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ABSTRACT

We present a singular perturbation analysis of the gundamental  semiconducton
device equations. These describe potential and carrier distributions in semi-
conductor devices and are a system of three second onden eliptic equations —
Poisson's and the continuity equations — subject to Neumann-Dirichfet condi~
tions. The minimal Debye-Length o4 the device unden consideration is taken as
the pertunbation parameter. Using matched asymptotic expansions we demonsitrate
the occurence of internal fayers at surfaces across the impurnity — distribution
(which appears as an inhomogeneity of Poisson's equation) has a jump-disconti-
nuity (these surnfaces are called 'junctions') and also the oceurence of bound-
any Layerns at semi-conductorn-oxide interfaces. We derive the Layen-equations
and the neduced problem {charge-neutral-approximation). The Layen  solutions
which characterize the solution of the singularly perturbed problem close 1o
junetions and intenfaces, nespectively decay exponentially away from the
junctions and intenfaces, nespectively. Numerical nesufts obtained with the
aid of the singulan perturbation analysis are presented.

RESUMO

Apresenta-se neste trabalho uma analise das equagoes fundamentais de semicondu-
tones. Estas equagoes diferenciais, que descrevem as distrnibuigoes de potenci--
al e 'canrniens', formam um sistema efitico de segunda ondem (as equacoes de
Poisson e continuidade) sufeito a condi¢oes de contonno mistas (Dirichlet e
Neumann). Utiliza-se para a analise o metodo de perturbagoes singulares,  to-
mando como parametro o menor comprimento de Debye. Com o emprego de expansges
acopladas, demonstra-se a ocomnéncia de camadas internas em toano das — jungoes
(supernficies’ atraves das quais a distrnibuicao de impurezas, que aparece  como
uma nao-homogeneidade na equacdo de Poisson, tem um salto) como tambem a ocon-
nencia de_camada &imite na intergace semicondutor-oxido. Apresentam-se hesul-
tados numericos obiidos mediante o emprego de perturbagoes singubares.

*Presented at the '2nd Latin American Conference on Applied Mathematics', Rio
de Janeiro, Dec. 12-16, 1983.
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1. INTRODUCTION

A singular perturbation analysis of the two-dimensional, static equations
which describe potential distribution and current flow in a semiconductor device
is presented.

The basic semiconductor device equations are (see Van Roosbroeck 4],
Selberherr [11]):

div(esvw) = q(n-p-C(x,y)) Poisson's equation (1.a)

div(DnVn-unnvw) = R (x,y)eQ electron continuity (1.b)
equation

div(Dpr+uppvw) = R hole continuity equation (1.c)

where the dependent variables are

Y : electrostatic potential,
n : electron density,
p : hole density,

Q is a bounded domain in R? representing the device geometry; € is the semi-
conductor permittivity (which will be assumed to be constant in the seque]);un,
W, are the electron and hole mobilities, respectively; Dn, Dp are the electron
and hole diffusion coefficients, respectively, and q is the elementary charge.
C(x,y) is the doping profile, which means that it is the difference between
the electrically active concentration of donors and the electrically active
concentration of acceptors. R is the recombination-generation rate. 1In the
sequel we will neglect recombination-generation effects, that means we set R=0.
Of course only solutions with n>0, p>0 are admitted.

The electron and hole current densities Jn and Jp are given by

[
I

= q(D v, - u %) , (2.a)

J
p

-q(D v, + . ‘ 2.b
a0V, + uPW) (2.6)
Numerical values for the parameters (for silicon at room temperature) are

given in Table 1. A detailed discussion of the physical parameters and of their
modelling is given in Selberherr [11].
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The elliptic system of differential equations (1) has to be supplemented
by appropriate boundary conditions for y,n,p. We assume that 3Q splits up into
disjoint parts, name]¥, Qs o and Nyo- N
connected and aQC = kgO Ck
with positive (one-dimensional) Lebesgue measure, ci fl Cj = @ for i#j.

is and aQOS are open, aﬂos is
r > 0 where the Ck are closed and connected arcs

Dirichlet boundary conditions for ¢,n,p are given on 3Q (the Ck are Ohmic
contacts) and zero Neumann boundary conditions are prescribed on anis (insulat-

ing segments}). BQOS represents a semiconductor-oxide interface occuring in
MOS-tecnology (see [13]  for a survey on M0S-devices}. The oxide is  Tlocated
in a bounded domain ®satisfying N @ = 5505 and

Ay = 0, (x,y) € ¢ (3)

holds. The carrier densities n,p only exists in Q. Usually 9% splits into
three parts, namely T, (oxide-contact) where a Dirichlet condition for v 1is
prescribed, ad (insulating segment) where a zero Neumann condition for ]
holds, and the interface BQOS. P has to be continuous across aﬂos and

eos (x,_y)G ¢
L_%,(uymﬁ

Vo], =0, e(xy) = (4)
0s
€0 .1
holds where e is the oxide permittivity ( == 3 ) ([f]r denotes the jump of
s

the function f across the curve T) and % is the exterior unit normal vector of
3¢. The condition (4) represents the continuity of the electrical displacement
across the semiconductor oxide interface.

