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SIGNIFICANCE AND EXPLANATION

We present an analysis of a one-dimensional model of single-junction
semiconductor devices (pn-junctions and certain resistors) when an external
voltage is applied to the contacts. The model has the form of a system of six
highly nonlinear first order ordinary differential equations subject to
boundary conditions at the contacts of the device. The system is singularly
perturbed (the derivatives of some components are multiplied by a small
constant, the so called singular perturbation parameter). The dependent
variables are the electrostatic potential, the hole and electron densities and
the hole and electron current densities. A region of fast variation in the
electrostatic potential and in the carrier distributions occurs due to the
sinqular perturbation character of the problem. This region is in the
interior of the device (internal layer) and represents the junction between
differently doped areas. We derive formal asymptotic expansions of solutions
as the singular perturbation parameter tends to zero and we prove ﬁhat such an
expansion 'represents' a solution. We also investigate the dependence of the
total current on the externally applied voltage (voltage~current

characteristic).

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



MATHEMATICS RESEARCH CENTER

AN ASYMPTOTIC ANALYSIS OF SINGLE-JUNCTION
SEMICONDUCTOR DEVICES
* y i
Peter A. Marggyich . C. A. R;nghoggg 7
E. Langer and S. Selberherr

Technical Summary Report #2527
June 1983

ABSTRACT

In this paper we present an analysis of the fundamental one-~dimensional
semiconductor equations describing potential, carrier, and current density
distributions in single-junction semiconductor devices when an external
voltage is applied to the contacts. We reformulate the model equations by
appropriate scaling as a singularly perturbed two point boundary value problem
for a system of nonlinear ordinary differential equations. The right-hand
side of the system has a jump discontinuity with respect to the independent
variable (space-coordinate) representing the junction between differently
doped sides of the device. The solution components are assumed to be
continuous across this junction.

We give an existence proof for the reduced problem (the singular
perturbation parameter is set to zero). The discontinuity of the right-hand
side of the system produces a discontinuity in the reduced potential and
reduced carrier distributions. This creates an internal layer in the
corresponding solution components of the singularly perturbed problem. The
current distributions have no internal layer. We also derive the (internal)
layer equations and give an existence proof. No boundary layers occur.

We show that formal expansions actually represent (asymptotically)
solutions of the singularly perturbed problem if the applied voltage is
sufficiently small, and we investigate the dependence of the total current on
the applied voltage. Numerical computations are reported.

AMS (MOS) Subject Classifications: 34C11, 34D15, 34E15

Key Words: semiconductor devices, singularly perturbed ordinary differential
equations, asymptotic expansions, internal layers.
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1. Introduction

In this paper we present an analysis of a class of systems of ordinary differential
equations, subject to boundary conditions, modelling pn-junction devices. The physical
situation is as follows. A semiconductor {(for example Silicon) is doped with
acceptor atoms (negative jons) in the left side, with donor atoms (positive ions) in the

right hand side and a bias u=0U, = U is applied to the contacts:

A c
anode contact p - side n - side | cathode contact
Uh : Applied UC : Applied
anode potential + > Cathode potential
-2 0 Z L z

The device is assumed to have characteristic length 2&(= 5 x 10_3cm} and the junction is
at z =7 € (-2,8) (the term junction refers to the boundary of the n and p regions as
well as to the whole device). The device is forward biased for U > 0 and reverse biased
for U < 0. The physics of pn-junction is explained in Sze (1969), Ashcroft and

(1976) and R. A. Smith (1978).
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The equations describing the electrostatic potential, the carrier densities and the

current densities within the device (in the static, one-dimensional case) are:

(a) Y" =
(b) n' =
(1.1) (c) p' =
(d) J' =
n
(e) J. =
P

for z e [-£,L] ("'" denotes

conditions

g {n—p~(N;(zl - N;(z)l) Poisson's equation

2 ny' + ~te J_ electron current relation
D an n.

n
" 1
B p¥' = — J_  hole current relation
Dp qu P

qR(n,p.Jn,Jp) continuity equation for electrons

qR{n,p,Jn,Jp) continuity equation for holes
differentiation with respect to z) subject to the boundary

ny

(a) wi(-2) = UTln —_—— U (anode)

p(-1) A

(b) ¥(£) = U tn Eﬁll + U, (cathode)

(1.2)

(e) n(iL)p(£L) = n>

i

i

+ -
(d) n(xL) - p(i2) = ND{tL} - Nh(il) .

(See Van Roosbroeck (1950).)

The dependent variables (with units) in (1.1}, (1.2) are

|
LA
n oz
p :
g x
n
J oz
P

All parameters in (1.1), (1.2)

electrostatic potential (V)
=1
electrostatic field (Vem )
-2
electron density (cm )

-3
hole density (cm )

2
: electron current density (A/cm )

hole current density (A/cmzl .

- +
(except NR(Z)' ND(z}) and the temperature T are assumed



to be constant. Table 1 gives the physical meaning and approximate numerical values of

these parameters at T =~ 300K (room temperature) for silicon.

Table 1: Parameters for Silicon at T = 300K

Parameter Physical Meaning Numerical Value
4 elementary charge 10""%s

€ permittivity constant 10" %as/Vem

"n electron mobility 103cm2/Vs

by hole mobility 103cm? /s

D, electron diffusion constant 25 cmzls

Dp hole diffusion constant 25 cnzfs

ny intrinsic number 10%m3

UT = Eﬁ = EE thermal voltage 0.0ZSV'

N; is the density of electrically active acceptor atoms and N; is the density of

electrically active donor atoms and

(1.3) Clz) = Nj(2) = N () (em )

is called doping (or impurity) profile. For the pn-junction Cc(z) is negative for

z @ [~2,2) (p-side) and positive for z € (z,8] (n-side) and is assumed to have a jump~
discontinuity at z = 2 (abrupt junction). We also investigate the less important and
much simpler case C(z) > 0 in (=£,2) (but still with a jump-discontinuity at z = Z).

These devices are called n"n- or nn+—junctions (depending on whether

C(z,} > Clz,) or clz,) < C(zz) for all z, € [=&,X], =z

1 2 e (X,2]).

The analysis of p+p and pp+ junctions (c(z) < 0 on [-2,£]) is analogous to the
analysis of n+n and nn+ junctions. Only n and p, J, and JP have to be
interchanged and ¥ has to be substituted by =¥.

The scalar function R € C{[U,ﬂ}2 x R2) in (1.1)(e) is called recombination term, it

is the rate at which electron-hole carrier pairs are generated (R < 0) or recombine

-3=



2
(vanish) (r > 0), R(n,p,0,0) = 0 for n, p such that p = n, holds (equilibrium
condition).
The Shockley-Read-Hall (SRH) recombination term
2
np - n

3 (cm-35-1)

(1.4) R=R__ (n,p) =
SRH Tp(n+n1) + tn(p+n1)

describing thermal recombination, where rn,tp(~ 10-631 are the electron and hole
lifetimes, is widely used. Different ways of modelling R (which are necessary for very
large |U|) are given in Langer, Selberherr and Mader (1981) and Schiitz, Selberherr and
PBtzl (1982).

The boundary conditions (1.2)(c) express that the contacts z = #f are in thermal
equilibrium and (1.2)(d) represents vanishing space charge at the contacts.

We only admit solutions of (1.1), (1.2) which fulfill

i
{(1.5)(a) ﬂ,n,p,ﬂ'n;ﬂ'p ec (["l.’-]l

1
(1.5) (b) vie clti-t,21), v e cliz.e0)
(1.6) n>»0, p>0 on [-L,2] .

(1.5) comes from the jump-discontinuity of C(z) (y" cannot be continuous if n, p are
continuous), the equation (1.1)(a) has to be fulfilled for the right hand limit and for
the left hand limit of %" at z = Z, (1.6) has to hold on physical grounds since n, p
are densitites.

In this paper we scale (1.1), (1.2) such that we obtain a singular perturbation

A
problem. The perturbation parameter (called )X in the sequel) is equal to iE where
€U 1/2
T
&D {q naxlclzll) is the minimal Debeye length.
ze(-2,2)

We present an asymptotic analysis of (1.1), (1.2) (for A small, which corresponds to

large dopina |C|). The discontinuity of C(z) at =z = 2 produces an (ihternal) layer in

the fast components ¥,¥',n,p. I Jp are the slow components (uniformly c! as

A+ 0+).



We derive the reduced problem (A = 0), the layer equations and give existence
theorems for both. The reduced problem has the form of a two-point boundary value problem
with interface conditions at the discontinuity. Using these results we prove an existence
result for the full problem (1.1), (1.2) (for sufficiently large doping |c|, that means
A small) assuming that the recombination rate R = 0 (corresponding to infinite electron
and hole lifetime) and that |U] is small. We show that (for A sufficiently small)
there is a solution of (1.1), (1.2) whose fast components are close to the sum of the
(corresponding) 'reduced' solution components and the layer terms and whose slow components
are close to the corresponding ‘'reduced' solution components. No layers at the contacts
occur since the 'reduced' solution fulfills the 'reduced' boundary conditions.

We also investigate the dependence of the total current J = Jn + Jp on the applied
voltage U (J is a constant because of (1.1)(d),(e)!). It turns out that J is
asymptotically (as A + 0+) a linear function of U if c(z) >0 on [-2,L] (n'n ana
nn+ junctions are resistors) and J is asymptotically an exponential function of U if
C changes sign at Z.

