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NUMERICAL METHODS IN SEMICONDUCTOR DEVICE SIMULATION

P.A. MARKOWICH, C. SCHMEISER* and S. SELBERHERR

Abstract: The simulation of the electrical behavior of semicon-
ductor devices involves the solution of initial-boundary value
problems for a nonlinear elliptic-parabolic system. Two major
difficulties in the numerical solution of these problems are

discussed:

a) The construction of discretisations is not obvious as the
equations are singularly perturbed.

b) The discretised problems are very large systems of nonlinear
algebraic equaEions which have to be solved iteratively.

1. INTRODUCTION

The electrical behavior of a semiconductor device is determined
by the flow of two types of free charge carriers, the electrons
in the conduction band (density n(x,t)) and the defect elec-
trons or holes in the valence band (density p(x,t)). Weli
accepted models for the: flow of electrons and holes are the

Boltzmann transport equations, but their complexity is prohibi-

tive for the numerical simulation of complicated devices. Per-

turbation arguments lead to the simplified drift-diffusion ap-

proximation of the current densities:

J_ = u_(Yn+nE) ,
(1.1a) n n :

J_ =-u_(Vp-pE
p up(Pp)

(All the appearing variables and parameters are already in

scaled dimensionless form.)

*The work of the second author was supvorted by "ésterreichischer

Fonds zur Fdrderung der wissenschaftlichen’Forschung".
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In (1la) the parameters Hn'Pp denote mobilities and E is the

electric field which is related to the electrostatic potential
v by
(1.1b) E = -Vy

common -models.for the mobilities depend on n,p,E and the po-

sition x.

Maxwell’s equations imply the continuity equations

div Jn - n, = R ,

div Jp * Py =-R

and Poisson’s equation

(1.1¢)

(1.14) A2A¢ = n - p ~C(x) ,

where the source term R, called the recompination-generation

rate, is the number of electron-hole pairs which are generated
(R<0) or disappear (R>0) per unit time. It is usually modelled
as a given function of n,p,E and position. The function C(x),

the so called doping profile, denotes the concentration of impu-

rity ions. The dimensionless parameter X is the scaled minimal
Debye length and takes small values for realistic semiconductor
devices.

The unscaled equations (1.1) are due to Van Roosbroeck [21].

For a derivation from Maxwell’s eguations and the Boltzmann
transport equation see Selberherr [181. The scaling which

leads to (1.1) can be found in Markowich [81.

Mathematically a semiconductor device is given by the doping
profile C(x) defined in a bounded domain €2§2R3 which re-
présents the semiconductor part of the device. For the purpose

of simulation it often makes sense to reduce the dimension of

Q. Thus, we take Qcimk , k = 1,2 or 3. The boundary 30 splits
into the union of contact segments 30 where Dirichlet bound-

D
ary conditions for n,p and Y are given

(1.2a) nlaﬂD = ny p|89D= P+ ¥lan = ¥p v
and the insulating part BQN where the homogeneous Neumann con-
ditions
(1.2b) (J_,v) = (J_V)j., = (E,V) =0
n ‘BQN p oQN |BQN

hold. In (1.2b) v denotes the outward normal vector of @.
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Substituting (1.1a) into (1.1c) shows that (1.1) is a system of
two parabolic eqguations for n and p coupled to an elliptic equa-
tion for ¢. In order to complete the formulation of an initial-
boundary value problem initial conditions for the densities

(1.3) n(x,0) = nI(x) r pi(x,0) = pI(X) ¢ XEQ

have to be prescribed. The potential at t = 0 can be deter-
mined by solving Poisson’s equation. Several existence and unigue-
ness results for (1.1)-(1.3) can be found in the literature (see
e.g. Mock [12]). Existence results for the corresponding station-
ary problem are contained in [8] and [12]. Unigueness cannot be
expected in general (see Steinriick [191]).

For the construction and analysis of numerical methods some a
priori knowledge of the solution structure is extremely impor-

tant. This can be gained from a singular perturbation analysis

by exploiting the smallness of the parameter Az in (1.1d). In
the stationary case such an analysis shows that the solution can
be approximated by setting X = 0 except in thin layer regions
where it varies rapidly (see [8]). For the time dependent problem
additionally an initial layer appears (see Ringhofer [14], Szmolyan
£203, Markowich [93). In this paper we will be concerned with the
stationary problem. Its analysis is facilitated by the transforma-
tion
(1.4) n = ewu , P =e v
which takes the stationary differential equations to the form

1%

Xsz = e’u - e_vv - C(x)

(1.5) div(unew Tu) = R

i

. -y
div(u_ e "Vv R
p )

