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ABSTRACT: We discuss three models describing the carrier densities in highly doped silicon, which have
been used for process and device simulation. We calculate n;, for each of the models for various doping
concentrations within temperature ranges interesting for the device and process simulation. We try to
explain the behaviour of n;. for high compensation and compare our calculated results to measured values
of n,.. We offer simple formulae for the calculated n;. and show how far the relations between the carrier
densities and the Fermi levels can be described by the simple formulae of Boltzmann statistics when we
use a doping dependent effective intrinsic number.

NOTATION

a ! Lattice constant of silicon, cm

€ p Permittivity of silicon, eV~-!cm™!

D,, d Diffusion coefficient of electrons/holes, cm™2s™"
E energy, eV

Eap energy level of the acceptor or donor atoms, eV

Eg bandgap, eV

F Fermi energy, eV

F, quasi-Fermi energy of electrons, eV
F, quasi-Fermi energy of holes, eV

©n quasi-Fermi level of electrons, V

©p quasi-Fermi level of holes, V

h Planck’s constant/2m, eV's

k Boltzmann’s constant, eV K™!

L., d Diffusion length of electrons/holes, cm
A screening length, cm

Ap Debye length, cm

mg electron mass, eV cm™2s72

M, relative mass of the electrons, 1

m, relative mass of the holes, 1

n electron density, cm™

p hole density, cm™

Rie effective intrinsic carrier density, cm™
N A density of (ionised) acceptors, cm™3
Np density of (ionised) donators, cm™>

q charge unit, e
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PAD densities of states of the impurity atoms, cm>3e™! V!
Pew densities of states in silicon, cm> e ! V!

o standard deviation, eV

o effective standard deviation, eV

T temperature, K

1. INTRODUCTION

At low doping concentrations the intrinsic number is only temperature dependent
whereas at higher concentrations pn becomes also doping dependent. This
phenomenon has been proved by optical and electrical measurements as well as by
theoretical calculations. Various experiments and theoretical investigations have
been undertaken to work out quantitative values for the increase of the effective
intrinsic number. Both measurements and theoretical approaches contain several
uncertainties, some of which are discussed here.

Experimental data of n;. are measured as a function of the free carriers and not
the impurity concentration as it is often assumed. Slotboom and De Graaf [1] and
Wieder [2] have derived values of D,np and D,np by measurements of the Io(Uszg)
characteristic of bipolar transistors with an homogeneous highly doped base. These
measurements contain the uncertainties of the base width, the base concentration
and especially the minority diffusion coefficient D, in heavily doped material.
Mertens and Van Overstraeten [3] have developed a new technique to measure
n% D,/L, n%iL, and L, simultanecously to obtain more accurate results. Further
methods to measure the effective intrinsic carrier density and minority current
parameters have been developed by Lindholm et al. [4] for shallow emitters and by
Possin et al. [S] based on epitaxial bipolar transistors.

Difficulties appear when the measured values of n;, are used in the current
relations for device simulation. The measurement of the effective intrinsic carrier
densities offers no information about the relations between the carrier densities and
the quasi-Fermi levels in the semiconductor. In, for example, ref. [5] the uncertainty
about degeneracy and the exact shrinkage of the valence and the conduction band is
compensated by an additional term in the electrical field to describe the minority
current correctly. As Boltzmann statistics may only be used in moderately doped
semiconductors, theoretical models describing highly doped silicon are necessary to
examine the validity of the concept of a doping dependent bandgap (or an effective
intrinsic number) together with Boltzmann statistics.

If the results of measurements do not differ gravely from the theoretical values,
the validity ranges of the theoretical models could also be used for the measured
values of the effective intrinsic number.

This work gives a survey of three theoretical models describing the densities-of-
states in highly doped silicon. The models are derived by theoretical investigations of
Bonch-Bruevich [6], Morgan [7] and Kane [8] and have been used by Van Over-
straeten et al. [9], Jain and Van Overstraeten [10], Slotboom [11}, Mock [12],
Nakagawa [13] and Polsky and Rimshans [14] for process and device simulation.
Charge neutrality and thermodynamic equilibrium are assumed in our calculations of
n, p and F. Therefore differences of the models will mainly affect the minority
carrier densities and the Fermi levels. Hence, the effective intrinsic number, defined
by nk:= np is estimated to be a good parameter to compare different models. As n,
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can be measured by various methods it offers the possibility to compare the
calculated results to measured values. n; influences the diffusion constants for the
impurity atoms at high temperatures. Therefore, we can expect different results of
process simulations when using a doping dependent n;. instead of the usually taken,
only temperature dependent, n;. of Morin and Maita [15]. These results may be used
to prove the validity of the theories at diffusion temperatures.