The singular perturbation approach to pn-junction modelling was suggested by many
authors. Vasilev'a and Butuzow (1978), Vasilev'a and Stelmakh (1977) and D. Smith (1980)
investigated a much simplified model (they assume that the current densities are known
instead of the applied voltage, that Z = 0 and that Cc(z) is odd) and prove an existence
theorem using the asymptotic expansions. The authors of this paper analyzed (1.1), (1.2)
(1982) under the (pretty unrealistic) assumption that the junction 2 is in the middle of
the device and that the doping profile C is odd. This allows to reduce the internal
layer problem to a boundary layer problem. The advantages of the singular perturbation
approach for the numerical solution of (1.1), (1.2) is also explained in the latter paper.

The generalization of the presented theory to multilayer structures like bulk-barrier
diodes (see Langer, Selberherr and Mader (1981)) or thyristors (see Sze (1969)) is

straightforward.



This paper is organized as follows. In Section 2 we perform the scaling and
reformulation of (1.1), (1.2) as a singular perturbation problem, in Section 3 we derive
the expansions, prove existence theorems for the reduced problem and the internal layer
problem and in Section 4 we give the existence proof for R = 0 the full singularly
perturbed problem in the case A and |U| small. Numerical results for large U are

demonstrated in Section 5.
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2. Scaling

We scale the dependent variables as follows

(2.1) &a-%-. n.--E. p"‘E
T c c

L3 L3
(2.2) g ==, 3 =2
" bpoc Ps DpDgC

n P

where C = max |ctz)| and the independent variable
ze[=-L,2]

Z
(2.3) x=7
Then (1.1) reads

(a) A 1:; =n_-p, - D(x)

(b) n'
s

L
a
]
&
W -
+
”C-!

(c) p;--pt -J

88 P,
(2.4) - -
2 _ _ bpgc D _aC
L :L: R[':“s' Cpge nl. Tt "21'“ T
B8 DC B p.
n
2 _ _ bpac D_qC
(&) ---‘-—:R(m-,(:p',—f—-an,ﬁ-—a )
Py DS s Pg

for -1 € x < 1 ("'" Adenotes now differentiation with respect to x). We have set

(2.5) pix) = S22 (o) < N
c
and
2
A €U
(2.6) 2= —-2— = "'5'?: .
° 2%cC
The boundary conditions (2.2) are
212 Uh
(a) 118(—1] = l'.n('-l?:;l-i'] +. =
ps T
n_ (1)
8 o
(0) ¥_(1) n( B) S
YA

(2.8)
4.4
(c) ns(tﬂps(iﬂ =Y A

(d) ns(tﬂ - ps{in = D(%1)

~7=



where
(2.9) ¥ = —
holds.
We now assume that the recombination term R is such that
- - D c —
(2.10) R(Cns,Cps, | K -%—— Jps] = cs(ns,ps.ans,aps,n)

holds, where S e C( [0,6-)2 x Rz % [0,®)) is independent of c.

Dropping the index s the problem now reads

(a) A%y" = n-p-D(x) A
(b) n' = ny" + Jn
(2.11) () p' =-p¥' =3I L -1 < x <1
(d) J;‘ = Sn(n,p,Jn,Jp,Yl)
(e) Jé = -SP{n,p,Jn,Jp,YX)‘

with S =5 8/ 8 &— S subject to the boundary conditions

n P p

(a) W(=1) = Ln( ) *
(b) ¥(1) = ln[ﬂ‘m) + £

(2.12)
(e) n(xN)p(x1) = y*ad

(d) n(x1) - p(x1) = D(x1) .

If Dn = DP = D holds we have

(2.13) S, = S -
Under this assumption and Tn =1 =1 we get for the SRH term with 8B = E%
L )
(2.14) s =5 =-3B---9-—72"— .
P ntp+2Y l

Generally, the equilibrium condition implies that Sn(n,p,O,D,Yl) = Sp(n,p,0,0,Tl) =0

holds for n, p such that np = 7414.



The discontinuity of D occurs at

(2.15) X = .f.

and the conditions on the solution of (2.11), (2.12) are

(2.16) (a) ¥,m,p,3,,3 € c'((=1,1])

(2.16) () ' ec-1,x1), ¥ e ¢ (1x,11)
(2.17) n>»0,p20 on [-1,1]

(see (1.5), (1.6)).

The boundary values for n, p and ¥ can be computed from (2.12)(c),(d):

(2.18) n(1) =3 (o) + /on? + arx?, pn = 3 o) + on? + ahr)
(2.19)  n(=1) = % (ot=1) + /o=1)% + &yr?), p(=1) = L (-p(=1) + /oi-1? + &hrY)

2.2 g u
2y) . A

| * v
oi-1) +/-2 +ay4 T

(2.20) $(=1) = &n

f—nm + /o(1)? + axhi?

X

(2.21) : v(1) = &n

+
o

For A small the problem (2.11), (2.18), (2.19), (2.20), (2.21) constitutes a singularly
perturbed two-point boundary value problem.

A small means that C is large (assuming that & 1is constant). In practical cases
E ] 10" such that 12 < 0.4 x 10'6 holds. For the following analysis we assume for the
sake of simplicity that D(x) is independent of A (it would suffice to assume that D
is analytic in 1), that means that the doping |C(z)|’' increases ‘"as a whole' as

A + 0+. Actually, the asymptotic analysis presented in the next sections requires that

min |o(z) |
ze[-L,2 2
(2.22) max |D(z)] .3
ze[=2,4]
n
2.2 i
and since Y A = pem 1e(z)] that
ze[-L,2]
2.23 << (o]
( ) n, zl!?—lf,llt (z)1

-



holds.
The two cases we deal with now are

D(x) <0 for x e [-1,X]7 D(x) >0 for x e (X,1] and
(a)
ID(x)| > D, for x e [-1,1]

which corresponds to the pn-junction and

(8) D(x) > D, >0 for x e [=1,1]

corresponding to an m' or n'n Junction. In both cases (A) and (B) we assume that
D(X+), D(X-) (we use the notation of £(Xt = 11: f(x) in the sequel) exist and
D(X+) ¥ D(X=) and that D 4is sufficiently ua::t: everywhere else.

The analysis of the scaled problem is complicated by the logarithmic blow=-up of the
boundary data of ¥ as given by (2.20), (2.21) in the case (A).

The potential difference of the contacts is given by
Ubitl)

u
(2.24) VE=1) = (1) =Xy
% U

where the build-in-voltage Ubilk) (i.e. the voltage due to doping) is given by

4 44
U. (A) ’_n(-—-——l-.-._.-._] + 0(y A7), D(-1) < 0 (A)
by |.Dt-1l + v‘n(-nza-w‘l';' N oEtHieN=0 ’

(2.25) = Ln

U
2 '_nm + /o2t _,

D(=-1) 4.4

lnf—DTiT"] + 0(y A7), D(-1) > 0 (B) .

Uy, () is bounded as ) + 0+ in the case (B). Since (2.11) depends only on ¥', ¥* (and
i

not on ¥) we can therefore remove the singularity in the boundary conditions by

1

substituting § by V¥ - fn 2. 2* The equations (2.11) remain unchanged and the new
YA .

boundary conditions for the case (B) are:

U
(2.26) V=1 = tnlz (=1 + /o(=1)24ay"r%)) + 2

T

1]
(2.27) v(1) = 2nid (1) + /onZeay®ady) 4 S

U
T

-10-



3. Expansions

In this Section we apply the standard approach for singularly perturbed boundary value
problems to the semiconductor problem. We assume that the solution has a formal
asymptotic expansion in A, each term in the series being the sum of a uniformly smooth
function and layer terms.

A problem that nccurs is the blow up of the boundary values of ¥ in the case (A),
which implies that 'reduced' boundary conditions (A=0) cannot be defined formally for
¥. For the derivation of the expansions we set in the case (A)

(3.1)(a) (a) #%(-1) =¥, (b) w1) = ¥
and assume that V_, t+ are independent of A (this will be justified later). In the

case (B) 'reduced' boundary conditions for ¥ can be obtained from (2.26), (2.27) and we

set:
A uC
(3.1) (c) ¥ =2nD(=1) +5% (&) ¥ = taD(1) + 3= .
T T
We make the following 'ansatz':
(3.2)(a) Pix,A) ~ B(x) + ¥lo) + ;z“’ + $rm + eosee
(3.2)(b) nix,A) ~ n(x) + n(o) + R"m + z'{r(o) + seeee
(3.2)(c) p(x,A) ~ p(x) + p(a) + E,tﬂ + 5:“' + sosne
(3.2)(a) 3 _(x,A) ~ T (x) +3 (o) + S'n‘m + .‘:'nrm + seses
(3.2)(e) J(x,A) ~T (x) +T (0) +3_ (1) +T_ (@) + seeee
P P P Py P,

where the dots stand for a power series in A (starting with the 0(A)-term) whose
coefficients are of the same form as the given 0(1) terms. The fast variables are

-

(3.3) (a) o=3X
(3.3) i =51 ) xe (-1,
(3.3) () ¢=%1

-11=



The functions marked with '-' denote the reduced solution (of order zero), '“' denctes
the internal layer terms (at x = X) (of order zero), '~' denotes the layer terms (of
order zero) decaying from the left boundary x = =1 (with index £) and the layer terms
(of order zero) decaying from the right boundary x = +1 (with index r) resp. The

boundary condition

(3.4) (a) $(i®) = n(4®) = p(iw) = 3 () = Epu-) -0
(3.4) (®) Fy@) =Ry =By =T (=) =5 @) =0
(3.4) (@) F == =F(-e) =p (=) =F (- =T (- =0

hold, since the internal layer terms are regarded as functions on R, the left layer terms
are regarded as functions on ([0,®), the right layer terms as functions on (- «,0].

