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A Singular Perturbation Approach for the
Analysis of the Fundamental
Semiconductor Equations
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Abstract — This paper is concerned with a singular perturbation analysis
of the two-dimensional steady-state semiconductor equations and of the
usual finite difference scheme consisting of the five point discretization of
Poisson’s equation and of the Scharfetter—Gummel discretization of the
continuity equations. By appropriate scaling we transform the semiconduc-
tor equations into a singularly perturbed elliptic system with nonsmooth
data. The singular perturbation parameter is defined as the minimal
Debeye-length of the device under consideration. Singular perturbation
theory allows to distinguish between regions of strong and of weak varia-
tion of solutions, so called layers and smooth regions, and to describe
solutions qualitatively in these regions. This information is used to analyze
the stability and convergence of the discretization scheme. Particular
emphasis is put on the construction of efficient grids. It is shown that the
Scharfetter~Gummel method is uniformly convergent, i.e., the global error
contribution coming from the continuity equations is small when the
maximal mesh size is small, independent of the gradient of the solution.
Layer jumps are automatically resolved. The five point scheme however is
not uniformly convergent. Large gradients of solutions require a graded
mesh if solutions inside the layers are to be resolved accurately. This can
lead to an intolerably large number of gridpoints. Therefore, we present a
modification of the five point scheme which is uniformly convergent.

Key Words — Semiconductor equations, singularly perturbed elliptic sys-
tems, internal layer, uniformly convergent difference schemes.

I. INTRODUCTION

N THIS PAPER we present a singular perturbation

analysis of the two-dimensional steady-state semicon-
ductor equations and of the finite difference method used
by Franz et al. (1982). The singular perturbation approach
works as follows. The carrier densities, the doping profile
and the independent variables are scaled to (maximally)
0(1) such that Poisson’s equation assumes the form

NAY, =p,,(x, y)eQ, (1.1)

where y, p, is the scaled potential and space-charge, re-
spectively and @, is a domain in R? of diameter 0(1)
representing the device geometry after scaling. A is the
dimensionless minimal Debeye length which is small if the

Manuscript received November 2, 1982; revised April 10, 1983. This
work was sponsored by the United States Army under Contract
DAAG29-80-C-0041. This material is based upon work supported by the
National Science Foundation under Grant MCS-7927062, Mod. 2.

P. A. Markowich and S. Selberherr are with the Institut fuer Ange-
wandte and Numerische Mathematik, Technische Universitaet Wien, A-
1040, Wien, Austria.

C. A. Ringhofer is with the Mathematics Research Center, University
of Wisconsin-Madison, Madison, WI 53706.

M. Lentini is with the Universidad Simon Bolivar, Caracas, Venezuela.

maximum of the absolute value of the doping profile is
large. This is the usual situation for modern devices. There-
fore, (1.1) subjected to mixed Dirichlet-Neumann
boundary conditions and supplemented by the scaled con-
tinuity equations, represents a singularly perturbed elliptic
boundary value problem [6] which can be analysed by
adapting well-known asymptotic methods (like matched
asymptotic expansions). This was done for the one-dimen-
sional static semiconductor equations by D. Smith [17],
Markowich et al. [9), [10], Vasilieva and Stelmakh [18]. It
turns out that in every closed subset of ,, where the
doping profile varies “moderately”, the solutions of the
semiconductor equations are approximated uniformly up
to O(A) by smooth, slowly varying functions which are
independent of A and which fulfill the “reduced” equations
obtained by setting A =0 in (1.1). Between these subsets
there is a curve across which the reduced solutions have a
jump-discontinuity. Physically, this curve is the junction
between differently doped regions of the device. We derive
equations for the limits of the reduced solutions as the
independent variables tend to the junction from both sides
and show that the jumps of the reduced carrier densities
depend exponentially on the potential drop across the
junction.

Close to this junction, that is in sets where the doping
profile varies strongly, there are thin regions (of width
O(A|InA]) of rapid variation of the potential and the
carrier densities, so called internal layers. Within these
layers, the solutions are qualitatively and quantitatively
described by the solution of the layer equation, which is a
second order ordinary differential equation. The ith deriva-
tives in perpendicular direction to the junction are of the
order of magnitude A",

The analysis shows that even large changes of the doping
profile within layer regions only cause 0(A) changes of the
solution outside the layer regions. This property of the
semiconductor equations carries over to the discretization
scheme. It causes discretization errors occurring in the
layers to decay rapidly.

We also show that the electron and hole current density
components, which are perpendicular to the junction, do
not exhibit layer behavior, while layers may very well occur
in the tangential components.
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Boundary layers can occur where the reduced solutions
do not fulfill the boundary conditions asymptotically (as
A — 0+). This happens for example at oxide-semiconduc-
tor interfaces (for MOS-transistors) and at Schottky con-
tacts but not at ohmic contacts and isolating boundaries.

Using the qualitative and quantitative information on
the solutions of the semiconductor equations we analyse
the widely used difference scheme which is obtained by
discretizing the Laplace operator by the usual five point
formula and by applying the Scharfetter—Gummel [14]
discretization to the continuity equations. Due to the
strongly different behavior of the potential and the carrier
densities inside and outside layer regions it is apparent that
the construction of grids has to be done with particular
care.

We demonstrate, that the chosen discretization of the
continuity equations is uniformly convergent, which means
that for every grid G the global discretization error e(G)
fulfills the estimate

e(G) < const.(h+ k + AllnA)) (1.2)
where i, k are the maximal mesh sizes in x and y direc-
tions, respectively and the constant in (1.2) is independent
of the grid and of A. The Scharfetter—-Gummel scheme
resolves layer-jumps accurately, even without using a fine
grid inside layer regions.

Contrary to this, the five-point discretization of Poisson’s
equation is not uniformly convergent. The linearized scheme
is uniformly stable (i.e., has an inverse which is bounded
independently of the grid and of A), but large discretiza-
tion errors within layer regions can destroy uniform con-
vergence, particularly when O(A )-mesh sizes are chosen.

Therefore, in order to achieve a certain given (global)
error tolerance, it is necessary and sufficient to control the
grid (only) for Poisson’s equation, since the error-contribu-
tion from the continuity equations only depends on the
maximal grid sizes and on A.

We show that there are two possibilities of grid-control
for the five-point formula. The first is a layer-ignoring grid.
That means, all grid sizes are chosen to be much larger
than A which implies that only very few mesh points are
located within layer regions. We show, that for such a
mesh, the solutions of the discretization scheme of the
semiconductor equations converge to the reduced solution
and we give an error estimate for this case.

Of course the choice of such a mesh only makes sense if
one is not interested in the solutions within layer regions.

Therefore we also derive a layer-resolving mesh, ob-
tained by equidistributing the local discretization error
[11), Ascher and Weiss [2], [3]. The construction of this
mesh is based upon the fact, that the global error of the
scheme is less or equal than the (linear) stability constant
times the maximal local discretization error. This requires
the information on the exact solution acquired by the
singular perturbation analysis.

The so obtained grid is coarse in regions where the
solution is approximated by the reduced solution and it is
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fine within layers in order to balance large derivatives of
solutions.

Storage restrictions normally allow one to use the
equidistributing mesh if only vertical or horizontal junc-
tions occur, however junctions, which are not parallel to
the x- or y-axis usually require too many grid points. In the
latter case a rigorous equidistribution is virtually impossi-
ble. The reason for this is, that in the case of a horizontal
or vertical junction only the y or, respectively x derivative
is large (the perpendicular derivative is large, not the
tangential), and therefore only the y or respectively x-grid
sizes have to be chosen small compared to A while the mesh
sizes in tangential direction may be independent of A. If
the junction is not aligned to the coordinate system, all
partial derivatives can get large, then the mesh sizes in both
directions have to be small compared to A within the layer.
Nevertheless it is not necessary to abandon this approach.
We show, that even if too few grid-points are placed inside
such a layer the discrete solutions of the five-point formula
are qualitatively correct inside layer regions and they are
qualitatively and quantitatively correct in “smooth” re-
gions.

