Sensors and Actuators, 4 (1983) 71- 76 71

NUMERICAL ANALYSIS OF ACOUSTIC WAVE GENERATION IN
ANISOTROPIC PIEZOELECTRIC MATERIALS*

ERASMUS LANGER and SIEGFRIED SELBERHERR

Department of Physical Electronics, Technical University of Vienna (Austria)
PETER A. MARKOWICH and CHRISTIAN A. RINGHOFER*#*

Department of Applied Mathematics, Technical University of Vienna (Austria)

Abstract

We present an ab initio transient analysis of acoustic wave generation in
piezoelectric materials, which takes into account second-order effects (e.g.,
bulk wave generation and interaction between surface waves and bulk waves).
The computer program we have developed for this purpose solves the
fundamental differential equations in two space dimensions with the corre-
sponding mechanical displacements and the electrical potential as dependent
variables using a semi-implicit finite difference scheme rather than by wave
approximations. This has become possible with acceptable usage of computer
resources only by introducing a novel form of boundary conditions for the
quasi-infinite sagittal plane to avoid reflection phenomena. We present
numerical results for YZ LiNbO;.

1. Introduction

There are many publications dealing with surface acoustic wave propaga-
tion, but either the authors a priori postulate a wave approximation [1, 2] or
simulate an infinite periodic structure [3]. Our method is different since we
do not anticipate the solution in any way. We solve the fundamental equa-
tions in two space dimensions — in the sagittal plane — by a semi-implicit
time integration scheme using a novel form of boundary conditions for the
quasi-infinite domain. Therefore, we can correctly analyse the excitation of
surface and bulk waves simply by considering a relatively small area below
the electrodes of the transducer. The input data for our program are the
geometry of the transducer fingers, the substrate material and the Euler’s
angles of the crystal cut. The structure and the actual values of the material-
dependent tensors are stored in a database for most of the common materials.
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However, the analysis of new materials is merely a matter of specifying the
tensor data. One major objective of our investigation is the quest for physical
insight into SAW devices to enable simple analytic formulae for device
characterization and design to be developed. The power of our analysis
method is twofold. First, it lies in the general applicability with respect to
different materials and crystal cuts and, secondly, the interaction between
surface waves and bulk waves is not neglected. For these reasons our com-
puter program can be used, for instance, to optimize a crystal cut by
minimizing the acoustic power radiation in the bulk. Because of the chosen
solution method the program could be extended to include non-linearity
effects. In this paper the transient behaviour of a transducer structure with
four fingers is demonstrated for the YZ cut of LiNbO;.

2. The physical and mathematical model

The physical model is based on the fundamental set of equations
describing acoustic wave propagation in an arbitrary piezoelectric material
consisting of equations of motion (1), the linear, strain-mechanical displace-
ment relations (2), Maxwell’s equations under the quasi-static assumptions
(3, 4) and the linear piezoelectric constitutive relations (5, 6) [4]. It is to be
noted that standard tensor notation as well as Einstein’s summation conven-
tion is used.

aTy; p*u;
4 _ 1
ax,- at2 ( )
S - (au,,+ ou, /2 9
M= \ox, o, (2)
oD, ~0o 3)
ax,
0¢

E =— ——

i o, (4)
Ty = CijniSr1 — €nyyE, (5)
Dm = emklskl + anEn (6)

T denotes the stress, p the mass density, u the mechanical displacement,
S the strain, D the electric displacement, E the electric field, ¢ the electric
potential. The fourth rank tensor c is the elastic stiffness tensor, the third
rank tensor e the piezoelectric tensor, and the second rank tensor E the
dielectric tensor in the actual, i.e., rotated coordinate system. These three
tensors are the result (7, 8, 9) of a transformation of the unrotated quantities
c® €% and E° according to Euler’s transformation matrix V:
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cijkl = Vierstt‘flacorsta (7)
€ijr = Vierstteorst (8)
E; =V, V,E, 9

By substituting eqns. (2) and (4) into eqns. (5) and (6) and then
eliminating the mechanical stress T and the electric displacement D, one
obtains a system of partial differential equations in three space dimensions
(j=1,2,3) which consists of three mechanical wave equations (10) and
Poisson’s equation (11):

azuk 32¢ pazuj
Cirki 0x,;0x; Grit 0, 0%, ot? 19
0%u, 02¢
€, ——— —E =0 (11)
ikt ax,ax,- * axkax,'

The surface boundary conditions for the mechanical quantities result
from the fact that the force component perpendicular to the surface plane
vanishes, i.e., T3; =0 (j =1, 2, 3). For Poisson’s equation the surface bound-
ary condition is derived from the fact that the electrical displacement D,
vanishes.