We assume that S , Bp e C‘([B,')z x !2 x [0,71013 and that X < AD. Inserting into
(2.11), comparing 0(1)-terms and evaluating away from x = $1, X gives the reduced

problem (or order zero):

- h
(a) 0 = n-p-D(x)
(b) n'=n ¢'+8n
(3.5) (¢) p==p¢'=J $ “1<x<1 .

I
(&) 3 =8 (n,p,3,,3,,0)

(e) J; = -Sp(n,p,Jn,Jp,O)
J
We have to expect that V¥, n, p are discontinuous at x = X, therefore (3.5) has to hold
for the right hand and left hand limits at x = X. Evaluation close to X+ gives

the right (zeroth order) (internal) layer problem

- \
- P Y

(a) ¥ = n-p

2 S 2
(b) n = (n+n(X+))y

(3.6) (@ p AT Y D€ ok =
;3
(d) 3 =0
n
{e) 5 =0
P J

-12=



('e' denotes differentaition with respect to the corresponding fast variable in the

sequel) and evaluation close to X- gives the left (zeroth order) (internal) layer problem
(a) 9= np )
2

(b) n = (n+n(X=))¥

b .
(3.7) (c) p = =(p+p(X=))¥ $ -w<g<0 .

Ciye T2 I de

(da) =0

e
n
o

(e)

o

/

Similarly we obtain the left (boundary) layer problem

(a) tl = n,"Py
(®) B, = (Rn(=1)¥,
(3.8) (€) By = =(B*p(-11)¥, L, 0T .

(@ 3 =0

&
The right (boundary) layer problem is obtained from (3.8) by substituting n(=1), p(=1) by
n(1), p(1).

Inserting into (2.19), (3.1)(a) and comparing 0(1)-coefficients of A gives the
matching conditions at x = =1

D(-1) , D(=1) > O

(a) n(-1) + E'_m =
0 , D(=1) <0

{ 0 , D(=1) > 0
-p(-1) , D(=1) < 0

(2.18), (3.1)(b) gives the matching conditions at x = 1

(3.9) (b) p(=1) + ;z“”

(e) Pi-1) + '6£(n)

-13=



(a) n(1) + i’r(o) = D(1)
(3.10) (B) B(1) + p_(0) = 0
() N+ (0) =y .
The aontinnify conditions (2.16) give the interface conditions
(a) R(X=) + n(0=) = R(X+) + n(0+)
(B) P(X-) + p(0=) = B(X+) + p(0+)

(c) B(X=) + $(0=) = WX+) + WO+)

- {3.11) 2 2
(d) ¢(0-) = y(0+)

(o) Jn(x—) + Jn(o-} - Jn[x-l-} + Jn(D-l-)
T (X=) + 3 (0=) =3 (X+) + 3 _(0+) .
(£) p( ) p( ) p( ) p{ )

From (3.7)(d),(e), (3.8)(d),(e) and from the analogous equations for the right J , Jp-

layer terms we immediately conclude that

i - Ll Cad L
(3.12) : J %83 %0,3 53 80,3 53 so

n P n‘ p‘ n, P,
since (3.4) has to hold. No zeroth order layers occur in Toe Jp. The current densities
are the slow components.

The problem (3.8), (3.9) has been dealt with in Markowich, Ringhofer, et al (1982) and

it has been shown that

’ ¥, s5n, 5p, =
(3.13) . f‘ N, =Py 0
holds. The same analysis goes throught for the right boundary layer terms and
(3.14) wr 2n_ = P, =0

follows. No zeroth order boundary layers occur, since the reduced boundary conditions
for n, p ((2.18), (2.19) with A = 0) can be fulfilled by the reduced solution due to
(3.5)(a).

By including more terms in the expansion (3.2) it turns out that higher order boundary
layer terms occur. Similarly, higher order internal layers occur in the slow component

s 3 3s as
Jn(Jp) if 3m  °F ' (_Ean or _Ean) are not constant zero.

-14=-



Integrating (3.6)(Db),(c), (3.7)(b),(c) gives

. axe)e¥ 1) , o> 0
(3.15) n(o) =

ax=1e¥P-1) , a<o

" s e W9, >0
(3.16) pla) = .
px-re ¥y, aco .

Inserting (3.15), (3.16) into (3.11)(a),(b) gives

(3.17) Tix-)e%%) = nixere¥ O

(3.18) Six-1e"¥0") = Fix+re NI

From (3.11)(c), (3.5)(a) we get the interface conditions for the reduced problem

(a) F(x+)eVEITVEH) _ Ty
(3.19) - -
by  (m(x=) - p(x=-0)e¥X ) TVE) L nixs) - p(x4)

and from (3.11)(e),(£) and (3.12)

(c) T _(x4) = J (%X=)
(3.19) _ _
(d) J_(X+) = J _(X=) .
P P

The boundary conditions follow from (3.9), (3.10) and (3.13), (3.14)

_ 0 , D(=1) <0
(a) n(=1) =
p(-1) , D(=1) >0

(3.20)
(b) W(=1) = ¥_
(a) n(1) =D(1)

(d=asd (&) W1 =y, .

Eliminating ; from (3.5)(b),(c) using (3.5)(a) gives the reduced equations
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- D' = (347
(a) ¥' = —
2n - D
_ (E—D)En-ﬁ.? +mp' | -1 <x<x
(b) n'= = =
- d
(3.22) =B n
e) 3! = snG.E.En,Ep,O) X <x <1
(a) J3' = -5 _(n,p,J_,J3_,0)
n
P P P |

assuming that D € c‘([-i,x]) n c‘([x,1]). ; is given by (3.5)(a):

(3.22) (e) p=n-D(x) .

We obtain the internal layer problem by inserting (3.15), (3.16) into (3.6)(a), (3.7)(a):

(a) ;= ax-)e? - pix-)e" ¥ - D(x-), ~w < o< 0
(3.23) - 2 o

() ¢ =nx+re? - pxtre”V - p(x+), 0 < o< =
subject to the boundary conditions

(€) Y- =) =0

(3.23) -
(d) Y(=) =10

and the interface conditions

(e) W(0+) = $(0-) = P(X=) - P(X+)

(3.23) 2 2
(£) Y(0+) = §(0=-) .

Because of (2.17) we require that the solutions ;, E of the reduced problem are
nonnegative, that means:
(3.24) n(x) > max(0,D(x)), x € [=1,1]
has to hold. Under this assumption we prove a simple consequence of the interface
conditions (3.19).
Lemma 3.1. Assume that (3.24) holds (at least at X-, X+). Then

D(X=) < 0, D(X+) > 0 ==>

(3.25) - _ _ _
(P(X=) < P(X+) and n(X+) > D(X+), n(X-) > 0)

holds.
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Proof: Assume first that Px=) = Y(x+). Then (3.19)(a) implies that n(X+) = n(X-) and
(3.19)(b) implies D(X-) = D(X+). This is a contradiction to the assumption that D has a
jump discontinuity at x = X. Therefore 'itx-l ¥ Y(X+). We compute n(Xx+) from (3.19)

K= )=p(X+)
- 8 T
(3.26) T(x+) = RXH)D(XZ)e

o2 (WX=)=P(X+))

.

. {1 -

(3.25) follows immediately from (3.26).
O

We now give existence theorems for the reduced problem and start with the simple case
(B).
Theorem 3.1. Assume that D(x) > Dg > 0 on [-1,1], D e c'((-1,X]), D e c'trx,1)  and
that

(3.27) Sn(D(x),U,J,0,0) = Sp(D(x),O,J,0,0) =0 for all x € [-1,1]

and all J E€R .

Then the reduced problem (3.22), (3.19), (3.20), (3.21) has the solution

(a) n(x) = D(x) )
(b) pix) =0 1 <x<X
(e) J (x) 50 k:ic<x«'.1
p
- _U ,1 _ds
@ I =257/, 50y
(3.28) !
u Ix ds
——+lnD(x)-F-}i"—‘l')'é%L, 1<x <X
_ T [ =
(&) W(x) = 1 D(s}
U II( ds
. gnp(x) -2 Lo oy oo cq ,
UT U J"l ds
-1 D(s)

Proof: Assume (3.28)(a),(b),(c). Then (3.27), (3.19)(c) imply that Jn = const on

[-1,1]. From (3.22)(a) we conclude that
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_ Yo+ 2n 500 " Tn e Blet
Vix) =

Rix) _ 5 (x _ds_
v, + 1 0 an11 Day ¢ X< x<1
holds. Now (3.22) and all boundary conditions are fulfilled. En has to be calculated
from (3.19)(a). ((3.19)(b) is autcmatically fulfilled.) (3.28) (e) follows then by using

(3.1)(c) (),
O

For a recombination rate R which depends only on n, Ps (3.27) is a direct
consequence of the equilibrium condition. Therefore Theorem 3.1 holds for the SRH-
recombination term.

Assuming the validity of the asymptotic expansions (3.2) (which will be proven later)
the theorem implies that the device is depleted of holes (away from the junction) and that
the electron current .‘.ln is asymptotically proportional to the applied voltage U.

1
(!_1 B'-?-:'T is the (scaled) resistance

Actually (3.28)(d4) is a scaled version of Ohm's law
of the device). n'n and nn' Junctions are resistors.