Since this situation is not completely satisfactory we
present a modification of the five-point formula, which is
uniformly convergent and therefore does not require any
grid-restrictions (except sufficiently small 4, k). Grid points
can be placed wherever the solution is needed. Again, the
asymptotic results on the solutions are heavily used.

We also give an analysis of the “finite boxes” approach
[7], which allows gridlines to terminate outside layer re-
gions. “Missing” difference quotients are approximated by
interpolation. We show that convergence is not influenced.

The presented analysis demonstrates the power of the
singular perturbation approach in obtaining information
on the analytical solutions of the semiconductor equations
as well as in the construction and analysis of numerical
methods, particularly as far as grid construction and error
estimates are concerned.

I1. SINGULAR PERTURBATION ANALYSIS

As shown by Van Roosbroeck [13] the equations describ-
ing potential distribution, carrier and current-distributions
in a semiconductor in the two-dimensional static case are

€Ay = g(n — p — C) (Poisson’s equation) (2.1)
J, = —q(p,ngrad ¢ — D,grad n) (electron current relation)
(2.2)
J,=—q(p,pgrad y + D,grad p) (hole current relation)
(2.3)
divJ, = gR(n, p) (electron-continuity equation) (2.49)
divJ, = — gR(n, p) (hole-continuity equation) (2.5)

for (x, y)eQ € R? (where € is a bounded, convex domain
representing the device geometry) subject to Dirichlet
boundary conditions on I'. (ohmic contacts) and homoge-
neous Neumann boundary conditions for {,n, p on I
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(isolating boundaries) with 9% =T UL, Also Dirichlet
boundary conditions for J = J, + J, and oxide-semicon-
ductor interface conditions can be desired for the simula-
tion of certain devices.

However, the exact formulation of the boundary condi-
tions is not necessary for our purposes since we only
investigate internal layer phenomena. The numerical and
analytical treatment of boundary layers is completely
analgous.

We take the Shockley-Read-Hall (SRH) thermal re-
combination term

np — n?
-rp(n+n,.)+1',,(p+n,)'

R(n,p)= (2.6)
In order to model high-injection conditions, the SRH term
has to be supplemented by more complicated generation—
recombination terms (see Schiitz et al. [15]). We also as-
sume the validity of Einstein’s relation

Dn - l“'nUT’ Dp = ""pUT' (2?)
For simplicity we assume that D,, D, and p,, p, are con-
stants. In “reality” they are weakly varying functions of
n, p,grad ¢ and of the doping profile. This does not in-
fluence the following singular perturbation analysis.

An existence theorem for (2.1)-(2.5) under simplifying
assumptions on the boundary data and on the device
geometry is given by Mock [12]. However, no qualitative
information on the solutions can be obtained from this
theorem.

Let / be the characteristic length of the device under
investigation (for example the length of a diode).

The following scaling is basic for the singular perturba-
tion approach

n p C
=—, ==, =:‘D=_—_ 2'8
Y, A n, P Ps Fo C ( )

1J 1J, ¢, b,
J = _ﬂ: A = =, P, == —“‘ = 2.9
n, anc Py DPqC ¢ 1 UT ¢P' U ( )
where C = max . ,qauaalC(x: ») and
_x _Y

A et (2.10)

Then (2.1)-(2.5) reads, after dropping the subscript s

NAY =n—p—D(x,y,A) (2.11)

J,=—ngrady +gradn (2.12)

Jp=— pgrady —grad p (2.13)
divJ, = B,S(n, p,YA) (2.14)
divJ, = — B,S(n, P.YN) (2.15)

with
Ap\? U Ign I? I?
=) et Ao B Dy,
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and
np — v\
n+p+2yIN°

Equations (2.11)-(2.15) holds in the domain A =
{(x, y)KIx, Iy)e } and is subjected to (the scaled) boundary
conditions. A, is the minimal Debeye length. When
B p» D, , are not constant D, D, in _(2.9) have to be
substituted by “characteristic” values D,, D, with D, ,=
0(D, ,)- The scaled continuity equations (2.12), (2.13) have
to be changed accordingly.

In the sequel we also need the scaled Boltzmann statis-
tics

S(n,p,yYA) = (2.17)

n=y2Ne¥ *, p=yiNe® V.
Now assume we deal with a silicon device with characteris-
tic length /=2.5X10"> cm and the doping is such that

C =10"" cm 2. Then, at approximately room temperature
T = 300 K we compute the following numerical values

N =04x10"%y?=0.25,8,=8,=0.25.

Obviously A <1 holds while the other constants are 0(1).
Also, the larger the maximal dopiag gets (in absolute
value), the smaller A gets. For example, C=10* ¢m °
gives A = 0.4 X 10 ~°. Therefore, for sufficiently large dop-
ing, we can regard (2.11)-(2.15) as singularly perturbed
elliptic system with singular perturbation parameter A =
Ap/L

Markowich er al. [10] pointed out that the singular
perturbation analysis requires that the intrinsic number n,
is much less than the maximal doping C and that C(x, y)/C
is much larger than A? except in domains of small area (i.e.,
layers) and, of course that A is sufficiently small.

In order to analyze internal layer phenomena we assume
that the scaled doping profile D has an internal layer along
the y-axis

D(x,y,A)=D(x,y)+ I‘)(g,y)ﬂ)(k).
D, D have a jump discontinuity across the y-axis, i.e.,

lim D(x,y)# lim D(x,y);
x—0-

x =0+
li '(f. . Al X )
lim D A,y)#xl_l.n‘;l_ D[A,y (2.18)
for all y for which (0, y)eA and

holds for some constants ¢, >0,c, >0 independent of
x, ¥, A,

Physically this represents a vertical p-n junction along
the y-axis. If D=0 then the junction is abrupt, if (2.19)
holds with ¢, # 0 then D is assumed to be continuous and
the junction is exponentially graded.

We use a vertical junction because this heavily simplifies
the following analysis. Later on we state the generalization
to curved junctions.
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We expect the internal layer in the doping to cause
layers in the dependent variables and employ the “ansatz”

(@) ¥(x, p,A)=V¥(x, y)+ J-(%,y)+

) n(x, A= ) +A( 5 7)+

© p(xy,N)=p(x, )+ p(%,y)J,

@ I, p N =G0 (5 0)+

X

% 1 =G0 )+ J (5. 9)+ o 220)

(e)
where the dots denote a power series in A starting with the
O(A) terms.

The functions marked with *“~” are independent of A and
denote the reduced solutions, the functions marked with
“™» are the layer terms which are defined for 7=
x/Ae(— o0, 00) and all y in the device.

The layer terms are supposed to decay away from both
sides of the junction

¥(to0,y)=h(to,y)=p(+ow,y)=0 (2.21a)
J(x,y)=J(+0,y)=0. (2.21b)

Now we insert the expansions (2.20) into the semiconduc-
tor equations (2.11)-(2.14).

Neglecting O(A) terms and evaluating away from the
junction gives the reduced problem

0=iA-p—D (2.22)

J, = —iigrady +grad /i (2.23)
J,=— pgrady —grad p (x, y)eA,

x#0 (2.29)

divJ, = B8,5(#, p,0) (2.25)

divJ, = - 8,8(7, p,0). (2.26)

The reduced solutions 7, 7, y are discontinuous along x = 0
because D has a jump discontinuity there. In the sequel we

denote a vector a= ::)dt’. Evaluating close to the junc-
tion, but to the left of x = 0 and comparing 0(1/A) terms
gives the left layer problem

@ y,=A-p-D

®) A, =(A+a0-, ),

(€ p=—(p+p0-,y)y, —o0<7<0
(@ Ji=0

© J5=0 @.27)

where we set f(0+)=1lim,_,, f(x). Subscripts denote
partial derivatives. Analogously we obtain the right inter-

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-30, NO. 9, SEPTEMBER 1983

nal layer problem

@@ ¢,=i-p-D

() A, =(A+a(0+,y))¥,

(© B=—(p+pO0+,y)y¥, 0<7<o
d Jy=0

(e Jr=0. (2.28)

The decay of the layer terms and (2.27), (2.28d), (2.28¢)
immediately imply that

Jre=jx=0 (2.29)

holds. The current components normal to the junction have
no layers.