The calculated values of n; show remarkable minima for strongly compensated
silicon. We attempt to find a physical explanation for the behaviour of n; and
calculate characteristic parameters of the models for uncompensated and for strongly
compensated silicon at 300 K.

The evaluation of the theoretical models is very difficult and extensive in terms of
computer time. Therefore, we are looking for a simple method to implement the
models into existing programs. For 300 K temperature we examine how far Boltz-
mann statistics can describe the relations between the quasi-Fermi energies and the
carrier densities using doping dependent intrinsic carrier densities. The validity range
is checked by comparison of the quasi-Fermi energies. As a result of these in-
vestigations we receive maximal concentrations limiting the validity range of the
classical relations between n and F, or p and F,. We believe that these doping limits
may also be used for effective intrinsic numbers derived from measurements.
Therefore, the approximation of measured or calculated values of n;, by simple
formulae is only interesting up to these doping concentrations. Beyond these
concentrations neither a doping dependent bandgap nor an effective intrinsic num-
ber can describe the Fermi levels and the minority carrier densities exactly.

For 275—400 K temperature we offer simple formulae of n, for all three models
when only one dopant species is present.

For Van Overstraeten’s model we have constructed more complicated formulae
which evaluate n;. for low and high concentrations for uncompensated as well
as for strongly compensated material within temperature ranges 275-400K and
800-1200°C.

These approximations can be used to implement the model into existing programs
and examine how the results of process and device simulations are affected by the
“absolute value” of [Np— Na] > 10" cm™.

2. THE MODELS

The formulae of Van Overstraeten’s model (index “ov”) are well described in [9]
and [10], the formulae of Slotboom’s model (index “sl’’) have been derived from [11]
and Mock’s model (index “mo’’) is defined in {12]. These three modeis obtain the
total densities-of-states as the envelope of the impurity band and the valence or
conduction band which differs from the models by Kleppinger and Lindholm [16]
which assume the total densities-of-states to be the sum of the two bands. The
modeling of the relative masses and the bandgap has been taken from [17] for the
low temperature range (275400 K) and from [10] for the high temperature range
(800-1200°C). Furthermore, we assume total ionisation of the impurity atoms (N3 =
Na and N§ = Np). No limitations of the validity range have been published for
Slotboom’s and Mock’s models, whereas Van Overstraeten’s model is only valid for
“absolute value” [Np— Na] > 107 cm™.

We set the energy to zero in the middle of the forbidden band and count F, and E
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positive in direction to the conduction band for the calculation of n. F, and E are
positive in direction to the valence band for the calculation of p.
The following formulae describe the different models. If the equations have no
index, they are valid for each of the three models.
+o0

_ (E), po(E)
n= f ma"(l +pr(E,i F,.)/kT) dE M

—c

+00

— pv(E)’ pA(E)
p= f max explE F,,)/kT) dE @
F,=q(¥ - ¢n) 3)
F,=q(e,— V) C)]

The authors model the screening length in different ways. In refs. [9], [11] and {12]
the screening lengths are given, respectively, as

A1 = 0.5599(mom, /€ )*(q/h)[Np — N]¥6 5 ov)
eA~2 = q*(9n/dF, + dp/oF,) (5sh)
eA"2= q¥(9n/dF, + dp/3F, + (Np+ NA)/30kT) (5 mo)

The densities-of-states for the conduction band or valence band are defined by

o= (i) e

- A 02 o
y(x)=mn j (x — u)" exp(-u?) du Q)
peolE) = (momw,);;(23’20)%-2}:-3yﬁ’s\‘/—-z’-’;f’22 ®)

Figure 1 shows the shape of y(x) in the interval -2 <x < +2 in comparison with the
classical x!2 model for the densities-of-states in silicon. Figure 1 helps to estimate the
band structure in silicon. The temperature dependent band edge lies at x =0, the
value of x = -1 lies V20 eV deep in the forbidden gap. (Values for V 20 can be
derived from Figs. 13 and 14.)