Now we turn to the case (A). For simplicity we take the SRH-recombination term.
Theorem 3.2. Assume that D(x) < 0 on [-1,X], D(x) >0 on [X,1], |pi{x)| » DA on
(=1,1] and that Dec'()-1,x1), Dec'tix, ). Let s, S, be given by (2.14) (sRH).

Moreover assume that

Ve,

(3.29) e <p, p sufficiently small
holds. Then the reduced problem (3.22), (3.19), (3.20), (3.21) has a locally unique

solution (in ¢'([=1,X) U (X,11)%) which fulfills (3.24) and
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v - am 254 J), -1 < x

_ - D(=1)
(a) wix) =
v, + tn %%%% + HUX), X <Cx €1
- -V,
$(x) = O(e ) on [=1,1]
(3.30) -y,
_ Ole y >0 , =1 €x <X
(b) n(x) =
vy,
D(x) + Ole ) , X<x<€1
- -y,
e) I (x) = o(e ) . -1 €x €1
L

(a) Eptx)-ote' Yy, 1 <x<t .

of course ;(xl is then given by

vy,
_ -D(x) + Ofe ) , =1 €x<X
(3.30) (e) pix) =
v,
Ofe ) »0 , X<x <1 .

Proof: We introduce ¢ as a new dependent variable (instead of V) and obtain from

(3.22)(a)
_ 20D' - (I 43_)D = 2mD'
(a) ¢ = —a2-2 , X <x €1
D(2n-D)
(3.31) _ o
_ 2’ - DI )
(b) §' = A . VExCXK .
D(2n-D)

Boundary conditions for ¢ are
(3.32) B(1) = §(=1) =0

and the interface conditions (3.19)(a),(b) transform to

VooV p-1)p(1) B(X=)=4(X+)

D(X-)D(X+) n(X+) - n(x-) =0

(a) e
(3.33)

Yo% p-1)p(1)

UX-)-P(X+) = Caa _ _
T (R(X-) = D(X=)) - (n(X+) - D(X+)) =0 .

(b) e
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vy, o e E
We set w = @ and Z4 = (¢U'nD’Jn ,Jp ) where
0
io 20 on [-1,1]

0 , =1 <x<X

(3.34) ;utx) -
Dix), X < x €1

J (x) 53_(x) 50 on [-1,1]
"o Py
and write the problem (3.31), (3.22)(b) - (&), (3.20)(a), (3.21)(a), (3.32), (3.33),
(3.19)(c),(d) 4in operator form F(w,;} =0 where F : [0,®) x (c;{[-1,1))4 +

(Cx([--T.U)4 x RF)- C§{I-1.1]) is the space of functions of which are i-times

continuously differentiable on [-1,X) and on (X,1] .and 1lim ftj)(x] exists for
x+Xt
E (3)
0 € j < i. The space is equipped with the norm lflx e ) sup £ 271 .
‘ j=0 xe[-1,1]
x7#X

Obviously F(O,ZB} = 0.
We investigate the equation nzrto.Eu)y = (£,a) (where Dtho,;b} denotes the

Fréchet derivative of F with respect to z at (O,Eb)} for y = (¥q9:¥2/¥3:¥4)

obtain
F 2D’ 1 1]
0 o8 ) )
1
o -2- 0 -1
(3.35) (a) y' = y+E XK<x &1
0 % 0 0
0o - % 0 0
o .2 1 1
02 D D
1 ]
0 - E— 1 0
(3.35) (b) y° = y+E, -1 <x<K
0 % 0 0
|
0 el 0 0
A B i

=20-
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where f € tcx([-1,1])}4. The bbundary and interface conditions are
(c) y1(-1) = G, yz(-1) = q
(d) y1(1) = a,, y2(1) -a,
(e) y, (X+) - y (X=) =
(3.35) 3 2 %
(£) y4(x+} - y4(x-) = a
(g) yztx-) = a,
(h) yz(x+) = ag

with ui e R i=1,...,8.

Because of the Fredholm alternative Dzrto,;o) is one-to-one and onto iff it is one~

to-one. Therefore we only have to show that the homogeous problem (3.35) (o=0, £30)
the unique solution y Z 0.

From (3.35)(a) we get

(3.36) y:"-‘ X <x <1

Therefore
D' . L
= ==y mMoam = (= — ] . ! el i
s B Y2 g (" Y2 " Yy (Bp- vy =Yg
and
1
(3.37)(a) y; = (&n D)'yi o & =0, X <x <1
holds. The boundary conditions are
L] = ! =
(3.37)(b) y4(1) y4(x+) 0 .

Since B > 0 the maximum principle implies that ¥, £0 on [X,1] and therefore

Y3 = YZ = y1 =0 on [X,1].

-21=
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(3.35)(b) gives

1
[ Jp— X -
(3.38) 21 8 Y2 f 1< x <X

Again we get a second order problem
1
" Vgt o = - -
(3.39)(a) Y3 + (&n |D]) Y3 8 Y3 0, -1 €« x <X
(3.39)(b) y;{-1) - y%(x—} =0
and the maximum principle yields A £0 on [-1,X]. ¥, = Y, ¥ Y, £0 on [-1,X]
follows immediately.

Therefore DSF(D,;Q) is an isomorphism and since DZF(W,;BJ is uniformly Lipschitz
continuous the implicit function theorem assures that there is a locally unique solution
z = ;(w) of F{w.;) =0 for we€e [G,wD sufficiently small. Since

F(w,zy) = O(w)

1 = 0(w) . To show that this solution z(w) fulfills (3.24) we

we get lz(w) - Zoly, 1

compute the first order term 31 of the expansion

— » —
z(w) ~ E wi zi
i=0

as a solution of the equation

DzF(ﬂ, 0)21 - _DwF{O'zD) .

z, solves (3.35)(a),(b) with f = 0, fulfills the interface conditions (setting

z, = (ﬂ1;n1,Jn ,JP1))
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7, (em) = LU,

D(X~-)

- _ _ p(=1p(1)
n, (x+) px+) > °

Jn (X+) - Jn (X-) = 0

T (X+) -J (X=) =0
P

and the boundary conditions

V(=1 = (0 =0

_ (=1 =n (1) =0 .

E,, 3; i EP f£ulfill (3.36) and (3.38) and therefore 3; fulfills (3.37)(a) on (X,1]
1 1 1

subject to the boundary conditions

= i 1 D!-1!D(1)
L] - L -
Jp1{1) 0, Jp1(x+} B D(X+) <0

;1 is negative on [X,1), such that

wl=

The maximum principle implies that E; - -
1

;1 >0 on [X,1) holds.

Similarly we obtain ;1 >0 on (-1,X]. Since the zeros x = +1, - 1 of n, are

simple zeros, we obtain (3.24).

| Bl )
The biggest restriction of the Theorem 3.2 is the required smallness of e +. We
obtain from (3.1)(a) and (2.24) " “bi‘1'
—_—+
v_-v U U
(3.40) e T=el T .

Therefore (3.29) holds if there is a constant K > 0 sufficiently large (but independent

of A) such that

v, 1ubi(m _

g Up

(3.41) K

holds. The applied voltage U has to be sufficiently smaller than the absolute value of

the built=-in voltage (low—injection condition).
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Numerical calculations (given in Section 5) demonstrate that (3.41) is not necessary
for the existence of a reduced solution.
From (3.30)(c)(d) we get the reduced voltage~current characteristic
.
4.4 U,
- = A T 4
. + - ---—Y—u-—-——— 4+ .
(3.42) 1T, + 31 = o (Gt e T0 + o)
In the case (A) (pn-junction) the total current density depends exponentially on the
applied voltage (see also Sze (1969)). (3,42) should be compared to the corresponding
result (3.28)(c),(d) for the case (B).
Theorem 3.2 can easily be generalized to more general functions S, 8, which do not

P
depend on J , Jpe (3.30) holds without change for s = Sp = 0.
Now we turn to the internal layer problem (3.23). We prove
Theorem 3.3: Case A: Set D(X+) > 0, D(X-) < 0. Then, if the reduced problem (3.22),
(3.19), (3.20), (3.21) has a solution fulfilling (3.24), the internal layer problem (3.23)

has a unique pilecewise monotone solution ¥ which fulfills:

0 < Vo) < cs exp( (1-8) n(x-) + p(x~) o + Dy V(X+) - Y(x-))

(a)

for o < -!GJ ;()H-l - ;(x-)

0 < ~$(o) < Cg exp((~148) n(x+) + p(x+) o + Ds'/ V(x+) - §(x-))
(b)

for o > 35', V(X+) = $(x-)

for every § > 0 where Cs > 0, Dy > 0, Es >0 depend on & but not on ;(311 if
V(X+) - $(X-) 1is sufficiently large.