The electron and hole current density components Jn-ﬁ and Jp-ﬁ (perpendic-
ular to aﬂos) vanish on aQos. This gives boundary conditions for n and p  (by
using (3)) at the interface. The Dirichlet boundary conditions for n and p at
the Ohmic contacts are given by the vanishing-space-charge condition

(n'p'c(X!Y))IBQC =0 (5)
and the thermal equilibrium condition

nplagc = n (6)

where n, is the intrinsic number of the semiconductor.
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In the following we assume that Q splits up into N+1 connected subdomains
N

Qs @@= v Q }> such that C does not change sign in each of the 9 and C has
i=0
Jump-discontinuities across the curves r -1 Q (abrupt doping), r n r =0

holds for i=j. Q is called an n-region 1f C|§->O and it is called a p-reg1on

if Ctﬁ <0. ri is a pn junction if it is the Jo1nt boundary of a p and an n-
region and it is an nn (pp) junction if it is the joint boundary of two n (p)
regions.

The boundary conditions for the potential (at the Ohmic contacts) are

wlck UT £n T‘T lck + Uk (7.a)
where U represents the potential applied to the Ohmic contact C We remark
that for some devices not every n or p region "has" an Ohmic contact (the
thyristors, for example, see [13]).

An externally applied potential UG is given at the oxide (gate) contact

8<I>C:

¢Ia°c = UG-UF (7.b)
where (the flat band voltage) UF is a constant which depends on the semiconduc-
tor, on the oxide contact and on the doping. The applied potentials UK’ U
are constants, too.

We also assume that the Ohmic contacts Ck have positive distance from the

G

Junctions ri.

The performance by the device under-consideration is mainly determined by
the location of the subdomains of the oxide (for MOS-devices) and by the loca-
tion of the Ohmic contacts.

As illustration for the notation W,
of the device geometry we show a typical ¢, ] @ I Cs
MOS-transistor in Figure 1. There are fo |an°,‘ e
two n-regions and one p-region (n-chan-
nel-transistor), three Ohmic contacts d M &
(C:: source-contact, C,: drain contact,
Ce

Co: bulk contact) and one oxide contact
(8¢C: gate contact). The vertical bound-
aries of Q@ and ¢ are insulating (agis

>0 in ﬁo,ﬁz

and 30, respectively), We remark that  Fig. 1. MOS-transistor c[;o in T,
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the rectangular shape of Q and ¢ as shown in Figure 1 is a simplification
commonly used for numerical simulation (see [12]). The following theory however
is not restricted to particular shapes of domains.

There have heen many analytical and numerical investigations of (1) (with
R=0). Mock in [6] showed the existence of a solution subject to the mixed set
of boundary conditions and proved that this solution is unique if the applied
potentials Uk are sufficiently small. He only assumed CGLm(Q). Continuous
dependence of the solutions on the boundary data was alsc shown in this paper.
A very similar existence proof was given recently by Bank, Jerome and Rose in
0.

The parabolic semiconductor problem (with homogeneous Neumann boundary con-
ditions on 3Q) was investigated by Mock in [8], who also discussed finite
difference methods in [7] and [97].

In this paper we scale the problem (1) appropriately and obtain a singular
perturbation problem. The singular perturbation parameter A is the minimal
normed Debye length of the device under consideration. Using matched asymptotic
expansions (as A+0+) we demonstrate the occurence of a boundary layer in Y,n
and p at oxide-semiconductor interfaces and the occurence of internal layers
(in y) at pn, nn and pp junctions.

We derive the reduced problem (zero space charge approximation) which s
obtained by setting the singular perturbation parameter to zero, and the (bound-
ary and internal) layer equations.This facilitates an asymptotic analysis,i.e.
a qualitative description of solutions for small A (which is the usual case in
practice. The singular perturbation approach was applied to the one dimen-
sional semiconductor problem by Vasileva and Stelmakh in [16], Markowich and
Ringhofer in [2] and Markowich, Ringhofer, Selberherr and Langer in [3].

The main advantage of the singular perturbation approach is that it gives
qualitative information on the behavior of the solutions. The a priond infor-
mation can be used to construct appropriate discretisation methods for the
numerical solution of the semiconductor device equations. In particular effi-
cient mesh-strategies employing only a reasonable number of grid points (but
still giving accurate numerical approximations even in layer regions) can be
obtained (see [5]).

We present numerical results obtained by using a computer program by A.
Franz et at. fully based on the singular perturbation approach.