The densities-of-states of the impurity atoms are given by

2| 12
o.=1.03 (Mﬁ%ﬂ) exp{—[11.38067(Na + No)|"2A-3} ©

PAD = 2NA,D(21T¢T§ -12 exp(— (E - EA‘D)Z/ZO% . (10)
For the temperature range 275-400 K we set
Eg=1.1785-9.025x 10~T — 3.050 x 10~ T? (11a)
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Fig. 1. y(x) ( ) describing the densities of states in highly doped silicon in comparison with the
classical x'2 formula (~--).

m, = 1.045 + 4.500 x 10T (12a)
m, = 0.523+1.400 X 1037 — 1.480 x 107672 (13a)
for the temperature range 800-1200°C we use
Es=1205-2.8%x10"* (11b)
m, = (1.1925E5/Eg(T)y*? (12b)
m, = (0.67818Es/Eq(T))** (13b)

The ionisation energies of donors and acceptors are set to 0.044 eV for boron and
phosphorus counted from the valence and the conduction band edge, respectively.
Furthermore, we assume that the ionisation energies are temperature independent.

3. THE CALCULATION OF THE INTRINSIC NUMBER

Thermodynamic equilibrium and charge neutrality are assumed for the calculation
of the effective intrinsic carrier densities ni:=np, i.e. F=+F, = ~F, and n(F,)
—p(F;)= Np— Na. The programs which evaluate n = n(T, Np, Na, F,,A) and p =
P(T, Na, Np, F,, A) are taken from [18]. In appendix A we point out how eqgs.
(1)-(13) have been solved and how the error of the calculation can be estimated.

We evaluate n, p and F by Newton iterations in F for Van Overstraeten’s model.
The evaluation of Slotboom’s and Mock’s models is more difficult, because Ao, the
screening length which is used to evaluate carrier densities n and p, must be identical
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to Ay, the screening length defined by (5 sl) and (5 mo). We have to evaluate a A, that
equals the relation

Al = A](ND, NA, 8n/6F,,, 6p/6Fp, Ao) = Ao

This leads to fixpoint iterations in A as well as to Newton iterations in F.
Calculations have shown that Banach fixpoint iterations do not converge for the low
temperature range. Therefore, we use the improved fixpoint method by Aitken,
which is given in appendix B.

The intrinsic number is calculated for n-doped silicon. We have calculated n;. as a
function of the doping difference and take N, as a parameter to get a survey of
lightly and heavily doped silicon with, as well as without, compensation.

4. RESULTS

In Figs. 2-10 we present the results of our calculations in n-doped silicon. In some
figures n;. o, is evaluated for doping differences less than 10 cm™ in order to be able
to compare the results more easily. The parameter in Figs. 2-10 is the doping
concentration of the acceptors. The plotted lines have numbers which indicate the
value of N, with respect to the following table.

1........ 10 ¢m™3 2........ 10 ¢m™3
3...3.16x10%cm™3 4........ 107 ¢m™3
5...3.16x10" cm™3 6........ 108 cm™3
7...3.16x10¥cm™ 8........ 10¥ cm™
9...3.16x10%cm™ 10........ 10® ¢m3
11...3.16x10®cm™3 122........ 10 cm™3

13...3.16 x 10* cm™

Figures 2-7 show the results for the temperature range significant for device
simulation.

Van Overstraeten’s model (Figs. 2 and 5) predicts the largest values for the
intrinsic number at high doping concentrations. For strongly compensated silicon
nicov increases weaker than n;. 4. For high acceptor concentrations minima occur for
ND— NA = OS(NA+ ND)

Slotboom’s model (Figs. 3 and 6) shows remarkable minima for Np— N,=
0.5(Na + Np). The calculated results can be divided into a saturation region (left
upper part of the figures), where n,q is independent from the doping difference;
a region where n,q decreases for increasing doping differences; and a region of
uncompensated silicon, where n; 4 increases with increasing doping concentrations.
ni.q is a lower value than n,.,, for highly doped silicon without compensation, which
is a result of the different modeling of the screening length. It seems remarkable that
in strongly compensated silicon n;.4 is larger than in highly doped uncompensated
material.

Niea(Np = 1.01 X 10® cm™3, Ny = 10® cm™3) > 1, o(Np = 102 cm™?)
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Fig. 2. The intrinsic number calculated by Van Overstraeten’s model at 300K in n-doped silicon for
various acceptor concentrations.