The continuity equations are in self-adjoint form now. Besides

u and v are so called slow variables which means that they do
not exhibit layer behavior. As opposed to (1.1d) the potential
can be determined from the reduced (X=0) Poisson’s eguation.
Subject to the appropriate boundary conditions each of the equa-
tions in (1.5) represents a well posed problem for the variable
which appears with the highest differential order, when the other

two variables are considered as known.
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These properties make it much easier to design numerical methods
which are well suited for (1.5) than for the original system.
Unfortunately the potential becomes rather large in many appli-
cations such that u and v are so out of range that they are im-
possible to compute with (for different choices of variables and
" related conditioning questions see Bank et al. [3], Schmeiser et
al. [171, Ascher et al. [1]). These facts led to the following
approach: Methods are designed and analysed for (1.5). In com-
putations the transformation (1.4) is applied on the discrete
level to be able to compute with the original wvariables y,n

and p.

2.DISCRETISATIONS

In this section we shall present discretisations for the steady
state semiconductor equations which take into- account the singu-
lar perturbation nature of the problem. The properties of system
(1.5) allow for a decoupled approach, where each equation is

treated separately.

2.1. Poisson’s eguation is a semilinear elliptic eguation for

the potential when u and v are considered to be known. The solu-
tion is approximated by a solution of the reduced eguation ex-
cept close to regions of rapid variation of the doping profile
and possibly close to the boundaries where the solution varies
rapidly. When trying to solve the problem numerically one would
expect to be forced to use grids which are fine enough in the
regions of rapid variation to resolve the solution structure.

For the simulation of complex devices the cost of using such a
grid is prohibitive. In order to get around this difficulty, dis-
cretisations are used which mimic the above described properties
of the continuous problem by the use of lumping for the evalua-
tion of the right hand side. A finite element of finite difference
discretisation at node X then takes the form

(2.1) Xz(Ahwh)i = ewiui - e wivi - Clxy)

where Ah is a discretised version of the Laplace-operator

(see Markowich [8], Selberherr [18]). The effect of lumping is

that the reduced equations in the continuous and the discrete
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case are the same. For any discretisation which inherits the
stability properties of the continuous operator (maximum prin-
ciple) the solution structure is similar for the discrete and
continuous problems even if acocarse mesh is used. The main dif-
ference is that layers in the discrete case may be wider (O(h))
than in the continuous case (O(X)). This fact will be demon-
strated in the following section. It has two effects of major
importance. First, even when starting on a very coarse grid
adantive grid refinement will be able to detect the correct
solution structure. Second, as the solution is approximated

well away from the thin layer regions the approximation error
will be small if measured in integral norms although large point-
wise errors may occur. The importance of this effect will also be

demonstrated in section 3.

2.2. The continuity equations. We shall only deal with the elec-

tron continuity equation as the necessary modifications for the
hole continuity equation are obvious. Let us first consider the
one-dimensional situation. As the variables u and Jn are slow
variables - in the language of singular perturbation theory -
in this case, the discretisation of

r — = ’
(2.2) Jn = R , Jn v e’u

is not very critical. For simplicity we assume an equidistant

grid and replace the first equation at the gridpoint Xy by

(2.3a) J = hR,
i

n,i+1/2 = Jn,i-1/2
where Ri denotes an approximation of the recombination-genera-
tion rate at X The second equation is approximated between

gridpoints by

, u. . ,-u,
(2.3b) In,i+1/2 = ¥n,i+1/2 (eb)i+1/2 ‘li%"'& '
X, +X,
where the approximation un,i+1/2 for [ at —i_iiil depends
on the model which is used. For the approximation (ew)i”/2

two obvious choices are

1. % Vi YitViag
§(e +e ), exp(———i———) .
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A third possibility is obtained by replacing My and Jn by
constants and ¥ by a linear function in Exi,xi+1] and solving
the second equation in (2.2) explicitely. This results in the

approximation
v, -V,
Y _ i+ 1
(2.3c) (e )i+1/2 = =T v .
e - e

This procedure could have also been applied to the eguation
(1.1a) in the original variable n. The so obtained discretisa-
tion which is equivalent to (2.3) is an example of an exponen-
tially fitted method (see Doolan et al. [51]) and bears the
names of the engineers Scharfetter and Gummel [16] in the semi-

conductor device simulation literature.

The difference between the above mentioned discretisations is an
unsettled issue from the theoretical point of view, but in prac-
tically all of the existing device simulation software the

Scharfetter-Gummel scheme is used.

Extensions to finite difference methods in the two- and three-

dimensional cases are straightforward (see Selberherrr [18]).