Assuming the finger length to be much larger than the finger width, we
can reduce the system to the two space dimensions, x = x, and z = x3. The
solution vector s is defined with its components i, v, w (mechanical displace-
ment components) and ¢ (electric potential). This procedure leads to the
following set of equations and the surface boundary condition:

As,, + Bs,, + Cs,, = sy, t>0, xER, z2<0 (13)
Fs, +Gs, =0 (14)

A,B,C, F, G are 4 X 4 matrices and A, B, C, G are symmetric. {2 isa
diagonal matrix whose main diagonal has the entries p, p, p, 0. The boundary
condition (14) holds for the mechanical equations for all x € R and for the
fourth (¢) equation on the free surface and ¢ = V;(t) on the ith finger.

Artificial boundaries have to be introduced in the sagittal plane in order
to obtain a finite-dimensional linear system of equations with (13) and the
discrete boundary conditions at the surface for each time step. The obvious
way to do this is to solve eqn. (13) in a rectangle (which includes all fingers)
and to impose zero Neumann or Dirichlet boundary conditions at those
boundaries of the rectangle which do not coincide with the surface. This
approach, however, leads to reflections as soon as a wave hits the artificial
boundary and therefore has to be abandoned. The method of transformation
of the infinite sagittal plane into finite subdomains [5] has the drawback of
relatively large discretization errors in these domains.

Our new method is based on the fact that at a sufficiently large distance
from the fingers there exist only plane bulk waves with approximately radial
propagation direction. First we transform eqn. (13) into polar coordinates
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(o, 7) and form the limiting value for r to infinity. This yields a system of
partial differential equations in one dimension which has the mentioned
plane waves as solutions:

I‘IS,.,. = Qstt (15)
where H = A cos?a + B cos a:sin « + C sin’«
8, =8, cos  +8, sina=—/H 1Qs, (16)

The boundary condition (16), which is a generalized form of Sommer-
feld’s radiation condition, satisfies the equation system (15) implicitly and,
therefore, absorbs all possible radial plane waves.

The numerical solution method and especially the discretization used
can be found in ref. 5. At each time step the mechanical quantities on the
inner grid points are calculated explicitly from the known values at the two
previous time steps, whereas the unknowns on all boundaries as well as the
complete distribution of the electric potential have to be solved fully
implicitly. To solve the large linear equation system at each time step we use
a so called ‘Line SOR’ iterative method similar to that used in the program
package ITPACK [6].

The main advantage of the described difference method compared to
the frequently-used Fourier transform method is that the difference method
can easily be applied to non-linear elasticy laws, while the Fourier method
relies strictly on the linearity of the problem.

3. Results

We present a transient analysis of a four finger transducer structure for
Y-cut Z-propagating LiNbOj;. The distance between two neighbouring
electrodes as well as the finger width amounts to 250 um. As described in the
previous section, we analyse the propagation phenomena in the sagittal
plane. The applied voltage on the electrodes is a sinusoidal function in time
with a horizontal tangent at { =0 to get consistent initial values. After a
quarter period the voltage is a sine function with an amplitude of 0.5 V,
As we are mostly interested in surface waves, we take the corresponding
resonance frequency of 3.5 MHz. It should be mentioned that in the follow-
ing Figures the unit of length is metres both for the geometry and the
mechanical displacement.

Figure 1 shows the mechanical displacement component u (which is
the component parallel to the surface) after 1-;— periods in a quasi three-
dimensional plot. The rectangular bottom of the drawing is the sagittal
plane, whereas the third dimension represents the dependent variable (pay
attention to the scale factor on the right boundary). One can clearly see that
the displacement has its maximum on the surface and decays rapidly in the
direction of the bulk. At this time the surface wave just hits the artificial
boundaries.
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Fig. 1. Displacement component u after 1% periods.

Fig. 2. Displacement component w after 1% periods.

Figure 2 shows the mechanical displacement component w (which is
the component perpendicular to the surface) in the same representation and
at the same time as Fig. 1. The depth dependence is quite different compared
to the component u. The maximum lies below and not in the surface and
the decrease into the bulk is slower.

Figure 3 shows the electric potential distribution in volts corresponding
to Figs. 1 and 2. At this time the applied voltage on all electrodes is zero, so
that this plot represents the mechanical-electrical reaction. Because of the
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Fig. 3. Electric potential after 1% periods,

Fig. 4. Distortion in the sagittal plane after 2%— periods.
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zero voltage applied at this time, one can clearly identify the location of the
fingers.

It is to be noted that for this special cut of LiNbOj;, the second
equation of the equation set (13) as well as the second equation of the
boundary conditions (14) are totally decoupled from the others. In this case,
therefore, the mechanical displacement component v is not relevant for wave
propagation,

Figure 4 shows a distortion plot of the sagittal plane after 2% periods.
This representation includes both relevant displacement components u and w.
The left vertical boundary represents the surface. Note the unit vector on the
right boundary of the figure. At this time, the front of the surface wave has
already passed through the artificial boundary. The plot clearly demonstrates
that the surface wave consists of a transverse as well as a longitudinal com-
ponent,
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