136 Semiconductor device equations

Parameter Physical Meaning Numerical Value
q elementary charge 10-1%As
€ semiconductor permittivity _
constant 107 12As/Vem
€ oxide permittivity constant % « 10-'2As/Vem
' electron mobility 103cm?/Vs
My hole mobility 10%cm?/Vs
Dn electron diffusion constant 25 cm?/s
Dp hole-diffusion constant 25 cm?/s
n; intrinsic number 1019/cm?
Uy thermal voltage 0.025 v

Table 1. Numerical values of the parameters for Silicon and Silicon Oxide
at room temperature T 7% 300 K. (The numerical values given for
”n’“p’Dn’Dp must be understood as averages, since these quanti-
ties are generally modelled by functions of. x and y.)

2. THE SINGULARLY PERTURBED PROBLEM

We assume the validity of Einstein's relation

L =_P-y_ (= const) (8.a)
™. p T

D D
u
where UT is the thermal voltage. Then the problem (1) can be put into a simpler
form by the transformation (called Boltzmann Statistics),

/U -y/U
n=ne u, p=n,e T V. (8.b)

Here u = exp(-¢n/UT), v = exp(¢p/UT) where ¢n’¢p are the electron and
hole quasifermilevels respectively (u>0, v>0 must hold). Then (1) takes the
form (by using (8), assuming R=0 and € to be constant) '

/U w/U
ey = q(nie Ty- n; Ty- C(x,y)) ] (9.a)
“¥/Up
div(un e Vu) = 0 (x,y)€Q. (9.b)
'¢/UT :
div(y, e w) =0 A




Markowich and Selberherr

The continuity equations (9.b)-(9.c) are in self-adjoint form.

that C is bounded in Q and set
T = sup|C(x,y)|, D =¢C/C
Q

and
£ = diam(Q) = 1.

The dependent variables are scaled as follows

¥ = WU, n. =n/C, p.=p/C, ug = U, Vo =V

while the independent variables are scaled as
X = X/2, ¥g = y/2, (xs,ys)éﬁs ] 6; .
Then, after dropping the subscript s, (9) is transformed into
a2y = 62e%u - 62 % - D
div(ewVU) =0 (x,y)€EQ
divie ¥wv) = 0
and (3) remains unchanged:
&y =0, (x,y)€d

where
e U
(/) = ==,
£%2qC

§% = ni/C .

—

AZ

holds. Ap is the minimal Debye length of the device.r

137

We assume

(10.a)

(10.b)

(10.c)

(10.d)

(1.a)
(11.b)

(11.¢)

(12)

(13.a)

(13.b)

For (11) we assuﬁed that the mobilities o, are constant: throughout the

device (for numerical values see Table 1). The following theory

however

carries over to the case that “n’up are smooth and positive functions of x and

y.



138 Semiconductor device equations

The (scaled) boundary conditions are

- -> _
Vipen Vv-n]aﬂis =0 : \(14.a)

’—‘Eum -
aﬂis aQ1's

(the (unit) vector n is perpendicular to 32 and is assumed to exist almost every-
where) and

-u /U u,/u
ulg =e T, vl =eX T (14.b)
k k
2 L
w|. = 1n| D+ /D7448" + U, /U : (14.c)
C 2
k 28 c
i Tk
for k=0,...,r.
Equations (14} are derived from (5), (6), (7) by using (8.b).
Boundary conditions on 3% are
>
Vw-c!aé‘ =0 (15.a)
is
€ denotes the exterior unit normal vector of 3¢)
w‘aQC = UG/UT - UF/UT = Vg (15.b)
and
(vl =0 (15.c)
3905
_ N 1 » (x,y)eq
l_s*Vw-nJaQ =0, g* = (15.d)
0S e /e, (X,y)€d
o'"s
> >
Vuen| = Wen| =0 (15.e)
aQos BQOS

u and v are only defined in Q.

For modern devices T>10'7cm=®. With the realistic value £=5x10"%cm  and
the numerical values for q,es,UT given in Table 1 we get A2§]0‘7<< 1. There-
fore the problem (11), (12), (14), (15) constitutes a singularly perturbed
quasilinear eliiptic system of differential equations (subject to mixed Neumann-
Dirichlet boundary and interface conditions).
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The parameter §2<< 1, too (normally §2< 1077 holds). This however gets
cempensated by the Dirichlet boundary conditions (14.d), (14.e) which imply
that 62(e¢u-e'wv)=0(1) at Ohmic contacts as §2~0. Note that the potential dif-
ference between an Ohmic contact in a n-region and an Ohmic contact in a p-
region behaves asymptotically (as §2+0) like £n §~* for constant applied po-
tentials,

The scaling factors for the current densities Jn’Jp are qun'CUT and qup'CUT
respectively. Then the scaled current densities are given by i

J_ = s2e¥uy, (16.a)

J_ = -52e Yyy. (16.b)

P

The scaled carrier densities follow from (9)

s%eVu, (16.¢c)

=1
"

p = s2e~W. (16.d)
3. ASYMPTOTIC EXPANSIONS

We are now concerned with the asymptotic behavior of the solutions of
(11), (12), (14),(15) as r»0+.