Finite element methods which are generalisations of the Scharfetter-

Gummel method to the two-dimensional situation can be found in
Buturla and Cottrell [4] and Markowich and Zlamal {10]. It can
be shown that the errors only depend on the variation of the
current density I (see [10]1, Mock [13]). The drawback in the
multidimensional situation is that Jn is not a slow variable
in general (see Markowich [8]) which makes it necessary to use
fine grids in regions of rapid variation of Jn. However, in
most practical situations Jn varies much less than y,n and

p and the computational effort remains reasonable.

The above error considerations dealt with each equation separa-
tely. In order to prove convergence results for the full system
one has to assume wellposedness of the problem. Then the error

estimates for the single equations can be combined (see [81]).
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3.A UNIFORM CONVERGENCE RESULT

When talking about numerical methods for singular perturbation
problems uniform convergence means roughly that errors can be
estimated independently of the singular perturbation para-
meter. In particular, errors are even small if the grid ignores
layers. Results of this kind can be proven for pointwise errors
when using exponentially fitted methods (see Doolan et al. [51).
Such a result cannot be expected for the discretisations of the
semiconductor device equations discussed in the preceding sec-
tion, but this is of minor importance when the goals of device
modeling are considered. These goals are basically twofold. One
aim is to reveal the solution structure inside the device, the
second is to obtain the relation between applied voltages -
which enter the Dirichlet boundary conditions - and outflow
currents - which are computed by integrals of the current den-
sities along contact segments. Only for the latter part the ac-
curacy of the method is of decisive importance. In this section
we prove for a model problem that both aims can be met with
reasonable computational effort.

We consider a one-dimensional problem with constant mobilities

and vanishing recombination-generation rate. System (1.5) reads

Azw"= ewu - e_wv - C(x) ,

(3.1) (e¥uyr=o0,
(e_u’vl) ro_
in this case. The simulation domain is o = (0,1). System (3.1)

is subject to Dirichlet boundary conditions at x = 0 and
X = 1. We consider an equidistant grid on [0,1]. Poisson's
equation is discretised by using the common three point formula

"

for the approximation of The approximate solution Yh is

obtained by linear interpolation between the gridpoints.

The Scharfetter-Gummel method amounts to replacing ¢ by vy in
the continuity equations and solving them explicitely because of
the assumptions on un,up and R. Problem (3.1) can be written
as a fixed point problem by denoting the solutions of the conti-
nuity equations for given U]



294

u(x) u(0) + (u(1)-u(0))
(3.2)

v(0) + (v(1)-v(0Q))

v(x)

O— K O —N

by ul(y),v(y) and the solution of
227 = ebu(y) - e ) - cx)

plus boundary conditions by ¢ = T(y). A fixed point of the

operator T corresponds to a solution.

The discretised problem can be written as
v, it

(Y ,q=20 %05 4) = ¢ fug e vy - Clxg)

el [
NN

(3.3)
u, = u(wh) e v(wh) .

Our convergence analysis will be based on the

Lemma 3.1: Let the Frechet derivative of the operator (I-T)

at wh 1be inverti?le and the inverse be bounded as operator
from L () to L (f) independently of X and h.

Let |l wh—T(wh)II1 be sufficiently small, where ||.||p denotes
the LP-Norm on (0,1).

Then (3.1) has a locally unique solution y* and
* < -
Nw*- 11y € Ry lly -7 o) Il

with K1 independent of A and h holds.

The proof is a straightforward application of the implicit func-

tion theorem (For similar results see [81,[0121).

Because of Lemma 3.1 we only have to estimate the L1—Norm of
the error in solving Poisson’s equation. This is contained in

Lemma 3.2: Let C(x) have a finite number of jump discontinuities
in [0,1] and Lipschitz-continuous first derivatives between
those points. Let u(0),u(1),v(0),v(1) > 0 hold. Then

v, T ) [ s X,(r+h)

holds with K, independent of A and h.
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Outline of a proof:A priori estimates (see [83,012]) show that

e "u, + e v, ¢ K >0

holds for the derivative with respect to wi of the right hand
side of (3.3). Thus the discrete operator in (3.3) is of inverse
monotone type (see Meis-Markowitz [11]). This allows the use of
comparison functions for estimates of the solution. Comparison
functions can be constructed which are roughly the sum of a so-
lution of the reduced equation and of terms which decay exponen-
tially away from the boundaries and the discontinuities of the
doping profile. The L1—Norm of the decaying terms can be com-
puted and shown to be of the order O(X+h). The argument that
the layer terms in the continuous solution are O(A) with res-
pect to the L1—Norm completes the proof.