Because of the discontinuity of D we need interface
conditions at x =0. These conditions are obtained from
the (natural) assumption that the solutions y, n, p, J,, J, of
(2.11)-(2.15) and grad y are continuous along the y-axis.
This implies that the sum of the reduced and layer compo-
nents of the expansions (2.20) have to be continuous across
the y-axis

@) YO0, »)+¥(0—, ) =90+, y)+§(0+, y)
(®)  AQ0—,y)+A0—, y)=a0+, y)+A0+,y)
©  FO—, »)+pO—,y)=50+, y)+p0+, y)

@ JX0—, y)=JX0+, y)
(© J2O0—,y)+J20-, y)=J20+, y)+J2O0+, y)
® JO-,y)+J20-,y)=J20+, y)+J}0+, )
(2.30)
and by comparing O(1/A) terms
¥, (00—, y)=94,(0+, y).
Integrating (2.27), (2.28b), (2.28c¢) gives
a(f.y)={ﬁ(0+.y)(e~‘"--”—1). >0
A(0-,y)(e"»-1), <0
(2.31)
= V() _
ﬁ(-r.y).z“"(o""’)(" ] 1), >0
p(0—, y)(e ¥ —1), r<0
(2.32)

and (2.30a), (2.30b), (2.30c) give the interface conditions
for the reduced carrier densities

(a)
(b)

Thc layer jumps of the carrier densities depend exponen-
tially on the voltage drop across the junction.

A0+, y) = e¥O+N¥O- 50— y)

PO+, y)= e;(ﬂ-.yl—;(ﬂ'hﬂp(o_' y). (2.33)
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The reduced problem (2.22)-(2.26) can be written as
nonlinear elliptic system (after a lengthy, but simple calcu-
lation)

AD
2i—-D

(a) Ay + 2_1 5 grad (2/i — D)-grad § —

Bi=8, =
2 S(7, i — D,0) =
25 S(mA-D,0=0

7 8ad(27 — D)) grad ¥

(b) AR —(grad 7 — —
2n—

~- D,0))

“5% (&D (B, = B,)S(#,

=B,S(#A, i — D,0)

for (x, y)eA, x # 0 subject to the Neumann and Dirichlet
interface condition

© WO+, y)=e N ¥O-NF0— y)
(d) O+, )= D0+, y) = #O-N O+ (70—, )
~D(0-, y))
(e A0+, y)¥, 0+, y)—a,(0+,y)
=a(0—, y)¥, 00—, y)-7, (0, y)
(0 (AQ+, y)= DO+, y)¥, 0+, y)+a 0+, y)
—-D,(0+, y)
=(A(0—, )= DO—, y)¥,(0—, y)+7,(0—, y)

=D, (0-,y). (234
Equations (2.34e), (2.34f) correspond to (2.30d), (2.30f).

The reduced problem has to be supplemented by
boundary conditions (on dA) derived by setting A =0 in
the scaled boundary conditions for the full problem
(2.11)-(2.15) on ohmic contacts and isolating boundaries
and by making boundary layer expansions on oxide—semi-
conductor interfaces and Schottky contacts similarly to
(2.20).

The reduced hole density 5 can be computed from the
vanishing space-charge conditions (2.22).

The internal layer problem is obtained from (2.27),
(2.28a), (2.31), (2.32)

@) ¥, =70+, p)e? "~ 50+, y)e¥r-»

=(DO+, )+ D(r,y), >0

®) 9, =a0—, y)eH»n p0—, y)e~¥r-»
=(DO~-, y)+ D(r,y)), 7<0

(©) ¥(o0,y)=¥(—00,y)=0

@) $0+, y)=§0—, y)=¥0—, y)-§(0+, y)

€ ¥,0+,y)=9,0-,y) (2.35)
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Markowich et al. [10] showed that the ordinary second-
order differential equation (2.35) possesses a unique solu-
tion § which decays exponentially as 7 — + oo if (2.18),
(2.19) holds. The derivatives fulfill

"
"%,(f.y)

where K, K, >0 only depend on i. The n- and p-layer
terms have to be computed from (2.31), (2.32), they also
decay exponentially as 7 — + 00.

After having shown the validity of the expansion (2.20)
(see Markowich ez al. [10] for the one-dimensional prob-
lem) it follows that the solutions of the reduced problem
(which are smooth, slowly varying functions) approximate
the solutions of the semiconductor equations up to O())
outside the layer region, which is a strip of width O(A|In A|)
about the y-axis. Within this internal layer the solutions
vary rapidly, for example

\5(0+,y)+=f«(§.y).
J(U—»y)hfa(%.y),

< Kye~ Kbl (2.36)

x>0

\!"(xr y.i\)-
x<0.

There the solutions are, up to the reduced solution evaluated
at the junction, given by the exponentially decaying (in
T =x/A) layer terms. The ith derivative in perpendicular
direction to the junction fulfills

< DA "leDalx/A

'ﬂo(x ».A) (2.37)

for Dy, D, >0 independent of A while the tangential de-
rivatives ( y-direction) are 0(1). The same statement holds
for n and p, but not for the “slow” variables J* »J;', which
do not exhibit an internal layer. They are; even close to the
y-axis, approximated _up to 0(1) by the corresponding
reduced solutions J*, J’ ;

So far our analys:s dld not gwe any information on the
tangential current components J;” , J; except that they might
exhibit layer behavior.

A complicated asymptotic analysis (given in [8]), which
uses the substitution

ne=eby, p=ey (2.38)
shows that
. e¢7(0+.y1(e3(f-ﬂ—1)ﬁy(0. »), >0
J,iv(79 y) = ’ 5
VO~ (¥ N -1)7 (0,y), <0
(2.39)
j ( ) e_q,-(o-l-_y](e";‘f-)"—l)ﬁy(o,y)‘ T}O
A4 Tty = L1 5
[ e VO (¥ —1) 5 (0, ), <0
(2.40)

where @, 7 denote the reduced solutions u, v (which are
continuous across x = 0 because of (2.33)). Therefore, if the
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Local coordinates.

Fig. 1.

tangential derivatives of the scaled n and p quasi-fermi
levels b b, at the junction do not vanish, then the tangen-
tial current density components exhibit layer behavior.

All results immediately carry over to a horizontal junc-
tion by exchanging the x and y coordinate, however a
curved junction extremely complicates the analysis. There-
fore we only state the results, the proofs can be found in
(8]

Assume that there is a curve I'c A along which the
(scaled) profile D has a jump discontinuity (abrupt junc-
tion) or decays exponentially (as in (2.19)). Then, for
points (x, y) sufficiently close to the junction we denote by
t(x, y) the closest oriented distance to I' (that means ¢ is
positive on one side of I and negative on the other) and by
s(x, y)= (5,(x, y), 55(x, y)) the point on I closest to (x, y)
(see Fig. 1).

For (x, y)eI’ we call #(x, y)_(:,(x.,n

) the normal vector
y(x.¥)

-n(x.y)

to I' and #(x, y)=( s ) the tangential vector and set

7=1(x, y)/A. It turns out that the asymptotic expansions
(2.20) remain valid when x is substituted by #(x, y) and y
by s(x, y) in the layer terms. That means, the layer is a
strip of width O(A|In A|) about T (see Fig. 1). The exponen-
tial decay of the layer terms occurs in perpendicular direc-
tion to the junction. Both partial derivatives are large if
t.(x, y). t,(x, y) are nonzero, since

At
ay(x, y,A) - ai(x,y) +l 3!‘!(A.S)I
dax ax A ar L

(i)

3@(1,3

(a)

A

* do

s, +0(1)

Jro=

Riv1,j—
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Y
) WEHrd) (xy) 1 3*(:-*):
dy dy A ar 4
(1t
sY|+T,s
+(—;‘Lx+0(1) (2.41)

holds where § and 3y /3 fulfill (2.36) with y substituted
by s. The first and the last terms on the right-hand side of
(2.41) are O(1). Moreover J,- &, J}ﬁ' are continuous across
the junction, while J,-#, J,-7 generally have layers.