When we set A=0 in (11.a) we see that y(X=0) has to be discontinuous at
pn,nn and pp junctions(since D is discontinuous at these junctions)assumingthat
u(A=0) and v{A=0) are continuous in @ (note that (11.b), (11.c) only admit weak
solutions in C(Q) if wEL™(Q)). Therefore, standard singular perturbation
theory implies that we have to expect an internal layer in ¢ (that is, a region
of fast variation of y) at these junctions. Also, boundary layers occur at
3 if the reduced solutions ({.e. the solutions of (11) with A=0) do not ful-
fill the boundary conditions.

For the following analysis we assume the profile D is discontinuous across
only one (open) ¢” curve T which splits @ into two connected subdomains Q, and
Q. Also we assume that Dl € Co’a(ﬁ;), DIy € ¢"**%) for some a>0 and

+ +

(D] # 0 and that T N 3G = @. D does not change sign in @, and in q_.

We denote by t(x,y) the oriented distance of (x,y) from I', that means t>0
in Q, and t<0 in @_, s(x,y) = (s1(x,y),S2[s,y)) is the peint on T which is
closest to {x,y) (s is unique in a sufficiently small strip about T}.Similarly
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r(x,y)>0 denotes the distance of (x,y) to 3Q. q(x,y)=(q1(x,y),q2(x,y)) denotes
the point on 3q closest to (x,y). Note that Vr[aQ = -1 and thF is the unit-
normal vector of T pointing into Q . The local coordinates (t,s) and (r,q) are

illustrated by Figure 2.

For a function f defined in Q
{or Q) we set

L (t,s) = F(xay)

and

3

f f(x,y)

i

(r.q)

in neighbourhoods of T and 3Q where

s and q respectively are unique.

20 qix,y)

We define for some sE€T
Fig. 2. Local coordinates.

1]

£7(0+,5):= 1im  f(a,b)
(a,b)~s

(a,b)en,

]

£(0-,s):= lim  f(a,b)
(a,b)»s

(a,b)eq_

(assuming that the limits exist).

We also set
{asl 85, { 3, 9.
3 ,BT X % X ox
- = , = s
a(xey) | YL W7 aixy) | 29 %
[3)/ ay ay 3y
of T of?
fr = 951 » v fa = o
VS - r q 9
of of
,352 J an

and remark that
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() e [ ) e

holds (the superscript T denotes transposition).

Following standard singular perturbation theory we make the 'ansatz':

CRRY R B ACRY R I AR RVEICR)

u(X,¥,4) | ~ Z )‘-i Ui(xs)') + ﬁi((t(X:Y)/)\)ss(st)) +

vy |V 00y) Vi((E(x)/2)5(x.)

@i((r(x,y)/k),q(x,y))]

+H U ((r(x.y)/2),a(x,y)) (17)

v ((r(x,y)/2),q(x5y)) ]
where the functions marked with '-' are independent of A, the functions marked
with '-' are defined on (-»,») x T' and decay to zero as 1 = t/A » *o (internal
layer terms), the functions marked with '~' are defined on [0,»] x 9% and decay

to zero as p = r/x » « (boundary layer terms).

We insert (17) into (11), (12), (14), (15) and obtain equations for the
i-th term in the series (17) by comparing coefficients of A. We start with

THE REDUCED PROBLEM. Evaluation of (11) away from T© and 3Q and comparison of
0(1) terms gives (after dropping the index 0) the zeroth order reduced problem

0 = 82 %0 - 52¢”%W - D(x.y) (18.a)
div(e%a) = 0 (x,y)€Q \ T. (18.b)
divie™Vw) =0 . | (18.c)

In the context of semiconductor device physics this problem is referred to
as 'zero-space charge approximation'. By investigating the internal and bound-
ary layer problems we will supplement (18) by interface and boundary conditions.

THE INTERNAL LAYER PROBLEM. We evaluate (11.b) close to I but away from 32 and
compare O(A'z) terms (after carrying out the differentiations). This yields:

+ u =
uOTT u oTwOT 0
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(subscripts T denote differentiation with respect to 1) and therefore aor =

= a(s)e-wOT. From Go(r,s)»o as T + = we get GOEO. Similarly VOEO follows. u
and v do not have zeroth order internal layers.