Mock’s model (Figs. 4 and 7) predicts the lowest values for n, which can be
related from the modeling of the standard deviation . For strongly compensated
material the behaviour of nicmo is similar to ni.g. Niemo Shows a saturation region, a
region of decreasing and a region of increasing n,. For uncompensated material
Riemo inCreases far more slowly with the doping concentration than ni,, or ni. 4. It is
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Fig. 3. The intrinsic number calculated by Slotboom’s model at 300K in n-doped silicon for various

acceptor concentrations.
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Fig. 4. The intrinsic number calculated by Mock’s model at 300K in n-doped silicon for various acceptor

concentrations.

remarkable that the intrinsic number of this model is about 10° times larger in
strongly compensated material than in highly doped uncompensated material al-
though the total doping concentration of the uncompensated silicon is about 100
times larger than the total doping concentration of the compensated silicon.

Figures 5-7 show the temperature dependence of the intrinsic number in the low
temperature range for various doping concentrations. For strongly compensated
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Fig. 5. The intrinsic number calculated by Van Overstraeten’s model for 300K (——), 350K (---) and
400K (——-) for Na = 10" cm™3, 10" cm™ and 10® em™.



W. Jiingling et al., Modeling intrinsic number and Fermi levels for device and process simulation

[} 1 I

10

10V

10

"
15
£ 10
“: 1013 -
(]
c
1011 -4
10 ?

10

14 10'15 loll! 1[;20 1022
Np-Ng fem™3]

87

Fig. 6. The intrinsic number calculated by Slotboom’s model for 300 K (——), 350K (---) and 400K

(= ) for Na =10 cm™3, 10% cm™

and 10® cm™3,

* material and very high doped uncompensated material n; shows only a weak
temperature dependence, whereas the temperature dependence increases for low

doping concentrations and for concentrations where n,. shows minima.

For the temperature range 800-1200°C (Figs. 8-10) n;. shows qualitatively the
same shapes as in low temperature range. Affected by the higher value of the
temperature dependent intrinsic number all plotted curves occur smoother and
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Fig. 7. The intrinsic number calculated by Mock’s model for 300 K (—), 350K (---) and 400K (=—- )
for Na=10"cm™3, 10 cm™3 and 10® cm™3.
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Fig. 8. The intrinsic number calculated by Van Overstraeten’s model at 1000°C in n-doped silicon for
various acceptor concentrations.

“damped”. For low doping concentrations the calculated n;. agrees with the formula
of Morin and Maita which has also been pointed out in [10].

5. DISCUSSION OF A, o AND o,

The calculated results of n;. show that 7. o > Rie s > Niemo and predict minima for
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Fig. 9. The intrinsic number calculated by Slotboom’s model at 1000°C in n-doped silicon for various
acceptor concentrations.
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Fig. 10. The intrinsic number calculated by Mock’s model at 1000°C in n-doped silicon for various
acceptor concentrations.

all models for Np— Na = 0.5(Na+ Np). We attempt to give a physical explanation
for these characteristics and try to reduce them to the behaviour of A, o and o.. The
screening lengths decrease with the increasing number of free carriers which screen
perturbations of the potential in the semiconductor.

For uncompensated silicon Figs. 11, 13 and 15 show the values of A, ¢ and o,
respectively. For low doped silicon, the value of Ay and A, coincide with the Debye
length Ap. For higher doping concentrations the screening lengths evaluate higher
values, which is an effect of Fermi statistics (dn/dF, < n/(kT). A,, has been derived
from the Fermi model for degenerated semiconductors and is only valid when the
quasi-Fermi energy enters the valence or conduction band. It can hardly be com-
pared with the other screening lengths. At higher concentrations the impurity atoms
influence the band structures which results in increasing values of the standard
deviation ¢. 0, and oy increase monotonously with the doping concentration
whereas omo, influenced by the factor exp(—0.5a/A), increases weaker up to doping
concentrations of 3 X 10% cm™2 and decreases for higher concentrations. Oeq and Temo
are similar which indicates that the screening length is the dominant parameter for
Ce.