The current density components in normal direction
have no layer, while the tangential components may very
well have one (depending on whether the tangential deriva-
tive of the quasifermi levels vanish or not). Details are
given in [3).

For the discretization of the (scaled) semiconductor
equations (2.11)-(2.15) we use a rectangular grid G with
grid sizes h, in x-direction and k, in y-direction. The grid
points have coordinates (x;, y;) where

(a) X=Xt h, y =y +k; (3.1)

holds. The subscripts are chosen such that no gridline left
of x = x, and below y = y, intersects A U dA. i runs from 0
to maximally N and j from 0 to maximally M.

The point (x;, y;) is called interior gridpoint if its four
neighbors (x;_,, %), (X410 %) (Xis ¥41)s (X;5 ;-1 are in
A U dA, otherwise it is called exterior gridpoint.

In the sequel we denote the evaluation of a gridfunction
[/ at (x;, y;) by f; and we define

(b) h=maxh,;, k= maxk,.
i J

THE Basic DISCRETIZATION SCHEME

(3.1)

We use the standard five-point formula for Poisson’s equa-
tion (2.11)

2 2 \"Hl.} o "’u _ "'U - 'Pi—l, ]
() X [hi+hi-l( h; hi_, J
% 2 (\(’i.;+|_¢'.‘j_\(’:_,-_\b;.1-1
k,+k,_, k, R

=n; = pi;— D(x;, y;, ).
(3.2)

For the discretization of the current relations and the
continuity equations we need the function

(b) v(2)= (%)cothz. (3.2)

We discretize the current relations (2.12)-(2.15) by the
following difference scheme, obtained by “exponential in-
terpolation”

mij _ Vier; — ¥ij Riyy ;jtny;

(©

nij

'hn.,a‘\bu
’( 2 ) h,

N2 17 Vij

R jv1~

h, 2

Rij Vija— Vij Mt n;,

Vi, j+
(d) nij = ?( L 2 ) kj

k; 2

F
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S Pij \('HI.;'_' ‘pr;‘ Piv1jt pi;

Vi, je1~ 4’0‘) Pis1

@ gy Ty

h; h, 2
® P Vi js1~ ¥y Pij+1~ Pij Vi1~ Vi Pija1t Py
pij Y 2 k, k, 3
2 x J'.l' 2 ¥ v == A
® h,+h,_, (J”i.) - ﬂf-l,_,-)+ k_; +k,_, (Jm_, - jﬁ,,, ) _'ﬁns(nij' PijsA)
2 2

® wra, L

Equation (3.2) only holds at interior gridpoints. For the
actual computation of solutions (3.2c), (3.2d) and (3.2e),
(3.2f) are inserted into (3.2g) and (3.2h), respectively.

It is an easy exercise to show that the difference scheme
(3.2¢)-(3.2h) is equivalent to the Scharfetter—-Gummel dis-
cretization [14], however the form given in (3.2) is more
convenient for the analysis. Equation (3.2) is used by many
authors (see, for example Selberherr [16] and Franz e al.
(7).

The boundary conditions are discretized in the normal
way (see Franz et al. (7]).

In the following sections we apply the results from the
singular perturbation analysis to construct grids which
allow the global error of the discretization scheme (3.2) to
be less than a prescribed tolerance without employing too
many unnecessary grid points.

IV. ANALYSsIS OF THE SCHARFETTER—GUMMEL (SG)
METHOD

The use of the function y(z) as a factor multiplying the
discrete derivatives of n and p in (3.2c)-(3.2f) appears
striking at the first glance. Originally the discretizations of
the continuity equations were obtained by using the ex-
ponential dependence of the carrier densities on the poten-
tial. However, by applying the exponential fitting methods
described in Section V for Poisson’s equation it turns out
that (up to small terms) the SG method is the only discreti-
zation of the continuity equation whose (discrete) solutions
have the same asymptotic properties (as A —0+) as the
“continuous” solutions for every grid with k, k sufficiently
small but independent of A.

Taylor series expansion shows that

y(z)=1+0(z2)asz—0. (4.1)

Therefore, in regions where ,, differs only by 0(k + k)
from its four neighboring values ¢, ¥, , Vi jr1s

¥ j-1 (for example outside layers), the discretization
(3.2¢)-(3.2f) is up to O((kh + k)?) equal to the standard
trapezoidal rule type-discretization of the current relations
(with y =1). However, when y,; differs significantly from
one of its four neighbors, the SG method behaves differ-
ently. To demonstrate this we investigate how the SG
scheme would solve the continuity equation and current
relation for n and J, if ¢ is a given function with the
qualitative properties derived in Section II. For this investi-
gation we restrict ourselves to the one-dimensional case. It

P-—l.;)+ k_;‘ + k‘,-—l (J;:-l - J;:,,u |) =ﬁﬁs("U‘ Pij» A)

(3.2)

should be noted, that for the two-dimensional case the
analysis becomes much more complicated. However
numerical experiments show, that the following results
carry over to two dimensions even in the case of general
curved p-n junctions. The analysis for the two-dimensional
case will be reported in a separate paper. The continuity
equations—current relations in one dimension are of the
form (assuming R = 0)

@ n'—y'n=1J,
(b) J/=0, -1<xx1
(© n(=D=n_n(l)=n,

-1<x<1

(4.2)

We assume that the potential ¢ = §/(x, A) is a given func-
tion with an exponential internal layer at x =0 of width
O(A|In A]) (see Fig. 2) as given by the singular perturbation
analysis of Section II.

The problem (4.2) can be thought of as modeling a p-n
junction device where the junction between n and p regions
is at x=0. For the sake of simplicity the recombination
rate has been set to 0 which makes sense close to thermal
equilibrium,

A simple calculation gives the exact solution of (4.2)

n(x,A) = eV N-¥(-1.N, | J“ewu.nf“ e~ VN go

-1
(4.3)
— VLM —¥(= 10,
T e [T v g
L3

At first we investigate the SG method applied to the
homogeneous initial value problem

(4.9)

n=yn, x>-1, n(-1)=n_ (4.5)
which has the solution
n(x,A)=n_e¥xM-¥-1L2) (4.6)
The SG scheme for (4.5) reads
Vien =¥\ Ny — 1, _ Vs~ Wity
”( 2 ] h, g @
iz0;na=n_. (4.7)
We obtain the recursion
niq= o(%Lz_\L—f)n,- (4.8)
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Fig. 2. Potential.

with the growth function

o(z)=e?. (4.9)
Therefore the solution n, is given by
i-1 =
nf = 'I—[ U(M)n“ = e*l'—wﬂn_ = e"’(xna)_¢(_loh}n1.
j=0 2

(4.10)

The SG method intergrates the initial value problem (4.5)
exactly on every grid. Internal layer jumps are resolved
accurately.