For the following we set U=0,, V=V, and $=$o. Comparing O(A"') terms in
(11.b) (again after differentiation) and evaluation close to T but in Q, gives

- ~ T -~
u o+ wT(ut(0+,s)+uT) =0, >0

and evaluation close to T' but in Q_:

- - T -
uTT+wT(ut(0—’s)+u‘[‘) = 0, 1<0.

Integration yields
U£(0+,s)(e-w(r’s)-l), 0

u (T,s) = N (19)
EE(O-,S)(e-w(T’S)-l), <0 :

Proceeding analogously to (11.e) leads to

1V€(0+,s)(e$(T’s)-1), 0

V_(1.5) = ) (20)
V{(O-,s)(ew(T’s)—l), <0

We used that §,u,v and their t-derivatives vanish at 1 = = for all s€r.
The internal-layer problem for { is obtained by evaluating (11.a) close to

T (but away from 3Q) and by comparing O(1) coefficients:

T - _T -
B - s2e¥ (0F:S)405T g oy _ 267V (0+:8)-BgT(0-58) _ pTigy o), 150 (21.a)

s = =T - .
@TT = 5207 (0"S)+wir(0-,s)-6ze'w (0-,5)-95T(0-,s) _ Dr(O-,s), <0.(21.b)

Interface condition for (21.a)-(21.b) are derived by using that y€C!(Q) which
implies wr(0+,s)=wr(0-,s) and w£(0+,s)=¢£(0-,s). Inserting (17) into these
relations and comparing O(1) and Q{x~') coefficients yields

B(0+,5) - §(0+,s) = T (0+,5)-F' (0+,5) (21.c)
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$.(0+,5) = 9 (0-,s) (21.d)
P(+=,5) = P(~,5) = 0 (21.e)

(19)~(21) are supposed to hold for all ser. © is discontinuous at t=0 for all
s€r since [¥], = 0. '

The continuity of u,v across I and the expansions
u(x,y,A) v U(x,y) + AU((t/r),s) + ... : (22.a)
V(X,¥s2) v V(X,y) + AV((t/1),8) + ... (22.b)

(the dots denote a power series in A starting with the O0(A2) term) imply by
comparing 0(1)-terms:

[U]r = 0, (vl =0 (23.a)
and using (19), (20)

i£(0+,s)e'w(0+’s) = i{(o-,s)e-w(o"s)

V€(0+,s)ew(o+’s) = V{(O-,s)ew(o"s).
(21.c) implies -

r V(o r ¥ (o-

ut(0+,s)ew (O+,8) _ ii(O-.s)ew +s)

=T oo

V{(0+,s)e'w (0+:5) . V{(O-.s)e v (0-1s)
So we obtain the interface conditions for the reduced problem

[ewvazvf]r =0, [§‘$VV~vt]r =0 (23.b)

. r _ .

since ft(O,s) = VF(X,Yy) Vt(x’y)l(x,y)=s€r holds.
OHMIC CONTACTS. A straight-forward calculation shows that the Dirichlet bound-

ary conditions on anc for ¢, u and v fulfill (18.a). Therefore we do not expect
boundary layers at U That means
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o(e,a) = U (p,q) =V (p,q) =0 for p>0 and q€aq. (24)

To prove (24) one has to proceed as Markowich, Ringhofer, Selberherr and
Langer [[3] did for the one-dimensional semiconductor problem.

(24) implies that we have to impose the same Dirichlet boundary conditions
for the reduced problem (18) as for the full singularly perturbed problem:

Blag = ¥lyg s Ulgg =Ulyg s Vg =Vl (25)
3. - Vg an. ~ Ylan Visa, T Viaa,

where y,u,v on % are given by (14).

INSULATING SEGMENTS. We assume that D is differentiable in a neighbourhood of
3 and that ' o ' ’

7D =0 (26)
BQ1's
holds. Differentiating (18.a) gives
0 = 62(ewﬁ+e_wV)V$ + 62(ewVU—e_wVV) - vD. (27)
Since evgre %50 in T we get
— > ’
Vien| =0 (28.a)
aQ1's
if
= Weitl g, 20 | (28.b)

Visnly, = Wen
is

holds. (18.a) is compatible with the zero Neumann conditions for y,u,v on agis

and we get

&0(O,q) = GO(D,Q) = VO(Q’Q) =0 for D>0s.q€3915 (29)
as well as

P1(p>q) = U1(p»q) = Va(psq) =0  for p>0, q€3Q; . (30)

No zeroth and first order layers occur at bﬂis. If we had not assumed (26) then
(30) and (28.a) would not hold (of course (29) would still be valid). B




Markowich and Selberherr

145

(28.a,b) define homogeneous Neumann boundary conditions for (18) on

aais.

OXIDE-SEMICONDUCTOR INTERFACE. As for junctions we. get GOEVOEO and setting 4 =

= U, VIV,, &E@o we obtain

0 (p:0) = B0, (e P01, o0, gean

V(0:0) = V(0.a)e Py, o0, gean .