A combination of the above lemmata yields the main result of

this section

Theorem 3.3: Let the assumptions of the Lemmata 3.1 and 3.2
hold. If the total current density is denoted by J = Jn + Jp '
the estimate

vx=vplly + Mlu*-uyll, + llve-vpll + 13-3,1 £ Ry(A+h)
holds with K3 independent of X and h.

Proof: The estimate for the error in the potential follows directly
from the preceding lemmata. Considering the representation (3.2)
for u and v and

b by
Jp = @-u(0)) / [ et g = (v(0)-v(1)) / [ e

p
0 0

for the current densities the proof of the remaining estimates
is also immediate.

Supposedly the above result can be extended to one-dimensional
problems with less stringent assumptions one the mobilities and
the recombination-generation rate. In the multidimensional situa-
tion a similar result cannot be expected to hold because layers
in the current densities have to be resolved which requires grid-
spacings of the order O(X\).
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4 .NONLINEAR ITERATION METHODS

By discretising (1.5) we obtain a large system of nonlinear
algebraic equations. Their solution requires the use of appro-
priate iteration methods. Although these methods are applied

to the discrete problem we discuss them for the continuous equa-
tions for notational convenience. Assuming again constant mobi-

lities and vanishing recombination-generation we have to solve

AzAw -V v e Yy 4 C(x) =b, =0,
(4.1) div(e¥ vu) = by = 0,
div(e Vvv) = by = 0

Newton’s method for (4.1) reads

AzAd¢ - (ewu+e—wV)dw - e¥au + eVav = - b, ,
(4.2) div(Jndw + edeu) = -b, ,
diV(de¢-+e_dev) - -b3 .

Its application requires the solution of a large linear system

in each iteration step. The computational cost can be reduced

by "freezing" the Frechet-derivative for several iteration steps.
For efficient strategies of this kind and their analysis see Bank
and Rose [2]. Their concept of approximate Newton methods allows

for perturbations in the ¥Frechet-derivative. A worthwhile goal is
to find perturbations which decouple the linear system (4.2) to a
certain extent. One method of this kind relies on the assumption
that the current densities are comparatively small. Obviously
(4.2). is decoupled if Jn and Jp are replaced by zero. The
resulting method amounts to solving the continuity equations for
given ¥ and then the linearized Poisson’s equation with the up-
dated u and v in each step. This method was first proposed by
Gummel [6]. An alternative which also carries his name is to
solve the nonlinear Poisson’s equation in each step which can
also be seen as the Picard iteration for the fixed point problem
¥ = T(y) formulated in the preceding section. Convergence analy-
ses of Gummel’s method for small current densities are contained
in Markowich [8] and Kerkhoven [7].
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When the current densities take values of significant size .the
convergence of Gummel’s method often deteriorates. In view of
this situation a different kind of decoupling by approximating
the Frechet derivative was introduced in Ringhofer and Schmeiser
£15]. Here the singular perturbation character of the linearised
problem (4.2) is used. As du and dv are slow variables they
are approximated well by the solution of the reduced problem.
Thus, we substitute

o = (~e¥au + e Vav + b1)(ewu + eyl
into the linearized continuity equations

J
n

div(——B— (-e¥du+e V3Tv+b,) + &¥VEL) = - b, ,
ewu+e_wv 1 2
(4.3a) J
div (5—B (~e’Ta+e Vau+b,) + e V9ED) = - by .
ewu+e v

As dy is a fast variable, dvy is a good approximation only
away from layers. In order to improve on that the full linearised
Poisson’s equation has to be solved:

, -l —_ — 1) ——
(4.3b) ot - (efure V@) - '@+ V&Y = - b,
Instead of the Newton corrections dy,du,dv we now use 5@,55,53.
In the perturbed problem (4.3) Poisson’s equation is decoupled
from the continuity equations which are coupled to each other

by the terms multiplied by Jn and Jp.

Some of the most important semiconductor devices (e.g.MOSFETs)
are so called unipolar devices. They are characterised by the

property that only one type of charge carriers (i.e. electrons
or holes) contributes significantly to the current flow. This
means that one current density (for example J_ ) 1is very small
compared to the other. This motivates a further decoupling by
replacing Jp by zero in (4.3). The resulting method was proven

to converge linearly in [15] with a convergence rate of the form
(4.4) const(c(A)HJn|Y*”Jp”)

if the problem is well-posed. In (4.4) c(}) tends to zero as

x>0 and ||.|| denotes a suitable norm. The value of (4.4) is so



298

small in many applications that the convergence behavior is

dominated by the guadratic terms throughout the computations

which suggests the use of the term "almost quadratic conver-

gence". The performance of this method was examined in [15]

by numerical tests which showed that - compared to Gummel'’s

method - a significant improvement can be achieved.
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