The trapezoidal rule, that is (4.6) with y =1, gives

My = ¢( "'"”2 L ) (4.11)
with
#(z) =7 i (4.12)
The solution of the trapezmdal rule is
n = 1"[0¢( Yia=¥ )n_. (4.13)
o

Now take a grid which is such that no gridpoint is placed

inside the layer. Let x; be the largest grid point “left of”

the layer, then x,,, is already “right of” the layer.
Standard theory implies that

n,=n(x;)=et>rN-¥-1L1), (4.14)

holds if A is sufficiently small. From (4.13) and (4.14) we

derive
¥ )

= enpu,.h)-ﬂ—l-nq,(%—lz_& )n_. (4.15)

Since n(x;,,A) =¥ :M=¥=1LNy  holds, n,,, only
approximates n(x,ﬂ, A) if ¢(¢,,, — ¥,;/2) approximates
e¥(xreM=¥(x1: ) However ¢(z) only approximates e?* if z
is small. Since the internal layer jump of ¥, i.e., y(x;, . A)
=¥(x;,A), can be arbitrarily large, the trapezoidal rule

¥is
"f+l="r¢'( ! 12
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generally does not resolve layer jumps, at least not for
layer-ignoring grids. It can be shown that the trapezoidal
rule converges if and only if the grid sizes inside the layer
are small compared to A. No better performance can be
expected for the boundary value problem and for the
two-dimensional problem. This result was anticipated by
J. Barnes [4] who used arguments based on physical
grounds. The superiority of the SG method for the initial
value problem is due to the exact resolution of internal
layers for arbitrary grids.

We now turn to the boundary value problem (4.4). To
solve the recursion we observe that J, = 4 holds. Then
(4.4a) has to be solved for general A by using (4.10) and
variation of constants. Then A and the second integration
constant have to be determined from the boundary condi-
tions (4.4c). We obtain

i-1"
(a) n,=e¥xeN-¥-1N, 4 J, hye¥xeN=HxN)
7
j=0

i 'p(xj+l’h)_'|b(

: xj,h))

(b)

n_eV LN H+LA),

J =
nTON-1 . ’l!’(xjﬂ'x)_','(xf’h)
), evw """”';-"’( 2 )

Jj=0

(4.16)

where

w(z)= smhz

holds. The structure of the discrete solution is analogous to
the structure of the continuous solution as given by (4.3),

only the integrals are approximated by sums.
Standard analysis shows that
‘P;-r 1
S
(4.18)

holds if the layer of y is not in [x,, x,). Since the width of
the layer is O(A]lnA]) we obtain the uniform convergence
estimate

(4.17)

f e~ W) go — z eV ihw < Kk

Xy =1

ax (|n,—n(x;,A)|+|J, -

0(!(

=Ju) <c(h+AjnA))

(4.19)

for an arbitrary mesh. If the mesh sizes outside the layer
are constant, then A can be substituted by /2. The constant
¢ only depends on upper bounds for n, ¢ and on bounds of
derivatives of n and y up to order three outside layers.

The estimate (4.19) carries over to the hole continuity
equation when 7 is substituted by p.

Similar results hold for the problem with nonzero recom-
bination rate and for the two-dimensional problem. We do
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not present the proofs here since they require a large
technical apparatus.

The estimate (4.19) implies that the error contribution of
the discretization of the continuity equations only depends
on the maximal grid sizes and on the singular perturbation
parameter, but not on the mesh inside the layer.

Actually, this estimate can be refined, such that the right
hand side of (4.19) is substituted by

c( max}i,;|+ Al A|) (4.20)
iJ

where /;; is the local discretization error of the (two-dimen-
sional) SG scheme and the maximum is only taken outside
the strip of width O(A|lnA]) around the junction. /;; only
depends on the “local” mesh sizes h;, h;_,, k;, k;_, and on
derivatives up to order four of n and ¥ (the local discretiza-
tion error is computed by inserting the exact solution into
the SG scheme and by Taylor expansion (see next section)).
Therefore the local discretization error outside the layer
can be equidistributed (see next section) and the grid inside
the layer may be chosen arbitrarily at least as far as the
continuity equations are concerned. In the next section we
will show that the grid inside the layer has to be con-
structed with respect to the discretization of Poisson’s
equation.

V. THE Five-POINT FORMULA
The scaled Boltzmann statistics
n=y2\2e¥" % p=yiAle® ¥
transform Poisson’s equation to
NAY = y2\ (e¥~*—e*»¥)— D(x, y,A),(x, y)eA.
(5.2)

The linearization of (5.2) with respect to ¢ along some
function w is given by

NAw = y2N2(e¥ % +

(5.1)

e V)w—E(x,y,A),(x,y)eA
(5.3)

where E has a layer at the same position as D. The
function

a=y2\(e¥ "t + et V) (5.4)

is positive. Since discretizations of (5.3) (including boundary
data) have to be solved in every step of the (Newton)
iteration of the five point formula for (5.2) we investigate
the five-point formula applied to the linear singularly
perturbed elliptic problem

(a) NAw=a(x,y,A\)w—E(x,y,A),(x,y)eA
(5.5)
subject to mixed Neumann-Dirichlet boundary conditions
on dA, where £ denotes the outward unit normal to dA

aow
b = —_—
®) wll“lr aA

=0,(3A),U(3A),=A.
)
(5.5)

For simplicity we assume that the junction is abrupt, i.e.,
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the function E has a jump discontinuity along some curve
I’ € A and that E is independent of A. Due to the built-in
potential which behaves like + In(1/y2A?) outside a p-n
layer, the function a is uniformly in A bounded away from
zero outside the p-n layer. For simplicity we assume that «
is uniformly bounded away from zero everywhere, that
means

O<a<a(x,y,A)<a,(x,y)eAUIA

(5.6)

with a, & independent of A. This assumption does not
influence the results, it only simplifies the technical ap-
proach needed for the analysis.

Because of (5.4) a(-,:,0) has a discontinuity along T.
The five-point formula applied to (5.5a) reads

E(x;, ) (5.7)
at interior grid points where L, w;; is the discrete Laplace

2 = -
AL,.jw,.}-—a,-jw,-j

operator
— 2 Wivl,j " Wiy W= Wiy
L"jwu hi+h;_, ( h; N h,_, )
2 Wijv1 W, W =W i,
+ vJ L v J 4 ) 58
kf+kr1( k} k;'—l ) ( )

and a;; = a(x;, y;, A).

For the following analysis we take a rectangular device,
that means A is the interior of a rectangle in the x, y plane.
Neumann boundary conditions can be discretized in the
obvious way, ie., (w;; —wy)/hy = w,(x,, Yil(wy; —
Wn-1,;)/hn-1 =W, (xy, ;) and analogously for w,. This
leads to a first-order approximation of the boundary condi-
tions. A second-order approximation can be obtained by
“mirror imaging,” that is by introducing the exterior grid
points (x_,, y;),(xy41, ;) for the approximation of
we(Xg, ;) W, (X, ¥;) and analogously for w,. After arrang-
ing the gridpoints row-wise into the grid vector W, &, the
linear system representing (5.7) and the boundary condi-
tions can be written as

La.t(*)"’a.a =fu.x (5.9)

where (f} 4);;=— E(x;, ;) at interior gridpoints and
(fa.k)ij is equal to the boundary data at boundary grid-
points.

In the Appendix we prove that the system of difference
equations (5.9) is uniformly stable in A in the maximum
norm for every grid, that means there is a constant L
independent of the grid and of A such that

L7 (Ml <L (5.10)
holds, where we denote with ||-|| the row sum norm of
matrices as well as the maximum norm of vectors.

