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Abstract—A two-dimensional self consistent MOS transistor model accounting for the avalanche effect is
described. The classical semiconductor equations—Poisson’s equation and the two carrier equations—are solved
with the finite difference method. The pair production rate is evaluated at any mesh point and dominates the
inhomogeneity term of the carrier continuity equations in case of avalanche. Calculated and measured current-
voltage characteristics are in good agreement and thus support our model. For a 3 um device the electrical
potential, the carrier densities, and the generation rates are shown in quasi three-dimensional plots from which the
avalanche generation in the pinch-off region becomes apparent. Furthermore, hole storage close to the interface is
seen to take place in the channel up to the vicinity of the source region. The corresponding barrier lowering leads
to increased electron injection from the source and enhanced avalanche. The barrier lowering is supported by the
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influence of the parasitic bulk resistance.

INTRODUCTION

A model for two-dimensional MOS transistor analysis—
MINIMOS—has been published recently[1]. That model,
however, in order to simplify the computation neglects
any hole current and generation/recombination
mechanisms -including avalanche. Thus only one con-
tinuity equation has to be solved which results in
reduced computing time. Although the first version of
MINIMOS covers a certain area of MOS transistor
simulation there are applications where the modeling of
the avalanche effect is essential.

It has been usual until now to treat avalanche prob-

lems by solving Poisson’s equation thus obtaining a

solution for the electrical potential distribution and to
evaluate the ionization integral. This implies that the
strongly field dependent ionization coefficients are in-
tegrated over the high field regions. As a result of this
method one arrives at multiplication factors which des-
cribe the increase of currents due to avalanche. Since the
carrier densities need not be calculated this method
seems to be very effective in calculating breakdown
voltages.

As an example of these techniques, Toyabe ef al.[2)
analysed the breakdown phenomenon in MOSFET’s.
With their CADDET program the carrier equation for
one carrier type (electrons in n-channel MOSFET’s and
holes in p-channel MOSFET’s) is solved. As CADDET
uses the stream function technique[3] the avalanche
generation rate cannot be included as inhomogeneity into
the continuity equation and any influence of the in-
creased carrier densities on the electrical potential has to
be neglected.

In contrast, the present paper is based on the con-
sistent solution of both inhomogeneous continuity equa-
tions accounting for generation and recombination terms.
First, the basic equations are presented, and the ion-
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ization rates and the geometry are specified. Details of
the numerical solution method are given in Appendix 1.
Then a 3 um gate length transistor is investigated. Drain
and bulk currents are shown to be in good agreement
with experiment. The avalanche generation rate and the
electron and hole density distributions are presented and
discussed in detail.

THE MODEL

As shown in [4] the following basic semiconductor
equations for the steady-state have to be solved:

div e grad ¢ = — q(p — n+ Np — N,,) (Poisson’s equation)
1

div),=-q(G-R) o )
divy, = (G- R) (continuity equations)  (2)

with the current relations

J. = —q(pnn grad ¢ — D, grad n) (3)
I, =~ q(u,p grad ¢y + D, grad p)

in which we assume the validity of Einstein’s relation

kT
Dn.p = Hnp -q_

The right hand terms in the eqns (2) are given by the
generation and recombination rates and are usually negl-
igible in the non-avalanche region. However, in our
model we cannot neglect it because the avalanche effect
arises from electron-hole pair generation. Recombination
should also not be neglected because the high level of
ionization in the high field regions can lead to a drastic
increase of carrier densities all over the device thus
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making recombination more important. In our model,
therefore, the (G~ R) term is due to thermal (including
surface) generation/recombination, Auger recombination
and avalanche generation:

’

(G-R)=(G-R)n+(G-R)s + (G~ R)awg + Goy

@
with
_ —p-n
(G- R = T..(p+pn)+ 1p(n+ny) ()
-p'n

G~ B. =yl By 20 0

8(y) is the delta function.
(G - R)Aun = (niz -D n)‘(C,.n + Cpp) (5C)

G, l—JA exp( 'EJ——I-) L"-[A exp( Ii’ﬂdl)

(5d)

with A, (A,) and B, (B,) the electron (hole) ionization
coefficients.