Case B: Let D fulfill the assumptions of Theorem 3.1 and let the reduced solution be
given by (3.28). Then the internal layer problem (3.23) has a unique piecewise monotone

solution ¢ which fulfills
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(@) 1% < Cg exp((=1-8)/DTK-) @), 0 < 0
(3.44)
(b) l;(cil <Cg4 -xp((-ﬂc)m g, 0>0
for § > 0, where c‘ only depends on &.
Piecewise monotone means monotone on (= «,0) and on (0,®).
Proof: For any piecewise monotone solution ; of (3.23)
(3.45) (a) agn $(0+) = -sgn $0=), (B) WO+) # 0, WO=) # 0
has to hold. This follows from the monotonicity and from (3.23)(e),(4),(f) since
:(ﬂf} - :w-) = 0 would imply % 20 (because n(Xf) = P(X%) = D(X%) holds) which
contradicts (3.23)(e) because of (3.25) and (3.28). $0+) = 0 (or WO-) = 0)
contradicts (3.23)(e), too.
Only two posaible cases remain:
() $(0+) > 0, $(0=) < 0
(1) $(0-) <0, ¥Oo+) >0 .
In the case (1) ; has to be monotonically increasing on (- =,0) and on (0,®), in the

-~
case (II) ¥ is decreasing on both intervals. In the case (1) we derive from Fife (1973,

Lemma 2.1) that every piecewise monotone solution of (3.23)(a),(b),(ec),(d) fulfills

o Iil(O*} dt

(3.46)(a) a , 9>0
¥(o) Y26(T")
where
(1) = [7 (n(x+)e® - p(x+)e™" - D(X+))ds
_(3.46)(b)

= n(X+)(e%=1) + p(X+)(e '=1) = D(X+)T

holds ((2.23)(a) fulfills all assumptions of Lemma 2.1 in Fife (1973) because of (3.24))

and

(3.47)(a) o= M9 AL g¢o0
$(0=-) Y2F(T)

with
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(3.47)(b) F(1) = [0 (p(x-)e® - A(x-)e"* + D(X~))ds

= p(X=)(e"=1) + n(X-) + D(X=)T

(also (2.3)(b) fulfills the necessary assumptions after setting =¢ = §, A= -g).

Differentiation of (3.46)(a), (3.47)(a) gives
: -~ z -~
(3.48) V(0+) = =¥ 2G(9(0+)), W(0=) = =y 2F(=-9(0=))

(3.23)(e), (f) gives the equation for ;(0+}
(3.49) GUH(04)) = F(H(X=) = B(X+) = $(0+))

which can be solved (uniquely) by using (3.46)(b), (3.47)(b) giving

D{X=)=D(X+)

(3.50)(a) $(0+) = DUX=) (BOXP)P(X=) )+ (R (X=)=n (X+) )+ (D(X=)-p(X+))

(3.23)(e) implies

(3.50(b) D(X+)=D(X~)

;w-: = D(X+) (P(X+)~$(X=) )+ (n (X~ =n (X+) )+ (p(X=)=p(X+))

In the case (II) we proceed analogously and obtain the same formulas for WOo+), Wo-).

Therefore, a unique piecewise monotone solution of (3.23) exists iff WO0+), Wo-)

given by (3.50), have appropriate sign (and are not zero).

In the case (B) (3.50), (3.28) give

p(x-)an 2EX) 4 pixe) - pex+)

> D(X-)
fal Wox) = D(X+)-D(X-)
(3.51)
. D(x+)tn 2EL & p(x-)-p(x+)
B W= D(X+)-D(X~)

D(X+)
D(X=)

Setting y = > 0 we define

(a) ¥(0+) = £ (y) = i"-‘%{-{—'—'l
(3.52)
(B) W0-) = £,(y) = YhOCLL)

Obviously fny = (y=1) < 0 holds for y > 0, y # 1. Also yiny = (y=1) > 0 for

y >0,

y # 1 holds and we find that sgn f,(y) = =-sgn E,(y), £4.(y) # 0, f,{y) #0 for y > 0,
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y # 1. We derive from (3.52)

(a) $(04) > 0, $(0=) < 0 4iff D(X+) < D(X=)
(3.53) A ¢
(b) $(0+4) € 0, $(0=) > 0 iff D(X+) > D(X=) .

In the case (A) we express ni(Xs), p(Xz) in terms of W(Xs) using the interface condition

{(3.19)(a), (b) (as in (3.26)) getting
BX=)=9UX+)_,

(R(X=)=n(X+)) + (P(X=)-p(X+)) = & (D(X=) + D(X+)). We set = = WX=) - WX+)

RTESSErTE S

and obtain

” h,(s) N h,(2)
(3.54) (a) ¥(0+) = o B’ (B) WO0=) = S D (x~)
where
(3.55)(a) hy(g) = D(X+)g,(z) + D(X=)g,(z)
(3.55)(b) hp(z) = D(X=)gy(z) + D(X+)gy(2)
uttﬁ
(3.56)(a) gqelz) = ef - 1 -z(e®+1)
(3.56)(b) gplz) = e =1

We restrict to z < 0 since z » 0 cannot occur because of Lemma 3.1 g, <0 for =z <0
and a simple computation shows that 91(5) >0 for z < 0. Since D(X+) > 0, D(X-) <0
we obtain h,(z) > 0 and hy(z) < 0 for z < 0. Therefore
(3.57) (a) (04) <0, (b) ¥W0=) >0
follows in the casa (A).

Now the existence theorem is settled in bhoth cases, the decay statements (3.43),
(3.44) still have to be shown.

In the case (B) the equation (3.23)(b) reads

v=gl¥ = pxe)e¥ -1 .
g'(0) = D(X+) holds and (3.44)(b) follows from Fife (1973, Lemma 2.1). (3.44)(a) is
derived in the same way.

In the case {A) we have to kecp in mind that ?(x+} - E(x-) can be large (see Theorem
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3.2), which implies that ;{0+), ;(0-) are large. Therefore we need estimates which are
uniform for large W(X+) = $(X~).

The proof follows the lines of the proof of Lemma 2.1 in Fife (1973). We set ;*- -;
in (2.23)(b), call the (new) right hand side of (;) and compute VE'(0) =
/n (X+)4p(X+). It is easy to show that
(3.58) £(8) > (VT'(0) - 8%, 0¢s <8

holds for &8 > 0 sufficiently small. Since f is increasing we get

(Y2 (0) - 8)°4°

(3.59) F(1) = [; f(s)as > 5 + £(8) (1=8)
for ¥ » 8. Therefore
(0+) _ ar =
(3.60) v - 8 7Y S RALTS)
e Y2F( 1) $

holds for |¥(0+)| sufficiently large, where Dg > 0 is independent of W0+). From Fife

(1973, Lemma 2.1) we obtain

(3.61) 19(6)] < & exp(-(1-8)/E7(0) 0 + o,/ | 90+)])
D s .
for o > § Y |¥(0+)]. (3.43)(b) follows from (3.50(a). The proof of (3.43)(a) is
Y£'(0)
analogous.

o

- -

-~
Similar estimates holds for the derivatives of ¥. n, p have to be computed using

-

(3.15), (3.16). 1In the case (B) p =0 holds (since p =0).

If the interface condition (3.23)(f) is changed to ;{D+) - ;(0-) = 0(A) then the
layer solution ; changes at most by O(\A/ ;(x+) - ;(x-)) (in the max-norm). This
follows by applying the implicit function theorem to the perturbed equation (3.49). This
will be needed for the existence proof in Section 4.

The width of the internal layer at x = X can be computed from Theorem 3.3.

In the case (B) we obtain
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(@) 4,0 = o(=2— | t(—=2=)) , A+o0+
iﬁ(x+) i5(x+l
(3.62)
() (M) = o(—2— | t(—=2=)) , Ao+

/D(X~) D(X-)

where d+(l)(d_(hll denotes the width of that part of the layer which is right (left) of

x.
For the case (A) we obtain
ta) a,(x) =of A (Y Bx+)-9x=) + | a( A )
+ — nd — —
¥ n(X+)+p(X+) Y n(X+)+p(X+)
(3.63)

(p) a_(\) =of A (v Wx+)-9ex=) + | 2n( 2 Ny .
/n(x=)+p(x=) Y n(X=)+p(x-)

If the low injection condition (3.41) holds Theorem 3.2 gives a (physically relevant)

gsolution of the reduced problem and (3.30), (3.63) give

u,. (A)
(a) a, () = o A |g- + b; | + |n A1)
YD(X+) T T YD(X+)
(3.64)
U . (A
(b) a_(x) =of A 13—+ b; | +1m—-3—|]) .
/ID(x=)1 T T /To(x=)|

These asymptotics are uniform as U + - ®.
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=. __sxistence of Solutions

In this section we prove the existence of solutions of the singularly perturbed
problem (2.11), (2.12) using the asymptotic expansions (3.2).
At first we derive an a priori estimate on the number of carrier pairs valid for the

cases (A) and (B).

Theorem 4.1. Every solution of (2.11), (2.12) which satisfies (2.16), (2.17) and for

which Jn' J'p do not change sign in [-=1,1] fulfills
(4.1) "’“"‘"’n’“"’p’“"’n*""’p*" on [~1,1]
(4.2) U=0 <=e=>3 =3 =0
n P
(4.3) U<0 Cmm> Jn <0, Jp < 0y .'rn $o0, ap $0 on [-1,1]
-3 Jul
u U
(4.4) Y2 T<api evhie T, xe 1,1 .

The proof is completely analogous to the proof of Theorem 4.1 in Markowich, Ringhofer,
S8elberherr and Langer (1982) and requires only the equilibrium condition on the scaled

recombination rates Bn. sp. For U =0 the current densities Jn, J’p vanish and the

4
device is in thermal equilibrium. The np-product is constant Y‘l throughout the

device.
The estimate (4.4), the equilibrium condition and the continuity of 8., Bp imply

o
that ) Sp are small along a solution when 'Il]—l is small. In particular, for the SRH~
T

recombination rate (given by (2.14))

1ol
2,2 o
= XAZ T
(4.5) ]Snl |Sp| < 28 (e 1)

holds along every solution of (2.11), (2.12). Therefore it is intrigquing to set

(4.6) 8 =8 =0
n P
for sufficiently small %E_L
T

We now give existence proofs for (2.11), (2.12) in this case.