Stability is one ingredient for convergence, the second is
consistency. Therefore, we insert the exact solution w, that
is the solution of (5.5), into the difference scheme. Taylor
expansion up to the third term gives the “local discretiza-
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tion” error
ly=NLw(x;, 3)=a(x;, 3, N)w(x;, 3,)+ E(x,, y,)
) h?
= 2 — K —
il el G2k e

) ",
B SRk e

3 k}
+—w(x;,n,)—0———
ay’ Y3k + k)
K2,

w(ximy)) sr—=—

0+ k) (5.11)

Cay?
where §,;, .Ez,.c(x,-_l,x,.);mj, M2,€();-1, ¥;). For (5.11) we
assumed that w is three times continuousfy differentiable in
A. The local error component from the first order discreti-
zation of the Neumann conditions at vertical boundaries is

hy @ hy_, 8

loj =~ ﬁ“’(fo, Kby =—5+ ﬁ“’(‘fﬂv—h %)
(5.12)

where §ne(xg, x,), &y_1€(xy_1, Xy). Similar expressions
hold at horizontal boundaries. For general grids the five-
point formula is of first order, that means

lf;_,-|=0(h_+ k) (5.13)
holds depending on bounds of the second and third deriva-
tives of w. It should be noted that by using one more term

in the Taylor expansion the truncation error /, ; in (5.11)
can be written as

1 Fw
!U.=Az E(h,- . h.’—l)a}-(flﬂ)ﬂf‘)

hl+h_, 3w
12(h; + h,_, dx*

(fzv}}')

1 Pw
+ j(kj_kj—l)a_y;(xn?h,')

K +k, a4
P g
12(kj+kj_l) 3}*‘( i 771_;)

(5.11a)

Equation (5.11a) implies, that the local error is of second
order for equidistant grids (h, = h,_, and k;=k;_,). If the
grid is not equidistant the truncation error is outside the
layer still of order (h* + k?) as long as|h, — h,_,| < const i?
and |k, — k;_,| < const k* holds. However this second-order
estimate involves the fourth derivative of the exact solu-
tion. Thus as we will see, it represents no improvement
over (5.11) inside the layer regions.

We denote by w,,_ the vector with the grid values of the
exact solution w (row-wise ordered) and get

La,k(}\)("’u_“’a.k)=‘a,a (5.14)
where [, , is the vector with components /, ;- The stability
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estimate (5.10) gives the global error estimate
1%ex = wWhill < LIl ll- (5.15)

Therefore, a prescribed global error tolerance 8 can be
achieved if we require that
8
|I,.j|g1-r~5 (5.16)
holds for all i, j (L is given explicitly in the Appendix).

Our goal is now to determine grid sizes ,, k ; such that
the local discretization error as given by (5.11), (5.12) is
(approximately) equal to 8. This process is called equidis-
tribution of the local error (see Markowich and Ringhofer
[11]). The obtained equidistributing grid will be fine inside
layer regions (where the derivatives vary rapidly) and it will
be coarse outside layers (where the derivatives are o1)).

Equidistribution is normally done iteratively. That means
solutions of the discretization scheme are computed on an
initial mesh. Then the derivatives in the local error are
approximated for this initial solution and a new grid is
determined by equidistribution. A second approximation
to the solution is computed on this new grid and so on.
The iteration is stopped by an appropriate criterion, e.g.,
when two consecutive solutions differ insignificantly or
when a solution satisfies the local error condition (5.16) on
the mesh it was computed. For the nonlinear problem the
old solution is used as initial guess for Newton’s method
for the computation of the new solution (continuation
method, see Ascher, Christiansen, and Russell [1]).

We will now show that the singular perturbation analysis
can be used to obtain qualitative and quantitative informa-
tion on the equidistributing grid inside layers.

Analogously to Section II we derive that the solution of
(5.5) has the form

e, 0) = 8, ) 252)

522 s(x, )| +0(A)
(5.17)

where 1, s are the local coordinates introduced in Section
II. The function W is the solution of the reduced problem
(5.5)

E(x, y)
a(x, ,0)

which is discontinuous along I and w(1/A, 5) is the inter-
nal-layer term which solves the layer equation

w(x,y)= (5.18)

@ w,=a,(s)w, >0
(b) W,=a_(s)w, T<0

(©)
(d)
where a . (s),a_(s) and w_(s),w_(s) are equal to a and w,
respectively, evaluated at the “right” and “left” side of the

Junction I', respectively and 7 =1 /A. The layer solution
then is

wO+,s5)=w(0—,s)=w_(s)—w,(s)

w,(0+,5)=w,(0—,s) (5.19)

—Jn-l-{r]_'r"_ 0
(€) W(r,s)= Ye(oke g (5.19)

v_(s)e a1 7 <0
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where
0 v,(n)=E=EL)
i a+(s)
a—(S)
(8 v (S)— (5.19)
a+(
a—(s)

The asymptotic expansion (5.17) holds in any neighbor-
hood of the junction I in which no other layer occurs. We
remark that layers can only be due to rapid variation of E
and to boundary conditions which are not fulfilled asymp-
totically by w (boundary layers). Differentiation as in

(2.41) gives
@ ey =1 Lo 052 (x5,
+°(F)
®) wlxr M) =5 o o152 s, 0)s,

(2.20)

(5]

inside the layer. Therefore the local discretization error
(5.11) fulfills

i‘sjlgw“s‘[(ulf (x,,y,)|+————|r (x,,y,)l)

-exp ( = ‘J)%'"(xn )’,—)l)“‘ hiyth+k; + kj]

(5.21)

inside the layer, that is for |¢(x, y)| <A /Va|ln A}
Let us take the vertical junction x = 0 at first, such that
t = x,s = (0, y). Equation (5.21) now reads

h,+h,_, va
11 < c‘ms‘[T “P( = Tlxil)

+h_+h+k;_+ kj] (5.22)
In order to satisfy the equidistribution condition (5.16) we

choose
(a) h;= CIME"P(!‘E_'VJ)
(b) k;=c,8 (5.23)

for |x;| < (1/Va)A|InA| where ¢,,c, are 0(1) constants.
Markowich and Ringhofer [11) showed that the number of
grid points in x-direction on every gridline is

- 1

inside the layer. Due to the exponential grading of A, the
number of gridpoints is independent of A. The number of

(5.24)
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y-gridlines is

Neyer = o( 3 ) (5.25)
Therefore, the equidistributing grid requires
1
Nlaytr = Nliyangyer = 0( ? ) (5 26)

meshpoints within the layer in order to achieve a ((§)
global error. The smallest gridsize h; within the layer is
0(A8) and the largest is 0(8). All mesh sizes in y-direction
can be chosen as 0(8).

Equidistribution gives a comparable number of grid-
points for horizontal junctions and for horizontal and
vertical boundary layers.

We now assume that the junction I is not aligned to the
coordinate system. As example we take the line

(5.27)

such that #(x, y)= (\/2_ /2)Xx — y) holds. Equations (5.16)
and (5.21) give bounds for the mesh sizes

I'iy=x

(a) h;< clhﬁexp( —‘/—_— £|JcJ [)
(b) k;< czkﬁexp( \/_ ‘/2_ 1% - |) (5.28)

for |x; — | < (2/¥2a)A|In A|. The number of meshpoints
inside the layer is at least

1
Nypyer =0
(5w}

Since the x- and y-derivatives inside the layer are large the
mesh sizes in x- and y-direction depend on A and therefore
the number of meshpoints inside the layer increases for
constant & as A decreases. Even assuming that gridlines
terminate outside layer regions, this leads to storage re-
quirements which virtually cannot be met. Normally A <
103, then an accuracy bound 8 =102 implies that (in the
order of magnitude) 107 gridpoints have to be placed inside
the layer. Including the continuity equations linear systems
of approximate dimension 3 X 107 would have to be solved
in every Newton step.

Therefore equidistribution has to be relaxed and we have
to check whether larger mesh sizes also lead to acceptable

discrete solutions. To do so we split the matrix L, ,(A)
into

(5.29)

Lk.k(A) - AZLQ.)& + Lsaz.)k (5'30)
where L{", represents the discrete Laplace operator (5.8)
(the rows corresponding to exterior gridpoints have only
zero entries) and L{?, has diagonal entries a;; at rows
corresponding to interior gridpoints, it has diagonal entries
1 at rows corresponding to Dirichlet boundary points and
the rows corresponding to Neumann boundary points have
two nonvanishing entries representing the discrete
boundary condition. Obviously L{?, is nonsingular and

IIL?.’;‘Ilsmax(l,%H?Jr E) (5.31)
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holds. Also we obtain

1 1
1
LGl < 4 E; kl) (5.32)
where h = min h;, k = min k. Assume that
1 - -
l,—+h+k
A2 (A2 “‘“( ‘& )
(5) +(E) < " (5.33)
holds. Then the solution of (5.9) fulfills
AV (A
Wik = L% Yk "'0((3) “‘(E) ) (5.34)
or component wise
A\ (A
=w(x;, ) +0(ho+ hy + k, +k“)+0((3) +(E) )
(5.35)

where w is the reduced solution of (5.5), given by (5.18). If
A/h, N /k are sufficiently small, the discrete solution ap-
proximates the reduced solution. Since A < h;, A <k, for
all /, j is required the mesh is coarse inside the layer,
however discretization errors which occur inside layer re-
gions do not spread out. Of course layers are not resolved
at all by this mesh. By choosing & = 0(8), kK = 0(8) or by
equidistributing the local error of the continuity equation
outside layer regions with error bound § the reduced solu-
tion of the semiconductor equations can be resolved accu-
rately for small A on such a grid. The bound for the global
error then is 0(8)+0(A)+0((A /h)2 +(A /k)?).