For strongly compensated material A, o and o. are plotted in Figs. 12, 14 and 16,
respectively. A4 and A, are constant for very high compensation but then fall with
increasing doping difference similar to the Debye length. A, differs significantly from
the other screening lengths and is hard to compare. The standard deviation shows
minima like the intrinsic carrier densities. Figures 12 and 14 can be divided into
three parts. In the left part A and the total carrier density are constant and,
therefore, o as well. For these doping concentrations we find a great number of

“impurity atoms but only few electrons in the semiconductor so that the potential
perturbations of the impurity atoms cannot be screened efficiently. Therefore, o has
a large value which indicates the strong effect of the impurity atoms on the
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Fig. 11. Various screening lengths for n-doped silicon at 300K for uncompensated n-silicon (Na=
10 cm™3).
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Fig. 12. Various screening lengths at 300K for strongly compensated n-silicon (N = 10 em™).
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Fig. 13. Various standard deviations at 300 K for uncompensated n-silicon (N, = 10 cm™?).
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Fig. 14. Various standard deviations at 300 K for strongly compensated silicon (Na=10"em™).
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Fig. 15. Various effective standard deviations at 300 K for uncompensated n-silicon (Na = 10 cm™3).
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densities-of-states in silicon (0(Na= Np= N)>a(Np= 2N, N5 =0). In the middle
of Fig. 12 A decreases with the number of the free carriers while the total impurity
concentration increases slowly from 10®cm™ to 2x 10 cm™. If the degree of
compensation decreases, the total number of impurity atoms increases weaker than
the density of the free carriers. This leads to a better screening of the impurity atoms
and the influence of the coulomb potentials on the densities-of-states gets weaker.
The screening lengths, the standard deviation and the effective intrinsic number
decrease monotonously (Figs. 12, 14 and 16). This effect is responsible for the
descending shape of n;. and for the minima. For very high doping concentrations the
enormous number of impurity atoms disturb the band structure, though there would
be enough free carriers to screen. Therefore, in the right part of Fig. 14 the
increasing total impurity concentration exceeds the descending screening length and
o increases. o, does not increase due to this rule because the factor exp(—0.5a/A)
diminishes o, for small screening lengths.

6. COMPARISON OF CALCULATIONS TO MEASURED RESULTS

Figure 17 shows the measured values of the effective intrinsic number of Mertens
et al. [19], Slotboom and De Graaf [1], Wieder [2] and Wulms [20] and our
calculated results of the three models. Figure 17 shows that the three models do not
differ very much for uncompensated material up to doping concentrations of

10[5: L« a3 aaaal a2 a2 aaaal a2 2 oyl A 44 42
] I}
— ] ——  Mock / [
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Fig. 17. Measured and calculated values for (nie/nieo) at 300 K for uncompensated silicon.
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5% 10" cm™2. As the measured values do not favour one of the models we cannot say
which of the models describes the effective intrinsic number best.

In ref. [1] similar measurements and calculations have been examined for npn-
bipolar transistors. The results show the same characteristics as ours. Un-
fortunately, no measured values for n; at various temperatures for compensated
silicon have been published so that we cannot favour one of the models or check if
these models are able to describe highly doped silicon sufficiently enough.

7. VALIDITY RANGE OF BOLTZMANN STATISTICS

In this section we try to find out how these models can be simply implemented
into existing programs using Boltzmann statistics. For 300K we examine if the
relations between n and F, or p and F, can be described by the classical formulae
using a doping dependent effective intrinsic number. Therefore, we simulate a
semiconductor in thermodynamic equilibrium and a lightly disturbed semiconductor.
For the exact models we calculated for the thermodynamic equilibrium no, pp and Fy and
set nZy = nopo. Then we calculated Fo and Fpo using the classical formulae

ny=0.5(Np— Na)+ (0.25(Np — NaY* + nio)'?
po=0.5(Na— Np)+ (0.25(Np— Na)Y + nig)'?
Fly= kT log(nb/nio)
F o= kT log(po/noe)
"» and F'y are calculated in the same way, using a well established formula for the
doping dependent intrinsic number which has been proposed in [1] and [11].
n’i(T) = 6.43 x 10T*3 exp((4.07T?/(T + 1108) - 6370)/T)
n’(N, T) = n;(T) exp((52.2/ T)C + (C*+ 0.5))
C = log(Np/10" cm™3)