For the simple case (B) we show
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Theorem 4.2. Assume that D fulfills the assumptions of Theorem 3.1 and that (4.6)
holds. Then, if 0 < A < 1\0 and I-g-—l < p for p sufficiently small but independent of
T
A holds, the problem (2.11), (2.18), (2.19), (2.26), (2.27) has a solution which fulfills

(2.16), (2.17) and

(4.7) VixA) = $x + 905 + 00
(4.8) | alx,A) = D(x) + n(SE) + o)
(4.9) plx,A) = 0(A) (> 0)

(4.10) 3 (xA) = T (x) +0()

(4.11) 3_(xA) = 00\

uniformly on [-1,1] where ;. '.in are given by (3.28)(e), (4), ¥ 4is as in Theorem 3.3,
case B and n fulfills (3.15).

Proof. The right hand sides of (4.7) - (4.11) are the sum of the reduced solutions as

given in Theorem 3.1, the layer terms as of Theorem 3.3 (p = 0 holds since ; £ 0) and

remainder terms. We denote these remainders by I‘. E,E, la + B Inserting into
n

n’ p i
P
(2.11) (with sn 4 ap = 0), using (3.23) and (3.6), (3.7) gives

2 2=,

(a) xs; :n-l:p-xt

(b) l; - tt*ﬂ'ln + (n'l-u)l& + !Jn + sn:; + ¢1(1,A)
(4.12)(c) 'r" = -(iﬁl'ap - !JP - nps; + ¢2(x,n

(a) n_.} =0

n

(e) n& =0
where the functions ¢1. ‘2 satisfy
(4.13) I:, I(4,(s,A)|ds = O(X), 1 = 1,2 .

Inserting into the boundary conditions (2.18), (2.19), (2.26), (2.27) shows that the
boundary values for !*, 'n' !p at x = 11 are O(A).

We define the operators:
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(a) (H g)(x) = [X exp(Wx)+¥(o(x)) = Ws) - ¥(o(s))g(s)ds
(4.13)
(B)  (H g)(x) = JZ; exp(=¥(x)-¥(a(x)) + Ws) + ¥(o(s)))g(a)ds

where o(x) = Eii and rewrite (4.12) (b), (c) as integral equations

B - exp(;(x1+;(u(X))-ik-1)*ﬁ(c(-1)lEn(-1J +

(4.14) (a) (Hn(n+njz;)(x) + (nnzan)(x) + (annnt)(x) »
+ () (x)
E, = exp(-9(x)=¥(o(x)) + E(o(-mxpt-n -
(4.14)(b)

- (HPEJ )(x) - (HpEpE;)(x} + (Hpﬁz}{x] .

P

From (4.12)(c), (d) we get

(4.15) (a}) E, Zconst. on [-1,1]
n
(4.15)(b) EJ = const. on [-1,1]

since E. , E e c([=-1,1]).
Jn Jp

Because of (4.13) and since IEn(-1)| = 0(A), lEp(-1)| = 0(A) we obtain from (4.14)

' 4 A
v 0(A)

= = "
(a) E’n Hn(n+n)zv + EJan1 + HnEnE
(4.16)

b E ==E_H1+HEE"'+ 0(XA .
(5) P JP p ppy e

Partial integration and (3.23) give
vi(x) - {n+n}E¢ - tHanEw)(x} + ]Gn,lgv
where Gn v Cc(l-1,1]) + c([-1,1]) is uniformly bounded (in A). The continuity of

(4.17) (Hn(;+n)E
n+n at x =X was used for the derivation of (4.17).
From (4.12)(b) we derive, after partial integration

E'E_+ 0(X)

4.18 B! = - oE" - H - v +
( ) HnEn E E HnnE E nE E HnEnE E¢ an‘l Fyv

v Snty vv o Tt By v
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where rn ! c([=1,11) + c([=1,1]) 4is uniformly bounded. Another partial integration

gives
papien - et ; x -;- rpl
(4.19) H nELE =3 NE, -8 [Z, (e Tn)'E (s)as + OOA) .
Combining (4.16) = (4.19) gives
(4.20)(a) E - (u-l-u)l‘i - Hn"n!t + IJ“H“‘I + An'l(sv,n',nn,san)
and proceeding analogously for Bp
(4.20)(b) w = -npnp1 + "‘p,x('v'so"p'na )
where An G hp \ are nonlinear operators from (C( [-1,1]))‘ into c([-1,1]) which
’ *
fulfill
] ‘ L ]
'nq,l(‘t"t'!q'laq).[-1,1] C,(O(ll + ll*l[_h‘](l-l--lllvll_'Jl
(4.21)(a)
]
U e T e Y R AR RILL LI STEL
'mq,xt'e";"q"aq" <c A+ l!’l (=1,11
RN Y Ve
q
(.21 (0] M T A S I I " ST D b S ST
+ lx;l[_hﬂls*l -1, * ;\l!;l t_""j

where C,, C, are independent of ), "D" denotes the Fréchet derivative and q = n,p.

The constants Jn' Jp can be determined from the boundary conditions for En. E_  at

P
x = +1;3
(B3 E)() - An'x(!*.%.!n-!‘,n””
(4.22)(a) I, F m_1(1)
“;.,x"v"&'xn"-!“””
(4.22) (b) I, 3 @ )

We remark that (R, 1)(1), ﬂlpi)(ﬂ are bounded away from zero uniformly in A.

1
We regard !0, E.. !p' E‘-,n, s"p as dwelling the space Ry = C ([-1,1]) n

2 2
-1,1 - " . .
Cx(I 1) which is equipped with the norm lﬂ;\ 1£1 (=1,1 + AIE '[—1,1!)0(1!,1] (4.21)
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implies that the mappings defined by the right hand sides of (4.20) are contractions in
spheres of radius O0(A) (centered at 0) and therefore (4.20)(a), (b) can be resolved

with respect to E,r E  Tesp.:

P
- - - (Rn1){x)
(4.23)(a) Fn " {mn)li - “nan!t " (Hnan‘v“” (H 1)(1)
+ nn'l(z*,n;)
= ] -
(4.23)(b) !p ap.x(gvg’)

The operators nnrl. np.l fulfill the estimates (4.21) when mn'[-hl]' IBPl[_,I"],
I!Jnli'h‘l' lxapl =1,1 are substituted by the radius of the sphere in which the
contraction mapping theorem is applied.

Inserting (4.23) into (4.12)(a) gives

2 - - (Hn'l){xl _
- - ———— .
A B' (n+n)xt (nnans’}(jl ‘“n'”” (nnans*)(x)
Ty o []
(4.24) + nn'iu;',z’) np’ x{sfs_’.)

-2%P, 1 Ex <X and X < x €1

subject to 0(A) boundary conditions for E‘ at x ='t1.

Since n+n is positive and continuous on [-1,1] the boundary value problem
(4.25) Ayn - (Rndy = £, y(=1) = y_, y(1) =y,
has a unigque solution y e A, forall y ,y,eR, fe C,([=-1,1]1) which fulfills
(4.26) Iyt < const(I£ _\ o + ly_| + Iy, 1) .

Since all estimates so far are uniform for I%—l € p and since
T

4.27 ] < IE 1

( } lHanE* =1,1] const p V-1,

holde with const independent of A and p € [—po,po] (see (3.28)(d)) the contraction
mapping theorem with p sufficiently small assures the existence of a locally unigque E v
with

(4.28) IE =0(2) .

vi-1,1
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The existence statement of Theorem 4.2 follows immediately. The positivity of p = !p
follows by investigating the higher order terms of the expansions similar to the proof of
Theorem 3.2.
0

This proof does not carry over to the case A since then H,, Hp are not uniformly
bounded (in A) anymore. At first we rewrite (2.11) (with S = sp 2 0) as a second
order problem.

From (2.11)(d), (e) we get
(4.29) Jn £ const, Jp Z const on [-1,1]

(2.11)(b),(c) give

(a) = a(1)e?tx)"¥ Jna“x) i o ¥8)yy

(4.30)
(b) p = p(1)eW1I"¥X _ sp.‘*"" 2 e¥®ag
Jn‘ Jp have to be determined from the boundary conditions for n, p at x = -1
S
U U
(4.31)(a) S (Y |
CF 1 _-¥(s)
I_1 e ds
7 W
U U
(4.31)(b) S X eT-eT)

=
P I:1 ev(S)ds
(4.30), (4.31) immediately give n > 0, p> 0.

Without loss of generality we set U, = -u, =

o and obtain by inserting (4.30),

(][

(4.31) into (2.11)(a)

x -Y(s)
2 2.2 U u oy _21° ds
(4.32) A“y" = 2" X (sinh(¥ + 35-) + sinh(z5=) (" 5=
T T I_1e ds

xeﬁ(s)ds
.-‘| 1
t e —————‘"———]) - D(x)
11e“s’ds
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for x e [-1,X) U (X,1] subject to the boundary conditions (2.20), (2.21) and the
interface conditions (2.16).