Equations (5a) and (5b) are the usual Shockley-Read-
Hall terms for the thermal bulk and surface recom-
bination processes and eqn (5c) represents the Auger
recombination term as given in [5]. In eqn (5d) we assume
the validity of Chynoweth’s law [6]

%)
|E|

In the exponential expression of eqn (5d) we do not
use the absolute value of the electric field but the field
component parallel to the current density. The field
component perpendicular to the current flow does not
cause ionization since the carriers only gain energy from
the field component parallel to their motion.

Various authors have determined the ionization
parameters A,, A, B, B,[7,8]. The experimental
method of van Overstraeten et al.[9] seems to be very
reliable and our own investigations as well as those by
other authors[10] support their results.

We now have to solve a system of three partial
differential eqns (1), (2a), (2b). Essentially this is done
numerically by discretisation into finite differences in a
modified Gummel cycle[11] as shown in Appendix 1. In
this, the rather expensive simultaneous solution is
avoided and the high memory requirements[12) are
relaxed. Grid spacing has to be treated very carefully to
avoid too large a discretization error according to rough
spacing as well as unnecessarily large computation
expense because of too fine spacing. In case of avalan-
che this becomes eminently important as the ionization
rate is very sensitive to the electric field thus an accurate
calculation of the avalanche generation requires a much
more accurate calculation of the electric field. To mini-
mize computer time at justifiably small errors the finite
difference mesh is adjusted to the potential-, carrier- and
doping distribution and is checked and, if necessary, is

20y ®)= Any exp (- (Se)

modified during the iteration process. The electric field
used in (5d) is derived numerically from the electric
potential by simple five point discretization formulae
which is consistent with the discretization of Poisson’s
equation.

Figure 1 shows the simulation geometry. Current flow
in deep bulk as a consequence of avalanche-generated
holes which are rejected from the source and drain
regions causes a voltage drop across the parasitic bulk
resistor. There are several options to account for this
fact: (a) a truly three-dimensional analysis; (b) extension
of the simulation over the entire bulk area; (c) extension
of the two-dimensional simulation over the depletion
region and using an (effective) bulk resistor. If one wants
to avoid excessive computing time associated with (a),
option (c) is to be preferred because it allows inclusion
of current spread into the third dimension and, also,
consumes less computing time than (b). Thus the voltage
drop across the parasitic bulk resistor simulates a more
positive bulk bias and, if large enough, is able to for-
ward-bias the parasitic bipolar npn transistor (according
to source, bulk and drain). This causes a larger drain
current and facilitates the breakdown which then will
occur at smaller drain voltages. A simple method for
deriving the effective bulk resistor will be given in Ap-
pendix 2.

RESULTS

In order to check our model we have measured an
n-channel MOSFET with 3 um nominal gate length. A
comparison of calculated and measured drain current vs
drain voltage characteristics is given in Fig. 2. To im-
prove this presentation a different scale has been used
for the Vgs=1V curve than for the other two curves.
Circles denote the simulation results with an effective
bulk resistor Rpuy =3000 . Ignoring its influence one
arrives at smaller drain currents as indicated by triangles.
If impact ionization is neglected the characteristic in-
crease in drain current cannot be observed. The effect of
the bulk resistor is very pronounced close to the avalan-
che breakdown. In this region accounting for bulk resis-
tance is absolutely necessary to obtain good agreement
between theory and experiment. The corresponding bulk
current can be seen in Fig. 3. In this plot the simulation
results are drawn only for Rg.u = 3000 () as there would
be little difference to Ry, =00 due to the logarithmic
scale and the bulk current would vanish if the impact
ionization is neglected.
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Fig. 1. The basic simulation geometry.
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Fig. 10. Hole quasifermipotential.