Then we “disturb” the equilibrium slightly by increasing the Fermi level of the
minorities to

and calculate n; p; and F,; on charge neutrality
n(Fu)—p(Fu)=Nb—Na

Using the classical formulae and the n; of the thermodynamic equilibrium, F,; and
F; are calculated. The results of the calculations are plotted in Figs. 18-23 for 300 K
and various acceptor concentrations. The solid lines (: ) are the values of F, the
dashed-dotted lines (———— show F) and the dashed lines (—-——-) show Fp. The
lowest lines are valid for the thermodynamic equilibrium, the second, third and
fourth lines are valid for i = 1, 2 and 3, respectively. We admit that the assumption
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Fig. 18. Various Fermi levels, calculated by Van Overstraeten’s model for n-doped silicon at 300 K.
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Fig. 19. Various Fermi levels, calculated by Van Overstraeten’s model for n-doped silicon at 300 K.
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Fig. 20. Various Fermi levels, calculated by Slotboom’s model for n-doped silicon at 300 K.
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Fig. 21. Various Fermi levels, calculated by Slotboom’s model for n-doped silicon at 300 K.
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Fig. 23. Various Fermi levels, calculated by Mock’s model for n-doped silicon at 300 K.
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of a lightly disturbed semiconductor is only valid in the right part of Figs. 18-23;
nevertheless, we have plotted the calculated results even when n equals ap-
proximately p. For low doping ranges F, and F, show a small constant deviation
caused by the difference of the relative masses of the electrons and the holes. This
effect is taken into account by the theoretical models but neglected by the simple
formulae of Boltzmann statistics.

The results of Van Overstraeten’s model are plotted in Figs. 18 and 19. Figure 18
shows the results for low doped silicon. Up to doping concentrations of 9 x 10" cm™
the values of F, and F, coincide for thermodynamic equilibrium as well as for the
disturbed semiconductor.

Figure 19 shows the Fermi levels in strongly compensated silicon. Boltzmann
statistics may be used up to doping concentrations of 7 X 10" cm™. In the left part of
Fig. 19 it can be seen that Boltzmann statistics become more inaccurate the more the
thermodynamic equilibrium is disturbed. F}, coincides with F, only when compen-
sation is negligible.

Figures 20 and 21 show the results for Slotboom’s model. The behaviour of F, F’
and F” is similar to the curves in Figs. 18 and 19. For very high doping concen-
trations n;, increases strongly so that a small Fermi level is sufficient to cause an
electron density n which fulfils charge neutrality.

Figures 22 and 23 show the results for Mock’s model. The validity range of

—
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Fig. 24. Fermi levels and effective intrinsic carrier densities by Slotboom’s model using Fermi statistics
and Boltzmann statistics.
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Fig. 25. Fermi levels and effective intrinsic carrier densities by Mock’s model using Fermi statistics and
Boltzmann statistics.

Boltzmann statistics is smaller; it ends for Na+ Np <5 x 10* cm™. For high concen-
trations the behaviour of F, differs from that of Van Overstracten’s model and
Slotboom’s model because the effective intrinsic number does not increase as
strongly as Rieoy OF Nieg.

At the end of this section we want to state that these densities-of-states models
may only be used in connection with correct Fermi statistics. Boltzmann statistics
lead to an overestimation of the densities-of-states especially when the Fermi level
approaches the band edge. The results are too small Fermi levels and too large
effective intrinsic numbers. These effects occur with increasing values of o and o
and, therefore, are more drastic for Van Overstraetens’s model than for Slotboom’s
model and have less influence on Mock’s model.

Figures 24 and 25 show values of the Fermi energies and the n;. for Slotboom’s
and Mock’s models using Boltzmann statistics instead of Fermi statistics in eqs. (1)
and (2). The Fermi energies show clearly the expected behaviour. The increase of n;e
in Slotboom’s and Mock’s theories is smaller than expected but is difficult to explain
because the band structure depends on A as a function of dn/dF, and dp/dF, and,
therefore, on the distribution function itself. Figures 24 and 25 show that Boltzmann
statistics must not be used for doping concentrations higher than 10" cm™. The
increase of n, in Van Overstraeten’s model leads to such enormous values of n,, that
we have not plotted the calculated results.
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8. FORMULAE FOR THE EFFECTIVE INTRINSIC NUMBER

For uncompensated material we offer temperature and doping dependent for-
mulae for all three theories. The basis of these approximations are calculated values
for a temperature range 275400 K with a step width of 25K and doping concen-
trations within the given validity ranges with a step factor of V10.