Therefore even a constant coarse grid h, = ki=h>\
can be chosen as initial grid for the iteration procedure and
the computed initial solution will be close to the reduced
solution.

We now investigate the behavior of the discrete solutions
when the condition A /A, A /k small is neglected.

It suffices to investigate the one-dimensional constant
coefficient version of (5.5)

(a) Mw”=aw+ E(x),-1<x<1

() w(-1)=w(-1),w(1)=w(1)  (5.36)
where E has a jump discontinuity at x=0 and a> 0.
w = — E/a is the reduced solution. Therefore no boundary

layers occur, only an internal layer at x = 0.
The one-dimensional finite difference analogue to (5.7,

(5.8) on the constant grid with h,=h=1/N is
(a) ¢2(wi+l =2wt+w,_)=w,— E(x,)
(b) wy=w(— ),wy = w(1) (5.37)
with
A
b= ; 3 (5.38)

We regard (5.37) as two-step recursion. The characteristic
equation is

¢*(r’=2r+1)—ar=0. (5.39)
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The roots of (5.39) are

2¢? + a+ J4ag? + a?

iy vy = S|
(b) r_(.;e.)=?""2J”J'hz"‘i::"“;'zJ”"2 <1. (5.40)

An easy calculation gives

(a) lim r, (¢)=+oo,
=0+
iim r.(¢)=1,r,(¢) ! monotonically as ¢ = oo
(b) m;; r-(9)=0,

lim r, (¢)=1,r_(¢)* monotonically as ¢ — oo.
¢ — 00

(5.41)
The difference scheme (5.37) can be solved explicitly

- S
ﬁatpz + a?
( Y riVE(x;)+ Z ? ok "E(xj)) (5.42)

w,=r'"Na(N)+r_ b(N)-

J=i Jj=
where
N Y —Ww -N
a(N)=w~ r_w:’ (N)t.‘fo_”_nf; (5_43)
r r
1_(_—) 1=
r, r,
with
(a) Wo=W(~1)+ ———— ): rE(x;)
Vdad? +a® ;-0
1 = )
() Wy=w(1)+ ——x E rYE(x;) (5.44)
Vd4a¢? +a -0

holds. We take N = 2 L such that x, = 0 holds. For simplic-
ity we assume

(@ E(x)={"1 ~ x=0

I. x50 s

Then, using (5.40), (5.41) we obtain the asymptotics

1 2 §
—— rf—
* (r,-1) dap*+a2 "
(b) w=4 +0(r3t)+0(r2), i<L
: 1 2 ;
- =4 r:_—.'..
& (1-r_)tap® +
[ +0(rt)+0(rL), i>L
(5.45)

The first term on the right-hand side of (5.45) is the
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\ 4

Fig. 3. Exact and discrete solution of the one-dimensional linearized
Poisson equation.

reduced solution

w(x)=
- x>0

and the second is the discrete internal layer term which
decays away from x = 0 to both sides.

Therefore, the structure of the discrete solution is analo-
gous to the structure of the continuous solution no matter
what value ¢ = A /k takes. However the “discrete internal
layer terms” are not close to the “continuous internal layer
terms” as given by (5.19) unless A /A is small or large.
Therefore the five-point scheme is not uniformly (i.e., inde-
pendently of A) convergent since the choice k = A creates a
large global error. The behavior of the continuous and
discrete solution for h = A is illustrated by Fig. 3.

The discrete solution displays internal layer structure.
Large errors only occur within the internal layer. The layer
terms decay exponentially away from the layer. Therefore
the solution may be regarded as acceptable.

The situation for the two-dimensional problem is com-
pletely analogous.

The following grid construction strategy can be em-
ployed:

(a) equidistribution outside layers

(b) “limited” equidistribution within layers (“limited”
means that not more than an a priori defined num-
ber of gridpoints depending on storage restrictions is
allowed within each layer).

For the automatization of this strategy it is necessary to
determine for each gridpoint whether it lies inside or
outside the layer. This can be done by checking the norm
of the gradient of E at that point. A discrete solution of the
five-point scheme, which qualitatively agrees with the
solution of the continuous problem and which agrees
quantitatively with the continuous solution outside layers is
obtained using the strategy (a), (b).

This however requires that gridlines are allowed to
terminate outside layers. We now discuss the situation

-..-h.x-.‘.__x - s
Y541
"j
Ry X *141 *i+2

Fig. 4. A terminating line.

depicted in Fig. 4. The yrgridline terminates at x;, the
point (x;,,, ;) is no grid point.

We approximate the “missing” x-difference quotient by
linear interpolation between the (j +1)st and (j—Dsty
level

“";‘+1.1‘“’u= k;_y Witd, j+1 W 41
h; kj+kj_, h,
k. Wiiqg i1— W, .
+ j i+1,j-1 i, j=1
kj+kj—l h, - (5.46)

The right-hand side of (5.46) is then substituted into L. w. .

as given (5.8). The local error /! introduced by (5.46)

fulfills
, 1 (B K hy
|f,!j| < m 3 + 'i'-(kj + kj_l)-l-?(k} + kf_l)
'"D;w"[-‘f—|-J‘:+|])1J',-|-}';+|l (5'47)
where

Diw = |Wyy o[+ Wy, 1+ (5.48)

xy wxyyl'

Missing y-derivatives are approximated analogously. The
local error contribution then is obtained by interchanging
h;, k; in (5.47) and D}u is obtained from Dfu by inter-
changing x and y.

Equations (5.47) implies that grid-size ratio restrictions
have to be assumed in order to get consistency.



1178

For a terminating y-gridline we require

4 J =t

h, <gc, K, <c (5.49)
and for a terminating x-gridline

h; hiy

k, SC.TQC (5.50)

where ¢ is a moderate constant. Then (5.47) simplifies to

ko.ok Kol 6
1 i J J 7
|:;j|s(3'2' 2 )'2(1"")"1)

'"'D;u"[%—l--"n|]>‘U’i—|-l’,ol| (551)
and analogously for a terminating x-gridline. The local
error introduced by a terminating line is of first order.
Similarly the SG scheme for the continuity equations is
changed at gridpoints where a line terminates.

Generally, lines are only allowed to terminate outside
layer regions, since there D;u, D{u have moderate values.
The decision if and where a x- or y-gridline terminates is
explained in Franz et al. [7).

At last we show how the five point scheme can be
adjusted such that the resulting difference scheme is uni-
formly convergent. We modify the five point scheme as
follows:

A2 2“;'; Wi dog — Wy wij_wf—l.j)
hi+h_, h; hi_y
i 2":{; Wig+1 " Wi Wi T Wi )
k,+k,_, k; ki1

=a;w,;— E(x,, y) (5.52)

where o}, 0/, will be determined by exponential fitting (see
Doolan, Miller and Schilders [5]).