Sin;e we set
U(X,y,A) Vv U(x,y) - Au((t/A),s) + Au((r/r),q) + .j.
V(X,Ys2) v V(s,y) - AV((t/A)ss) + AV((r/A),q) + ...
we get by inserting (32) into (15.e) and by comparing 0{1) coefficients
0 = (Vu-n)(q) + aﬁ(o,q)(e'$(°’q1-1), qeaq ‘
0 = (W-i)(q) + V2(0,a)(e¥(0:0)1), qean .
Therefore

_=d _ =3 ’
0 =u.(0.q) =v.(0,q), q€3Q,

and u(p,q) = V(p,q) = 0 for p>0, qeano
are

S Boundary conditions for u,v on

va-n| = en = 0.
Aos :

If

vD-7| =0
anos
holds then (33) implies (as for insulating segments)

—_ >
Wen| = 0.
aQOS

(31.a)

(31.b)

(32.a)

(32.b)

BQOS

(34)

(35)
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By evaluating close to aﬂos but away from I' we obtain the boundary layer equa-
tion for y which is analogous to the interface problem (21):
Aog
—3m L =D I
$po = 52e'l’ (0!q)+%a(0’q) - sze ‘p (OtQ) wva(o’q) - Da(o’q)’ p)o’ quos
(36.a)

¥(=a) = 0,  qeam . (36.b)

To obtain the boundary condition for (36) at p=0 we solve Laplace's equation in
the oxide.

Let G(x,y,£,n) denote the Green's function (see [10], Chapter 2, Section7)
of the problem )

Ap = f in @

¢|a¢c =g, w»-ElM,.s = h, v¢-E|aﬂos = k
1

(note that Z|,, = -|,, ). Then, since y=yg+p fulfills
: 0s oS

A¢ = 0 in
> -> es -
¢|3¢C "o v¢.C|a°is s vq”cl"mos i E; v‘k.nlmos
we get

bovgme | yEmmHEn)REndE) -

[¢]
: 8905

This gives the boundary condition (for the singularly perturbed problem in Q):

€
S v =
wlanos + e—oj G(XV:.Y’E;“)l(x’y)emosW(gsn)'n(Ean)d(Esn) = wG- (37)
: - ¢)
" os :
In the sequel we assume that if T hits 3565 (which in fact happens in MOS-~

technology) then T is perpendicular to iﬁbs’ that means

UHS)eUr(S) = 0 for (S}=TME . (38)
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We insert expansion
Px2¥5R) v B(x,y) + P((E/A),8) + P((r/2r).q) + ... (39)

(the dots now denote a power series starting with the O(1) term whose coeffi-
cients have the same form as the 0(1) terms) into (37). Assuming that

e lyghec (40)

where C,,C, are independent of X, we obtain by comparing O(x~1) terms and by
using (38):

€
_ 0
jmoss(x.y,s,n)l(x,y,emos W (0(EmIE =2 2y (a1)

This integral equation is uniquely soluble (for @p(o,q)) since &p(o,q)=(vw-z)(q)
where w is the (unique) solution of

aw =0 in ¢

wi = Vw-Zl =0 w| = A fo '
3¢c 3‘l>is Bﬂos €g G

Obviously weC”(®-CR(32)) holds.

If ¢ is a rectangle as in Figure 1 (which is a common assumption in  MOS-
modelling) with d=dist(aﬂos,a¢c) then w is a linear function and VweZ

60 .
= -A-E— wG. In this case

S

BQOS

o

@D(O,Q) = =2 aq 173

(42)

No zeroth order layer occurs at the oxide-semiconductor interface if the right
hand side of (42) is not O(1) as A»0+. (41) (or equivalently (82) if & is a
rectangle) provides the missing boundary condition for the interface layer
problem (36); Equations for the higher order terms of the expansion (17) can
be derived in an analogous way.

When the asymptotics of y,u,vy are known then expansions of n,p and of Jn,
Jp as given by (16) can easily be derived. We get from (17)
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(32)

n(x,y,A) = N(x,y) + n((t/A),s) + n((r/r),q) + ..