We define the structure of the formula for n;, as

nie = exp(a 7))+ a2(T)(% cm") a3(T))
and evaluate the coefficients by a least squares fit. We evaluate
al(T) = —1.99765 x 10! + 2.01814 x 10-1T — 1.97040 x 10~T?
for Van Overstraeten’s model (10 cm™ < Np < 10* cm™)
a2(T)= +2.38838 x 1071 - 9.57814 x 10~*T + 1.07551 x 107672
a3(T)= +5.10190 X 107! + 5.75190 x 10*T — 7.01029 x 107712
for Slotboom’s model (102 cm™ < Np <3.16 X 10 cm™?)

a2(T) = +7.95811 x 10" — 3.20439 x 10-3T + 3.54153 x 10-5T2
a3(T) = +2.97104 X 10-! + 6.75707 X 10T — 4.90892 x 10~7T?

and for Mock’s model (10 cm™ < Np < 10%? cm™3%)

a2(T)= +9.60563 x 107 ~3.94127 x 1073T + 4.41488 X 107°T?
a3(T)=+1.29363 x 107! + 1.10709 X 103T — 9.56981 x 107 T*>

The relative error is less than 10% for all theories within the defined doping ranges.

The formulae for Van Overstraeten’s model which evaluate n,. even for strongly
compensated material are more difficult. After several attempts the following
structure has given the best results for the temperature range 275400 K.

n;. = exp(a; + exp(a. + a;XS)) exp(a, exp(asXS) log(1.0 + exp(as + a;XD))
with
XS = log((Na+ Np)/10®cm™) and XD = log((Np— Na)/10® cm™3)

The grid used as a basis for the approximation function is defined by T = 275K,
300K, 325K, 350K, 375K and 400 K.

Np—NA=10"cm™3, 3.16x 10" cm™3, 10¥cm™3,...,10* cm™?
and
Nao=10%cm™3, 1.78 x 10¥ cm3, 3.16 X 10*¥ cm3, 5.62% 10 cm™3,

10 cm™, 1.78x 10" cm™3, ..., 10 cm™
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The optimal coefficients have been evaluated by a least squares fit. Setting the
temperature T in Kelvin the coefficients are defined by

al(T)=—1.9966 x 10*1 +2.0248 X 107'T — 1.9854 X 10*T*
a2(T) = +2.8494 x 10*°— 8.5734 X 1073T + 6.7176 X 10~°T*
a3(T)= +1.1223 x 10*°+ 3.1987 x 1073T — 4.9961 x 10~°T*

ad(T) = +2.4212 x 10! — 1.7740 x 107! T + 4.6916 x 10~*T*
—4.2766 x 1077T?

a5(T)= +1.5175x 10*°+ 1.3427 x 10T

a6(T)= —2.1691 x 10*° + 2.4694 x 102T — 8.9726 X 107°T*
+9.7262 x 1078T?

al(T)=+1.1152x 10*1 - 1.0839 X 107! T + 3.1002 X 10~*T*
—2.9810 x 1077 T*

The relative error of n, is less than 20% for the temperature and the doping range.
The following formulae describe the effective, intrinsic carrier densities calculated
by Van Overstraeten’s model in the temperature range 1073-1473 K:

ni. = exp(a; + a;XM + a;XD + a, XDXM) + exp(as + a;XS) + exp(as + aXS)
with

XS = log((Np+ Na)/10?® cm™)
XM = log(Na/10% cm™3)

and
XD = log((Np— Na)/10% cm™3)

The grid used for the calculation of the coefficients is defined by T = 1073K,
1173 K, 1273K, 1373K and 1473 K.

Np—=Na=10"cm™3, 3.16X 10" cm™3, 10®¥cm3, ..., 102cm™
and

Nao=10"cm™3, 1.78 x 107 cm™3, 3.16 X 10" cm 3,
5.62% 10" cm™3, 10¥cm3,...,3.16 x 10* cm™

The coefficients can be evaluated by the following formulae setting the tem-
perature T in Kelvin:
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al(T) = +3.8217 X 10*' + 3.0973 X 10-3T
a2(T) = +1.0476 x 10*' — 7.8184 X 10-3T + 2.2944 X 10~°T2
a3(T) = —1.8513 x 10*°+ 1.6397 X 10-3T — 4.8164 X 10~ T2
a4(T) = +8.4264 x 107! — 8.2597 x 10T + 2.6367 X 10~ T?
a5(T) = +3.5449 X 10*1 + 6.0164 X 10>T
a6(T) = +1.8134 x 10*°— 2.8084 X 10-3T + 3.2965 X 10~ T2
a7(T) = —6.1859 x 10~! + 2.2840 X 10-3T — 6.4366 X 10~ T2
a8(T) = +3.2140 X 10"+ 6.2687 X 10-3T
a9(T) = +1.0109 x 10*1 — 7.0976 X 10-3T + 1.5504 X 10-°T2

The relative error of the ;. is less than 15% for the temperature and doping range.