At first we derive an asymptotic representation of the voltage current characteristic.
Lemma 4.1. Let Sn = Sp £ 0 hold and assume that U fulfills the low injection condition
(3.41), that D fulfills the assumptions of Theorem 3.2 (Case (A)) and
(4.33)(a) Vo = B0+ wSE) + e
where the reduced solution ; fulfills (3.30)(a) and ; is given by Theorem 3.3. Then

(3.31) implies

u_
4.4 uT %-
(4.33)(b) g =XALe =) Locien] +a(h) +a(n+yine D))
n X + e
JZ,Ipts)14s
- u_
4.4, Y U
@3 g e x2de =Dy oqanr + a0+ a ¥ ™)
IX D(s)ds
Proof. We obtain
o Vs - e Dle) ., x Dls) D00 600 1) a8
<y ST lapEn T lapEn ©
-$(E2X) v -v
D(s) ) - "+ [ D(1)
¥ 131 p(-1) (e 1de +» I D(s)
~ o5=%
e el o M 1)as
x D(s)
oy, )
= D(1) )
+ e I St 0(18(N)])ds .

Using the estimates (3.43) and the layer widths given by (3.64) we derive
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v - Dis)
o 1 o ¥E Ny, . [%, Bal as + 0c10(N] + 0Ca_(A)

-1
l!l
cory'ale T+ 0a, ()
Therefore
. " u
v 20 2 U
,ie e -0 T, Y ® - 1)
n L = v -
e [l e Vs, M)y, o 111 Il L TR PR R Y WP
- -3
1‘1‘; & %)
= (1 + 0018 + a, () +4a_(d) + Yade Ty
I ID(s)|ds

follows. The proof for the asymptotic representation of Jp is analogous.

P
a solution of (4.32) subject to the boundary conditions =1, = ¥, wWi1,A) = t+ exists

1f Dn - Dp holds (which implies that Jn, J have the same scaling factors) and if

for which ©(A) + 0 as X + 0+, then the total voltage current characteristic of the pn=

function is given by

u
u
@@ aEa +a sy (o s——)(e T = D1+ o)) .
P JX,Ints)las [ D(s)as

The same asymptotic form of J can be found in Sze (1969) (and other standard books on

semiconductor physics), however the derivation used there heavily relies on physical

arguments.

We now prove an existence Theorem for the case (A) under a slightly sharper assumption
%—l then that used in Theorem 4.2:

T

Theorem 4.3. Let D fulfill the assumption of Theorem 3,2 and D € ci([-1,1]). Assume

on

that

l l It ¥ 2
holds for some p > 0 sufficiently small but independent of A. Then there is a solution

¥(x,A) of (4.32) subject to (2.20), (2.21), (2.16) and ¥ fulfills
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(4.34) V) = B0+ SR ¢ ota, (0 + a4 + (YY)

for some Y > 0 where ; is the reduced solution as given by Theorem 3.2 (with
Sn E 4 sp 2 0) and ; is the layer solution given by Theorem 3.3.

Proof. We define

0 D(1) + aﬁ;a;z + a2t
¢+ = ¢n > 2
2Y A

2.2
*n “ gy 2y X .

D(=1) + fo(=1)2 + 47028

D(1) _ _D(=1)
0

Since 27212 - 0
sinh ¥ sinh ¥_

holds, the problem (4.32), (2.20), (2.21) with U = 0

can be rewritten as

5 8inh wb
(4.35)(a) ATy = D(1) ———= = D(x), X < x €1
0 0
sinh ﬁ+
2 sinh ¥
(4.35) (b) ATY" = D(=1) - D(x), -1 € x <X
0 : 0
sinh y_
(4.35) (c) VoL =4, ¢ (=1, =
- c 0 r *_'_ ’ "'u ’ w_
(4.35)(d) v, € cli-1,11) .

We now regard wg, #2 as parameters independent of A (as in Section 3).

Then the reduced solution i% has the asymptotic form given by Theorem 3.2.

D({x)
D(1)

D(x)
D(1)

area sinh( sinh i&) - ig + &n + O(e +), X <x <1

(4.36) Yo (x) =

-2 *n

D{x) +0(e ), -1 €x<X

D(-1)

D(x)
D(-1)

area sinh{ sinh iE) = iE - &n

and the internal layer solution wﬂ is as in Theorem 3.3 but suhject to the changed
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2 2 - -
interface condition W$(0+) = ¥(0=) = AP (X=) ¥ (X+) ).

/
In order to investigate stability we substitute u, = -% in (4.32), (2.20), (2.21)

v,
with U = 0 and obtain the problem
0
sinh Y. u
(4.37)(a) Wy 2 0 ) -1 gx<X X<x €
0 0 inh *P v
¥, sinhy, +
0
(4.37)(b) uo(-1) =3 uu(1) =1
+
(4.37)(c) u, € -1, .

0 - 0,0
We denote (4.37) by Fy(ug A, ¥g,¥,), where Fo(e,A ¥ ¥) Ay +Cy(=1,1]) x & and

investigate the equation

: - 0 0,
(4.38) Ll,ov = Dupﬂtuomﬁ'l' It *_’V (f,a B)
= % - %
where u. = —, u, = —, (4.38) is equivalent to
0 0 0 0
v, v,
> sinh(_io'P’u)
(4.39)(a) Ay" - D(1) ———— v = f(x), -1 €x <X, X<x <1
sinh 1+
(4.39)(b) v(-1) = a, v(1) = B
(4.39) (c) vec (-1,1) .

— i, -
We remark that ¥y + ¥o(3) € C'([=1,11).
The maximum principle immediately implies uniqueness of the solution of (4.39) and the
Fredholns alternative gives existence. To get a bound for the inverse of (4.39)

we construct the barrier function:

2
(4.40) v. (x,A) =K + exp(- {x7X) ]
b 2, .0 0
X (¥,= V)

where the constants K > 0, B > 0 will be determined thereafter.
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We compute

2 2
(4.41) (Ly ovp) () = (B (BRLEXL_ g )exp(- BxKL ) .
’ VoV, AT(e-Y) Xy -y)
cosh (¥, +; ) 2
D(1) 02 (x + exp(- BXL )y,
sinh ¥, X(y,-v)

2 2
X + exp(- JUHE), x 4 exp(- SPUTRE))
A v-y) Ay -y

(1)
We denote the first component of (Ll'ovb)(x) by {LA,Ovh)(x) and get

1 0 0 /0_ 0|
M g "2 MY~V AN S
(Ly v, ) (x) € = e , %€ X = —m—m™ , % + ——|
A,0p 0 .0
4 Vv 2/8 2/8 |
and

3

28 28(x-x)° Bx=x)2 \\'  ape
08 2 xo 0 - 1)3“9(- 2 xD 0 )] < 0 0 ’ X e [-111]

voov. AT(h-v) A9~ -y

where (f)* denotes the positive part of the function f.

Now we use the estimates for ¢ given in Theorem 3.3 for fixed 0 < § < 1. At first

we estimate

‘b
— D(x)e , x C=[X,1]
cosh(y +y_)
D(1) I
sinh v+ i
|D(x)]|e . X C=[-1,X] .
Since *0 is monotonically increasing on [-1,X) and on (X,1] this yields
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(1)
(LA,O

(x

3
2
4fe
0

V-4

) €

- 0_,0 0_.0
D(x) a,‘p(; (_fi:.]), e |x + _{.L?:'
0% 2/8 2/8
K ﬁ

/0. 0 0_,0
L We-v_
(x) -¢ (- , xC |=1,X - =

| pootexe(-dpt- —=) =

(note that ¢ = Eiﬁl. We now choose B

such that

holds and

Then

(L

/B = % min(

(1)
A":,vb){x) <

(

(I..1

(1-8)/ n(X+)+p(X+)
’

(1-8)¥ n(x=)+p(X=)

539 )
’
2E 20 4 23
0
i Mi-¥
D(x) , x @€ |X +———"
2/8
3
2
s “-”\
el "
0
2/40-¥)
ID(x)| x e |1, = ——""
\ ! 2/B
3
2
1 + i@—
0_,0
| 2
K = -1 .
e min [D(x)]
xe[=1,1]
-1
1) gg 3
LoVp) (X) < - min(1, o 5) « xe (=11

+
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holds. The maximum principle implies the estimate

lL;‘ul 2 < const. (ﬁ_‘:-tﬂ) .
! Cx({'hﬂ)m +C([=1,1])

(4.39)(a) gives

(4.42) IL;'Dl ,  <comst. (¥-¥)) .
cx([-1,1])>tll ’Rx

The Fréchet-derivative D,Fp is locally Lipschitz continuous:

0 .0 0 0
ID F (w ,A¥,,¥.) = D F, (w,, A\ ¥, V)l <
u0 1 + ubd 2 + Ax'.cx([_""”,"“2

(4.43) 0
const. t_'_lw‘-w 1

2 Ry

- Y+
for Wqs Wo in a sphere centered at uo-i-uo = Dn 2 with radius 5.{;—“'.
v )
Now we rewrite (4.32) as * +
0 U
. ot sinh(y ut 2"1-, — i uwfur
(4.44) ATut = ) * 0 i h(F’ 0
¢+ sinh 1;+ #_'_ T sin h 1;+
D
- -—1-;5-)- , x € [=1,%X)0(X,1]
*+
where H(Yy) denotes the i;ntegral operator on the right hand side of (4.32). We denote
- Y, 0., U
(4.44) subject to the boundary conditions u(=1) = o’ u(1) = < (with ¢ =y + 3¢
v, v,
y, = 00 - Hl by F, (u,A 1!0 1!0) = 0. The Préchet derivative L =
+ + 2 i Riet TR ) " . AU
- 0 .0
DuFU(¢G+?0,l,1J+,1J_] is given by
D(1)sinh(Y .+ + =)
2 0 "0 ZUT
(4.45) {LA vi{x) = (Av" - -
U . 0
sinh Q'_
sinh %
(1) ———F (D_H(Y+¥, V) (x), v(=1), v(1)) .
. u 00
sinh 1')+
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where

-~ 0
'Du“('o+'o)lcx([-1,l]) ‘cx”_"“) € const. sinh 11._ .

