter is binary coded
in an integer word. During the simulation of the ion motion it will be checked, 1) whether the
next free flight path L is greater than d,,,;,,, and if this is the case, 2) which boundary lines might
be crossed. In this way the calculation of many intersection points may be avoided- as discussed

above.

3. Table for the Scattering Angle

Using the grid described in the previous chapter, or for implantations in infinite targets, the major
part of the simulation time is consumed by computing deflection angles ¢ and energy loss AE,
in nuclear collisions. The calculation of both ¢ and AE, may be reduced to the evaluation of the

“scattering integral”
oo

0(5,P):7r—2P-f i (1)

$(R P2
b= g

which yields the scattering angle in the center-of-mass coordinate system as a function of reduced

* The grid produced by our code is actually a superposition of all grids constructed from equidistant 2"x2"-grids as
described above, n = 1...npmqe- A discussion must be omitted for lack of space.
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energy ¢ and reduced impact parameter P. Ry is the zero of the denominator. (For a complete
description of the physics of the ion-target interaction see, e.g., Ref. [1].) ®(R) is the screening

function. We use the Ziegler-Biersack screening function

®(R) = 0.1818 - =32 R 1 05009 . e 09423 R | 09802 0704029 1 0 02817702010 R (g

which is reported to agree best with measurements [2].

Numerical integration of Eq. 1 would be extremely time consuming. Biersack has introduced an
approximative analytical formula for 8(e, P), known as “Magic Formula”, which reduces execution
times drastically [3]. However, involving several function evaluations (exp, sqrt, ...) and the
solution of a nonlinear equation, nuclear scattering still requires by far the major part of the
computer time. A further improvement has, in principle, been achieved by Scanlon [4], who
reports the use of bicubic spline interpolation in a table for 8 as a function of loge and log P
with an interpolation error of less than 1%. However, Scanlon’s tables cover only the range of

1073 < ¢, P < 10, so their applicability is restricted.

In our approach, we have tabulated cot g—, ;% (cot ), and ¥ (cot ) as a function of € and P. The
knot points for ¢ and P have been carefully adjusted to equldxstribute the error of the bicubic
interpolation. With the following knot points, a maximum interpolation error of 5-107% rad

(~ 0.03°) could be achieved in the range of 2- 1078 <e< 107, 0<P<16:

e=2t i=-19,-18,...,5,7,12,24
P =0,003, 0.1, 0.35, 1, 2, 3.2, 4.5, 6, 8, 10, 12, 14, 16

The range of € covers by far all possible values for implantations in semiconductors. The range
of P should also cover most applications in semiconductors. To provide reasonable results up to
P = 40, we have added 3 further P-values (20, 25, 35).
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Fig. 3: Absolute error of ¢ induced by the interpolation in the table for cot g
a) 0 (interpolated) — @ (exact)
b) 6 (exact) — @ (interpolated)
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The interpolation error is depicted in Fig. 3. Fig. 3a and Fig. 3b are identical except that in Fig. 3b
the representation is reflected at the (error=0}-plane in order to visualize negative values of the
error. - and P-values have been transformed in such a way that the knot points are equidistant on
the ¢~ and P-axis. Every integer value on either of the axes represents a knot point. Remarkably
small interpolation errors are found between ¢ = 27 and ¢ = 2%¢ (indices 26 and 28). This is
because cot% is linear in ¢ for high energies and linear in P for small impact parameters. That
may be shown by means of Eq. 1 and is true for all reasonable ®(R). The asymptotic behaviour
of cotg is the reason why we have tabulated cotg instead of 0. In the next chapter it will be
demonstrated that the table approach is nearly 50% faster than using the Magic Formula.

4. Example

In Fig. 4 the structure of a typical source-drain implantation of a LDD-MOSFET is shown. 80 keV
As™-ions have been implanted perpendicular to the surface of the wafer. The contour lines represent
the logarithm of the dopant concentration divided by the implantation dose (units [cm™!}). The
sidewall spacer has been resolved by a 10-point polygon. The spacer forms one homogenous region
(5109) for the simulation, the poly-gate and the bulk form two others (Si). Fig. 5 shows the grid
which has been generated for the spacer. The grids for the rectangular regions look like the grid

in Fig. lc.
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Fig. 4: Structure for the source-drain implantation of a LDD-MOSFET. The
gate oxide is not shown. The contour lines represent the logarithm of

the dopant concentration devided by the dose [cm™!] as obtained by
the Monte Carlo simulation (As*-ions, 80 keV).
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To investigate the impact of the newly developed methods, we have

[THHLEAR performed 4 test runs.
: ‘ 1) Without mesh, using Biersack’s Magic Formula
g (= the “conventional” simulation},
5ol i 2) without mesh, but using the table for the scattering angles,
; i 3) with mesh and Magic Formula, and finally
EN"] 1 i 4) with mesh and scattering table (= the new method).
- g j iy The results for 1000 ions each on a NAS 9160 computer are shown in
SR the table below.
LT i
“ From the table it can be seen that starting with the conventional
- method, one may save nearly 50% by introducing the grid and again
’ LRTER.;L tum'z almost 50% by using the scattering table instead of Magic Formula. On
the other hand, if one introduces first the scattering table and then the
Fig. 5: s(i)raigefor the mesh, one saves 25% and 60%, respectively. It can be concluded that

the grid is more important in this context than the table, although both
methods contribute substantially to the overall 71% time saving. The efficiency gain would be even
greater for more detailed geometries. As mentioned previously, the CPU-time does practically not
depend on the number of boundary lines. Therefore the user is relieved from weighing the degree

of refinement of the geometry against computer time.

Magic Formula Scattering Table

without mesh 42.0 sec. 31.0 sec.

with mesh 22.2 sec. 12.2 sec.
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