We set

hy =i, k; = p/A (5.53)

and since our previous analysis showed that only mesh
sizes which are of the order of magnitude of A can destroy
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In order to derive a necessary criterion for o5, 6/ to
make the scheme (5.52) uniformly convergent we assume
w}j=w(x..,)5.)+a(1)asl—)0 (5.54)
and compute ¢}, 0/, from this assumption. Inserting the
asymptotic expansion (5.17) into (5.52) and taking the limit
for A = 0 gives

) 20 w(‘}+l.j’sij)_‘a(7fj’sij)
lim =
rA=o| g+ Py
_ m('}jrsfj)_"i’('r'—l.psij
Py
2“:{:' W("i.ﬁl’%j)“ﬁ’(ﬁj’su)
Qv‘y'"p;y—l pfv

. "‘V(Tij?‘fi;')_w(‘-i.j—l'saj )l

pjy—l
- J\]i_;.%a,-jw(‘l}j,su) (5.55)

where 7., =t(x;, y;)/A, 5;;=5s(x,, y;) holds. We now as-
sume that the five-point star {(x,_,, ), (x,, ) (Xiers ¥
(xi» ¥-1)s (x4 ¥;41)) is entirely on that side of the junction
for which ¢ > 0 holds.

Since

‘(xn y')
Tian = T( X1, ¥) = 'J\_J + o7t (&, W)€l %) q)
(5.56)

and similar expressions for Ti-1.j» T j+1» T, j—1 hold, we set
using (5.19)

20} ( e VEPI X ] ] = gy Rl (X, )
P+ Py Py Pi-1

20,—? ( e J"u pinx ) 1 1— eﬁ:;ﬂf— 11X, %)
5 _ - =
P+ P, o/ [

convergence, we assume that pf, p} are independent of A =a;. (5.57)
ater on we will get nid of this restriction). or some 0 <c¢;, <1 we set
1 ill get rid of this restriction) F 0<c}<1
(a) o (pf+Pf-|)cfzjaf;'
0=
(o (arit )1 1-exp{fa ot i)
pi [
5.58
(b) o= (p);"+pj’_l)(1—cﬁ.)au ( )
ij ] .
. ( exp(-ﬁpf-"{y(x,-,n))—l. B l—exp(ﬁpj‘_,ty(x“}}))
pj." pj?-'_l
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Consistency requires that lim; = _ o075 =lim,, ., _ 0}
=1 and therefore we obtain by Taylor expansion

cfj=rf(x,-,){,,),1—cfj=rj(x,., }}) (5'59)

since 12 +12 =1 holds. '
Equation (5.58) holds for all i, j for which the five-point

star centered at (x;, y;) is on that side of the junction for

which 7> 0 holds. On the other side M has to be
substituted by —/a;; . In order to understand the influence
of o}, 0/ we take a constant grid h,=h, k; = k such that
p} =p*, p} = p” holds. Equation (5.58) gives for 1 <0 and
t>0

o =0(u;),0}=0(v;) (5.60)
where
u? d“(xn)ﬂf) ‘x(xi!yj)h
atu)= sinte, "4 2\
and
vyalxi, y,) 1, (x;, )k
b= 2A .
We easily get
o(u)=1+0(u?),u—0,0(u)=4u’e 2 as|u| - oo
(5.61)

Therefore the scheme (5.52) behaves (asymptotically) like
the midpoint rule if h<< A,k <A. If h>> A, k> A the
scheme behaves like

a,w,; = E(x;, x;)+0(e~"/* 4 e=fuk/X)  (5.62)

where ¢;,> 0, f;, > 0,¢,; + f;; > 0. The reduced solution w
is resolved much more accurately by (5.60) than by the
standard five-point scheme.

These results hold locally for the variable mesh size case
(5.58).

The modified scheme (5.52) is the five-point formula
analogue to the SG method.

A problem which still has to be resolved is the modifica-
tion of the five-point scheme at stars which are located at
both sides of the junction (see Fig. 5).

In fact, it is for the abrupt junction formally not correct
to write down the five-point scheme at (x;, y;) as depicted
in Fig. 5 since at least one second-order partial derivative
of the solution is not continuous at the junction. The
correct approach is to substitute the five point formula at
such an “interface” point by a discretized version of the
interface condition

grad (W) (1) limo. = gradw(£;*)|,mo_.  (5.63)

at (xii yj)-
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Junction

(xi ’ Yj )
L ]
Fig. 5. A “crossing” star.

For the case of the vertical junction x = 0 exponential
fitting gives the discrete interface condition

Wesl,; 7 WL Wi i~ WL-1,

l—cxp(—-———w(o:,;)h,_) ] I—GXP(M}'L—I)

(5.64)

assuming that x; = 0.

Then it can be shown that the modified midpoint rule is
uniformly convergent and that the global error is 0(h)+
0(k)+0(A) for each grid (see Doolan, Miller and Schilders
[5] for one-dimensional problem).

The disadvantage of the modified scheme (5.52) is that
the junction I' has to be known explicitly since o3, 6},
depend on 7,,1,. For most practical applications however
the doping profile is graded and only given at discrete

points. Then, since (:‘ is parallel to the direction of
steepest descent (or growth) of the scaled doping profile
D(x, y, A), the approximation

4 _ _gradD
t,] ~ ligrad D

can be used for the (numerical determination of the fitting
factors (5.58).

(5.65)

VI. CoNcLuUsION

Summarizing the results obtained by the singular per-
turbation approach it can be stated that it generally pro-
vides an analysis of the qualitative behavior of the solution
of the semiconductor equations. Its application to
finite difference methods results in a convergence analysis
of the Scharfetter—-Gummel scheme which will be extended
to the two-dimensional case in a succeeding paper. Using
the asymptotic analysis of the exact solution we obtained a
mesh selection criterion, which guarantees a good ap-
proximation of the solution away from the p-n junction
with a reasonable amount of gridpoints whereas it was
shown that the usual approach (the equidistribution of the
“full” truncation error) does not lead to a suitable mesh.
For the practical implementation of this mesh selection
strategy see Franz et al. [7]. Finally a uniformly convergent
finite-difference scheme for Poisson’s equation was derived
which—unlike the usual five point discretization—resolves
the solution inside the p-n junction layer even if few
gridpoints are located there. Finally it should be pointed
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out that analytical results of Section II immediately carry
over to the three-dimensional case.

APPENDIX

Assume that A is the interior of a rectangle. Let b,
denote the (i, j) entry of the matrix B, (A)= D4, ,(A)
where D is the diagonal matrix which has —1 at every
entry representing an interior gridpoint and 1 at every
entry representing a boundary point. Then

(@ b,,<0, m#n
1, if the mth row stands for a
Dirichlet boundary point
a;;, if the mth row stands for the
(b) gb’“" “\ 7 interior point (x;, y,)
0, if the mth row stands for a
Neumann boundary point.

(¢) B, ,(A)is irreducible.

We take the mesh function
a+x; + Y
&= _ﬁ__
where a, B are chosen such that ¢, ;= ¢>0 and max; |4,
=1 where i, j runs through all interior and boundary
points. a, B only depend on A. Let ¢, , denote the vector
with components ¢,; (organized row wise). Then

(@;;¢,;, if (x,, y,) is an interior

point
&), if (x;, y;) is a Dirichlet
(B k(M) b44)is= { boundary point
%, if (x;, y;) is a Neumann
boundary point.
From Doolan, Miller and Schilders [5], we derive that
1 1
1By k(M) < — =
‘?}‘(Ba.k(l)%.k)u min (%'¢fja;‘j’¢ij)
v
(A1)
holds.

The right-hand side of this estimate is independent of A
and of the grid and can be taken as the stability constant L
since the inverse of D has norm one.

Assume here that the scaling of the independent varia-
bles is such that the rectangle dA has the corner points

(= 1%, = 1"),(1*, = P?),(— I*,1”) and (/*,1”). Then a simple
calculation shows that the constants a, 8 can be chosen
such that

1

=2+ P ———
el min(1, a)

holds. No better stability constant can be obtained from
(Al). An analogous proof also holds for nonrectangular
domains,
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