P(x.y52) = P(x.y) + P((t/A),s) + B((r/A),q) + ..

and (39) imply

_ -
n = 52V,

n(e,q)

n(0,q)

P =

0

r
(1,8} = \
]

for p>0, qGBQC U anis

Semiconductor device equations

52§$r(0+,s)(e$(T’s)-1)UT(O’S)’ 0

2e¥ (09)( HHS) 1y (0,5), w0

59 ¥
s2eV (O,q)(ew(p,q),1)33(o,q), p>0, q€3g

2¢7V

and similar expressions for p and p.

with

Differentiation of (32) and use of (19), (20) gives

-VSET(0+,s), ™0

vsGT(o-,s), <0

J,06y52) = T (x6y) + 3 (y) + 3 ((8/2).s) + 3, ((r/A),q) + ...
3o06¥0) = Tp0y) + 3p(0y) + J((H/A),5) + Jp((r/2),a) + ...
- $_
Iy = §%e va
T 2.0
Jp = - &%"Uv
L
529111 (O+,s)(ew(T,5)_~|) 3s( X,
J (1,8) = r alx.y |(X 2y)=s
n —]
v (0-.8) QTS _py Bs(xsy)

L_Gze ]) Xy l(x )=
ﬁn(o,q) =0 for >0, q€3a. U aq,
- —3
‘]n(p’Q) - Gzew (qu UJ(D;Q) ‘l) a?x";y) l V U (O,q)

(x »¥)=q

qeanos

(43)

(44)

(45.

(45.

(45.

(45.

(46.

(46.

(47.

(47

(48

(48.

. (48.

a)

b)

c)

d)

b)

a)

.b}

.a)

b)

c)
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s 3 = R s LT
Analogous expressions hold for Jp and Jp. Since ( 312??7) thr =

_ T -
= ( §T§§y7 ) Vrlan = 0 holds we get

J evt|, =3J -vr| =J .vt|, = J_-vr| =0 . (49)
n T n 3905 p r p aﬂos

Therefore, the current density components perpendicular to the junctions (to
the semiconductor oxide interface) have no zeroth order layers while the current
density components parallel to the junctions (to the semiconductor-oxide inter-
face) may very well have zeroth order layers. This phenomenon is illustrated
by the MOS-transistor simulation performed by Selberherr in [12].

So far we only considered one curve of discontinuity of D. Generally, an
internal layer in ¢ occurs at each junction T, and each layer-term @i fulfills
the corresponding layer problem (21) (with Pi-1oca1 coordinates (Si’ti))‘

4. INTERPRETATION OF RESULTS AND CONCLUSIONS

At first we discuss the reduced problem.

Markowich in [4] showed (assuming a zero generation-recombination rate)
that the reduced problem always has (at least one) solution (u,v) fullfilling:

min U< U< maxu (50)
BQD BQD
min V< V<maxV : (51)
BQD QQD

where 39D is the union of Ohmic contacts (the estimates (50}, (51) also hold
for the full solutions u,v under the vanishing-generation-recombination as-
sumption).

The reduced carrier densities n,p can be computed from (18.a) and (45.a):

S v /vt v
D+v/ D*+48%u v , P = D+v/ D*+46'u v ) (52)

2 2

ﬁ:

(51), (52) imply
Voax!
ﬁ-vi exp ( _ﬂ )
Uy
where Ivmaxl is the largest voltage (in absolute value} applied to two contacts.
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Therefore
- IvmaxI
D+0(8* exp ( —— )}, D>0
Ur
T o= | (53.a)
4 max
0(6" exp (——— 1)), D<0
i Ur
B |vmaxI
006" exp (———)), D>0
U
_ T
p= v | (53.h)
-D+0(8* exp (—22X_ 1), D<0
Ur
The low-injection condition
Voax! |
8% exp ( } is small (54)
U

T

implies that the reduced electron density n is close to the doping profile in
n-regions (D>0), close to zero in p-regions (D<0) and that the reduced hole
density p is close to zero in n-regions and close to the negative doping pro-
file in p-regions.Assuming the validity of the asymptotic expansions (17) it
follows that the full solutions n and p also have these features away from
junctions and oxide-semiconductor interfaces. » '

Now we turn to the discussion of the layer terms. Markowich in [4] proved
that the internal layer problem (21) has a unique solution, which decays expo-
nentially as t + #= and which is monotone on (-=,0] and on [0,»). The width

of the internal layer at s€r is O(A(llnxl-+/1$r(0+,s)J$r(0-,s)|)), which means
that it depends linearly on the square root of the potential drop across the
junction.

A unique monotone, exponentially decaying (as p + =) solution of the oxide-
semiconductor interface problem (369, (37) exists. For this problem the width
of the layer is O(A(|1nmA] + ¥ |§(0,q)])) at q€an . again depehding Tinearly
on the square root of the potential drop at the interface.

The internal/boundary layer terms decay exponentially away from the junc-
tions and boundary respeétive]y. The layer regions are strips about the junc-
tions and boundary pieces respectively (see Figure 3 for an illustration) and
outside these layer-strips the layer terms are less than (1) which means that
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Fig. 3. Layer strips.

the solution is qualitatively and quantitatively described by the reduced solu-
tion there (assuming that the asymptotic expansion represents a solution of
the singularly perturbed problem).