9. CONCLUSIONS

The calculated values of the effective intrinsic number show that at 300 K the
theories differ widely when the doping concentration increases over 3 X 10" cm™ or
when strongly compensated material is present.

Comparison of the calculated and measured values shows that neither for n-doped
nor for p-doped silicon the theories describe the effective intrinsic number

sufficiently well.

- The measured values do not favour any of the models; therefore, we cannot say
which model describes n; best. In order to give a better judgement of the three
models, measurements of very high doped or strongly compensated silicon should be
performed.

The calculations show that Boltzmann statistics are valid when the total doping
concentration is less than 5...10x 10 cm™. Up to these concentration limits
Boltzmann statistics can be applied if the doping dependence is considered either by
an effective intrinsic number or by a doping dependent bandgap.

We believe that these concentration limits can also be applied to formulae which
have been derived by approximations of measured values of n;,. For doping
concentrations up to 5. .. 10 X 10" cm™? it is possible to implement formulae derived
from measurements of these complicated theories into simulation programs con-
sidering a doping dependent effective intrinsic number and Boltzmann statistics. We
are afraid that for higher doping concentrations there is no escape from using more
complicated theories which take into account Fermi statistics and a sophisticated
model of the highly doped silicon.

APPENDIX A

The calculation of n and dn/dF, as a function of T, Na, Np, F, and A with a
relative error less than 1%:
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The Fermi function

1
FE) = T exp((E = F)kT)

the densities of states of silicon

E—~ Eg/2
pc=ccy§___0/_l
V2o

and the densities of states of the impurity atoms

(E- EDE>

po= oo~ E5E

can be reduced by the linear transformations x = (E — F,)/kT, x = (E — Esl2)V 20
and x = (E — Ep)/V20. to dimensionless functions f(x)=1/(1+ exp(x)), pc(x)=
C.y(x) and pp = Cp exp(—x?) which are independent from the physical values of Ep,
Es, T and F,. These reduced functions are approximated piecewise by functions
g(x) so that the relative error is less than 0.5%. The functions g(x) have the property
that the integrals [ p(E)f(E)dE and [ df(E)/dF,p(E)dE can be integrated exactly
within the intervals. The multiplication doubles the relative error to 1%, the addition
of the values of n and an/dF, calculated within the intervals does not affect the
relative error any more. We have defined

g(x)= > c; exp(—a}x®— byx)

j=1

The functions y(x) and f(x) can easily be approximated by functions g¢(x) and g, (x).
The coefficients ay, b; and c; are evaluated by least squares fit. As an example we
give our approximation of the Fermi function f(x)

f(x)=1/(1+ exp(x)) = +0.256538 exp(—(0.2157410x > — 0.5x)
+0.241270 exp(—(0.4378350x ) — 0.5x)

This approximation is valid for —4.89 < x < +4.89. It permits a simple evaluation of
n as well as of dn/dF, which is necessary for the Newton iterations in F and for the
evaluation of the screening length in Slotboom’s and Mock’s models.

We should like to remark that even the partial derivatives of the carrier densities
with respect to the temperature can be evaluated by this method.

APPENDIX B

The fixpoint iteration of Aitken:
For Slotboom’s or Mock’s model we have to find a value for the screening length A
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so that for charge neutrality
A= AI(ND, NA, &n/aF,., 6p/8Fp, Ao) = Ao

where A is the value used as the input parameter in the function n(T, Na, Np, F,, Ay)
and A, is the value which is evaluated by eq. (5sl) or (5 mo). The simple Banach
fixpoint iteration

A] = ¢(A0)

converges only for high temperatures. In order to have a program for all tem-
perature ranges we have implemented the improved Aitken fixpoint iterations. We
have calculated A; and A, by two Banach iterations

A=P(Ag) and A= P(A)
and define
Azi= Ao+ (A1 — A)/(1— (A2— A)/(A1— Ag))

A; should be a better value for A than Ao Therefore, A, = @(A;) is evaluated.
If [As— Agl <Ay % 1075 we stop the iteration, otherwise we set

Ao:=As and A=Ay

and continue until the iteration converges. The calculation has shown that these
iterations converge for all temperatures and concentration ranges which have been
used for this article.
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