channel, whereas it is very large in the pinch-off region.
Thus we assume the avalanche to occur mainly in that
region. This is corroborated by Figs. 6 and 7 which show
the avalanche generation rate in pairs per s and cm’. Figure
7 is a zoomed plot of Fig. 6 and is turned around by 180
degrees to show more details. We find the maximum of
impact ionization not to occur directly at the interface but
in a depth of about 0.2 um. This is due to the fact that the
electron current is pushed away from the interface in the
pinch-off region. Figure 7 also shows the rapid decrease of
the ionization rate in the drain region as the electric field is
suppressed by the high doping level. This decrease ap-
proximately follows the curve of the p-n junction of the
drain region.

The relation between the generation rate and the car-
rier densities is established by the following considera-
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tion: Carriers generated by ionization leave the pinch-off
region with saturation velocity. This current flow must be
equal to the current given by the integral over the
ionization rate times the electric charge. Thus we can
write, in a one-dimensional consideration,

I=Agnv, = Aq j G, dx

where A is the medium area of the current flow.

Assuming a medium ionization rate of 10 cm™3s~!
over a medium length /=0.2 um and a saturation velo-
city v, =10" cm/s we get an increase of 2x 10" cm™ in
the carrier densities. This increase is unimportant for
electrons as can be seen from Fig. 4. However, it will
dominate over the non-avalanche hole density as we
shall see in the next figures.

To study the effects of the avalanche we start from the
hole density without avalanche (Fig. 8). In the undis-
turbed bulk region we find a hole density of 6x
10" cm™, which is the value of the substrate doping. In
the depletion regions it decreases to about 10° cm™>, this
value being mainly due to thermal generation. In the
highly doped source and drain regions the drop is even
more pronounced because of the large electron density in
those areas.

Figure 9 shows the hole density which results if the
avalanche is included. In the pinch-off region we note a
drastic increase of hole density. The accumulation at the
interface is due to the electric field pulling the holes to
the interface as the gate potential is more negative than
the drain potential. In the adjacent channel region there
is a strong transverse field component near the interface
as seen from the gradient of the potential (Fig. 5). This
field pulls the holes away from the interface. However,
as the field quickly diminishes in transverse direction the
holes are stored in a region which is not far from the
interface. Looking in the direction transverse to the
interface we note a maximum of hole density arising
according to the above consideration. As a consequence
the hole density increases markedly also close to the
source in comparison to Fig. 8. This important feature is
supported by a high parasitic bulk resistance because it
counteracts the hole current flow into deep bulk. The
increased hole density near the source will affect the
electrical potential giving rise to an increased electron
density and, therefore, to a larger electron current and
avalanche generation. If the hole density is increased
even more by ionization, the parasitic bipolar npn tran-
sistor will finally be turned on resulting in complete
breakdown. As this effect includes internal feedback it
can lead to negative resistance which is usually called the
snap-back phenomenon. Concluding we see from Fig. 9
that holes do not flow from the pinch-off region to bulk
directly but first towards the interface, from there
towards source, and then into bulk. Of course this effect
is less pronounced for long channel devices.

In Fig. 10 we find the distribution of the hole quasi-
fermipotential (QFP). It reveals the interesting fact that
the QFP in the drain region exceeds the applied drain
voltage which is the value of the QFP at the drain

contact. This implies the existence of a local maximum
of the QFP near drain and demonstrates the effective-
ness of ionization as a hole source if holes are imagined
to slope down the QFP hill of this figure. The local
maximum of the QFP is not seen obviously because the
lower value of the QFP at the drain contact is covered
by the higher peak just before it. However, the very
critical reader will find the contour lines to drop at the
drainmost end of this plot.