Therefore, if
(4.46) 15| ¢ ==, p suff. small
U 0_0 ;
| Al
holds, r.';u fulfills the estimate (4.42). Moreover D F, is locally Lipschitz
L]
continuous and fulfills (4.43).
Since . l;*t - ‘;o"o"[q 1 < const |U| a simple perturbation argument shows that
p— r

also Durn(_!;-t,l.ti.tg)q fulfills the stability estimate (4.42) and that D F, is locally

+

Lipschitz continuous arocund ;l't ((4.43) holds) if U is restricted by (4.46).

-
We now insert utu = -!E! into F, in order to compute the 'local error'. We obtain

v,
- o 0
2 sinh(p+$+ E—)
r el ) = A5 F + 4w - B0 T .
¥ v+ ¢ sinn )

-1=x. 5 1-x

ﬂ—'l W)

..!—L :lnh[—] _—Lﬂl _‘_l]' T' _':‘)
n 200" ginh ’+ t+ ¥, v,

with o = _x;_x. Obviously

-LJ- inht"—) —iﬂ - —1'6 [:1' a;"’ fx e-;-.ds + .?ps-_*’ f; ._*‘-'dl]

Tuinht v " 1

+ +

where En' Ep are given by (4.31)(a), (b) when ¥ is substituted by ;l-;.

We rewrite
—a o R -n I s.i.nh('i-é—) < ia
57 I:; ¥Vag = 5 g f_l1 L '; e VvV
P P sinh t+

-
Since ¢ is positive on [-1,X) and negative on [X,1] and monotonically decreasing on

[-1,X) and on (X,1] we get
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Ie;‘-; f’; e-;-"dsl < const
G xe [-1,1]
13-;—; f’_‘1 e‘**dsl < const

Lemma (4.1) with 6()) = 0 gives

. e = D(1)einh(zo- _
D_{%l Biﬂh(%) M - o(]_nl_. le T - 1|) " = e-*'*
e T sinh W,,_ 1}+ sinh 1;+
if the low injection condition holds.
We calculate, using D(1) o N—”o H
2 ginh t_'_ 2 sinh {_
sinh(-i—ﬂ-iﬂ- ZL} ainh{l- ~
b U ZUT v
y(o) = [D(1) 0 = D(1) 0 © = D(x)]
sinh t_'_ sinh 1J+
- U - u
i v oo g Al
” e T 2 T
= y(o) - [D(1) =—————— = D(1) 0 - D(x)]
2 sinh *‘_ 2 sinh t_._
0 0, U 1)
[ b v p(1)? ol g 6a % 3
[D(x) = = L 2 5 e Vioyiale Te?
2 ginh 0+ 2D(x)sinh ¢+
(4.47) = <
W B 0 u
p=1)% T v S 4.4 % 3
['—"-———-o—e = D(x) = ) e¢+0(71e )e"
2D(x)sinh y_ 2 sinh §_
u
4.4 % -y
+0(yAe de " =D(x)] , xe (x,1]

-~

+ oty*2%e Tre~? - b))

Glc

s x € [=1,X) .

Using Theorem 3.2 gives
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0 u
—_— Y
L u

D(x) —= - Tx+) + (D0x) - p(x+)) + oyl s e ™))
2 sinh ¥
) x e (x,1]
0. U
Vo 8.
D!1Ize T - 4.4 ur
= p(X+) + O(Y A (1 +e "))
2p(x)sinh ¥ )
e - u 3\
2 T U
D= _ _7ix-) + oy +e™)
2D(x)sinh Y_ L
x @ [-1,X)
0 u
-y s
Bl = p(x-) + ((x=) = p(x)) + oy Al(1 + e ™)
2 sinh ¥ )

since ¥ solves the layer-equations (3.23)(a),(b) we get for (4.47)

u u_
i v 4.4 Up .y 4.4 Up, . -9
(D{x)=D(X+)(e'=1) + O(Yy A (1 + e ))e* +0(y A(1+e e ', xe (X1]
(4.48)
u_
{ -y 4.4 Up . ¥
(D(x)=D(X=)){e "=1) + 0(y A (1 + e "))e
u
4.4 Up. . -y
L + 0(YA (1 +e Ye ", xe [-1,X)

¥ is negative on (X,1] and positive on {=1,X) and since D € C;([-1,1]) we obtain

[(D(x)-D(x+)) (e¥=1)] < const. a (X, x & (x,1]

I(D(x)-D(x-)}{e-‘L1)| < const. d_(l), xC [-1,X) .

Also, (3.50)(a), (b) imply
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2 XX

-w == _3 o
e Mg o onst. “p(WHI-_I (4,-v.))
-|D(X~
€< const. exp[—lﬂx;)l— g_)“:ilc}n(xﬂ-n(x-)' x e (X,1]

D(X+)=D(X-) U,

and analogously

o x=X =D(X+)

V=) i - b
LI [Chd D(X+) g__)wcf,n(xﬂ D(X-)

€ const. 'xP[D(xH-D(x-] U-;- s xC [-1,X) .

Therefore the expansion (4.48) is bounded by const (d_(A) + d+(1) + em(d%l)(y‘l\‘)*l
T
where a > 0, ¥ > 0 holds.

These estimates and - ; e C:([-1,1]) for D e C:([-i.ﬂ) imply that

u
oyl
R, A +am+e T yahHY
(4.49) IFU(u+u,l,$+,$_}lc (1-1,11) < const 5
X v,
holds.

The stability estimate (4.46) (which holds for l:.1 if U fulfills (4.46)),

1
U
Lipschitz continuity of D,Fy and (4.49) make it possible to apply the version of the

implicit function theorem given by Spijker (1972), which implies that Fu(u, A, *2,#2) =0

has a solution u‘|l which is unique in a sphere in A, with radius : > for
& (¥)
sufficiently small x centered at u+u and the estimate i
*
lu-u lhx < const.(d _(A) + d_(A) + (1'414} B)
holds for |ﬁ—| < &= where p is sufficiently small but independent of A
T v
+
m}
We remark that the size reduction on |3_| comes from the interpretation of (4.32) as

T
perturbation of the equilibrium problem (U=0) which was heavily used for the stability

proof. The numerical results demonstrated in the next Section indicate that existence and

validity of the asymptotic expansions hold under much weaker restrictions on Ig—l.
T
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5, m:i.ca‘l Experiments

We demonstrate numerical results for two pn-junctions in the high injection case, that
is U 2 Uhi(l). The existence Theorem 3.2 for the reduced problem does not hold if the low
injection condition (3.41) is neglected. Both functions we investigate have characteristic
length 2% = 5 x 10 3cm, the doping profile of the first pn-junction (called junction I

in the sequel) is

-0.5 x 10"’ , -t <zc<3
(5.1) c(z) =
101?ca3 ¥ 2 <z <2

2
and for the second junction (called junction II in the sequel)

10’ , 1<z <§

(5.2) c(z) =

17_3
cm

10 "§<l“c

17cn3. This

Accurately speaking, both devices are pn+ junctions. In both cases c =10
and the numerical values for the parameters from Table 1 gives for both devices using the
formulae (2.6), (2.9):

(5.3) 2 =o0.4x10° , ¥=0.25 .

For junction I we obtain

min|C(z)|

-

P S
(5.4) max|C(z)| 2

z
. and for junction IIX

min|c(z)|

-2

(5.5) 10 .

_—-—l—z -
max|c(z)|
z

For both cases the singular perturbation approach seems applicable because (2.22), (2.23)
'holds' (the order of magnitude of 12 and min|C(z)|/max|c(z)] as given by (5.3) and

z z
(5.4), (5.5) resp. are clearly different and n, = 10'% while C = 10'7).
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The built-in-voltage (calculated using (2.25)) for junction I is
(5.6) Upy = —0.79V

and for junction II

(5.7) Wi ™ -0.69v .

All calculations described in the sequel were performed on the CDC-Cyber 74 computer of the
Technical University of Vienna with the boundary-and-interface-problem solver PASVA4

written by M. Lentini and V. Pereyra. The SRH-recombination term was used. Figqures 1-3

show the reduced solutions of a typical high injection case for junction I with i
U = 1.39V. The majority carrier densities (n on the n-side, which is the interval (%,1]

and p on the p-side which is the interval [-1,%)) are larger than the doping |D|

(except at the boundaries x = t1).

The reduced solutions for a high-injection case (U = 0.99V) for junction II are
shown in Figures 4-6.

Since in both cases the applied voltages are significantly larger than the absolute
value of the built-in-voltage, the existence Theorem 3.2 for the reduced problem cannot be
applied. However the presented numerical results give a strong indication for the
existence of reduced solutions even in the high injection case.

Figure 7-9 and 10-12 show the solutions of the singularly perturbed (full) problem
with U = Iﬂbii for junction I and ITI respectively. The internal layer in the components
¥, n, p is clearly visible. The solutions of the corresponding reduced problems (whose
existence is also not covered by Theorem 3.2) were also computed and they agreed up to
graphical accuracy with the full solutions away from the layer (see Figure 13, which shows
the reduced solutions n, p for function I). In fact, the reduced solutions were used as
starting guesses for the numerical method to compute the full solutions and convergence was
achieved in a few steps.

This indicates that the asymptotic expansions are valid for a much larger range of

U values than given in Theorem 4.2.
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