CONCLUSION

We have studied the avalanche effect in MOS tran-
sistors with the aid of a two-dimensional model. This
model is shown to predict reliable values for node cur-
rents. Its main strength, however, lies in the prediction of
internal quantities. Qualitatively we identified three
effects which can lead to complete breakdown:

(1) infinite multiplication factor in high field regions;

(2) voltage drop due to hole flow in the substrate[2];

(3) turn-on of the bipolar transistor because of the
increase of hole density near the source electrode.

Items 2 and 3 are not identical, however, they are
related as stated above. Which of these processes
determines the breakdown voltage will depend on device
and circuit parameters. The process ‘“voltage drop in
bulk region”, for example, can be made less effective by
applying a more negative bulk voltage.

The program is available for anyone just for the hand-
ling costs.
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APPENDIX 1
The modified Gummel cycle:
Gummel[11] suggested to solve Poisson’s equation and both

continuity equations step by step and to repeat this procedure
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until convergence has been obtained. In n-channel MOS tran-
sistors without too strong an avalanche, there is only negligible
hole current flow and the quasifermipotential for holes remains
fairly constant, at least in regions where hole density is large.
Thus, hole density is determined mainly by the electric potential.
If we treat Poisson’s equation as given in [1] coupling of that
equation with hole continuity equation is extremely weak
whereas it turns out to be very strong with the electron con-
tinuity equation, especially if the device operates in strong in-
version. Thus computer time can be economized by solving more
often Poisson’s equation and the electron continuity equation
than the hole continuity equation (Fig. 11). Only in certain cycles
hole carrier equation is included into the procedure. If it turns
out, after calculation of holes, that changes are large, potential
and holes will be recalculated until changes in holes become
small. Then the procedure starts with electron carrier equation
once again unless convergence has been obtained. Thus the
number of iterations is small with weak or negligible avalanche
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as well as with strong avalanche. The question when to change
from electron to hole equation is not easy to be answered
theoretically. However, it turned out to be a good compromise
solving for holes whenever changes in electron densities have
become small, but at least every fifth cycle.

Ionization rates are recalculated in all those cycles where the
hole equation is solved. As we start the procedure without
ionization, the total current will increase by a certain amount
after each recalculation of the ionization rates. This increase will
be approximately given by the ionization due to the excess
carriers arising from updating the carrier densities. Thus the
current will approximately behave like a geometric series.

Besides of economizing computer time, in case of negative
resistance, this procedure offers the benefit that we only get the
lowest value for the current and we have no problem with
numerical instabilities. Only if drain voltage is beyond break-
down, the geometric series will not converge resuiting in infinite
current which is consistent with experiment.

Should p- carrier eq.
be included ?

calculate and update

ionization rates

Salve
n- carrier

Solve

Poisson's eq.

yes

Should p- carrier eq.
be included ?

Solve

p- carrier eq.

Convergence of

p- carrier eq. ?

Convergence of
total system ?

Fig. 11. The modified Gummel cycle.
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APPENDIX 2

Derivation of the bulk resistor:

In this section we analyse the bulk resistor. As its value has to
be entered into the input of the program, a simple expression
should be found. So let us assume the current to spread by an
angle of 45° into both directions perpendicular to its flow (x- and
z-direction in Fig. 12). Furthermore we neglect any diffusion
current. Thus we get for the electric field in deep bulk

dy_Ip _ Iy

dy ~ kA~ KL+ I)W+2y) Az

with « standing for the conductivity of the substrate and A
standing for the area of the current flow. L and W are channel
length and channel width, respectively. Integrating this equation
along y from the end of the simulation area d, to the bulk contact

we get
[i40
e dy " 1 (ln(L+2d)_ln(W+2d))
Iy 2k(W-L) L+24d, W+2d,))
(A22)

For L= W this equation simplifies to

Ry =

d-d,

Rou =T 2aNL+2y #23

This calculation is rather crude compared with the elaborate
solution of the basic equations. However, any more accurate
calculation would be very complicated and the present method is
sufficient to investigate the influence of the parasistic bulk resis-
tance at least qualitatively.
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Fig. 12. Current flow in deep bulk.