Markowich, Ringhofer, Selberherr and Langer in [3] showed the validity of
the asymptotic expansion for a one-dimensional device close to thermal equi-
librium and Markowich in [4] proved the analogous result for two and  three-
dimensional devices. No general estimate for the error in approximating the
full solutions by the zeroth order terms of the expansions (21) is known yet.
Numerical results indicate that the approximation quality decays as the applied
maximal voltage increases and these numerical results suggest (at least for the
one-dimensional problem) an error (in the max-norm) of 0(A(|£n6|+(lvmax|/UT)))
in approximating the potential y by the sum of the reduced solution § and the
layer terms ¢ and y. For silicon devices § and A are of the same order of
magni tude.

Therefore, if A |Vmax| << 1, the reduced solutions ¥,n,p are close to the
full solutions y,n,p away from layer regions and only in thesethin strips about
junctions and oxide-semi-conductor interfaces the layer terms ¥ and §, n and n,
p and p have to be added to the reduced solutions to get an accurate approxima-

tion.

A thorough numerical test of the validity of the singular perturbation
approach was performed by Markowich, Ringhofer, Selberherr and Langer in [3]
for the one-dimensional problem. Two-dimensional tests are on the way and will
be published soon.Qualitative agreement 1{s assumed for even high biasing con-
ditions and then large errors are only expected to occur within the layer strips.
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The Tlayer-type behavior of solutions is apparent in the following numerical
examples.

Beside the understanding of the qualitative behavior of the solutions the
singular perturbation approach also provides a tool for the construction of
efficient meshes for the numerical solution of the problem (1)-(3) by finite
difference methods. The main tool for mesh-construction is equidistribution of
the local discretization errors of Poisson's equation. The error introduced by
discretizing the continuity equations does not have to be taken into account
when using a Scharfetter-Gummel type discretization since this method is (at
least for n=1,2) uniformly convergent in A (that means the global error is
asymptotically independent of A, see [5]).

The local discretization error of the five-point scheme for Poisson's
equation (for n=2) at ;ij = (Xi’yi) can be estimated by

2 = d
5] < const A%(hy o (R3] + ks Iy

by i) ()
where e.g. hi denotes the i-th x-mesh size,‘that is, Xigr T % +h s yJ+1 yj+ki
The derived asymptotic expansions show that the third derivatlves of y are 0(1)
outside layer strips and they are O(A-%) within layérs. Given an error toler-
ance k, (55) implies O(Ax) mesh sizes in the layers and O{x) mesh sizes outside
the layers will be obtained by equidistribution. More information is given in
(5]

This strategy was implemented in a two-dimensional device finite difference
simulation code by A. Franz, G. Franz, S. Selberherr, C. Ringhofer and ' P.
Markowich in 1982, : '

5. NUMERICAL EXPERIMENTS

To demonstrate the power of the singular perturbation approach we present
simulations of two devices, namely a two dimensional diode and an MOS-transistor.
The codes used for the simulation are fully based on the singular perturbation
approach as discussed in the last section. To obtain realistic results we used
exponentially graded doping profiles (instead of piecewise constant ones) and
non zero recombination generation. Also non-constant mobility models are used
(see [11] for details).

Figure 4 shows the doping profile of the diode on a logarithmic scale (that
is Tlog|C/cm®| is depicted). The unit of the x and y axes is cm=3. The highly
doped region is an n-region and the low-doped is a p-region. For this device
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A2 % 107% holds.

Figure 5 shows the grid used for the computation of the discrete solution
for Vmax = 0.7 Volts forward bias (the cathode and anode contacts are symbol-
ized by the thick lines). The accumulation of grid point about the pn-junction
is clearly visible. Figure 6 depicts the potential (in Volts). The pn-layer
is apparent. The electron concentration is shown in Figure 7 (also on a loga-
rithmic scale). Because of the (rather) high injection the p-region is
flooded with electrons and therefore the pn-layer is 'washed out'. The layer-
1ike behavior at the anode contact arises because the boundary condition forces
the electron concentration to assume a very small value. We remark that this
is not a boundary layer which is due to the small value of A, it actually comes
from the large applied bias.

Figure 8 depicts the electron current density. The peak at the edge of
the cathode contact is due to the fact that weak singularities in the gradients
of ¥, n and p occur at those boundary points where Neumann and Dirichlet bound-
ary pieces meet.

Figure 9 shows the electron concentration for Vmax = =20 Volts (reverse
bias). Now the pn-layer is highly pronounced, the electron concentration is
small (compared to the maximal doping) in the p-region and it is large (of the
same order of magnitude as the doping) in the n-region. The electron current
is small in the whole device (since the diode is ‘closed' in reverse bias) but
the singularity at the edge of the cathode is again clearly visible (see Figure

10).

The geometry of an MOS-transistor was already shown in Figure 1. Figure 11
depicts the doping profile (again log|C/cm®| is plotted). Figure 12 shows a
contour plot of the potential for 1 Volt gate bias, 7 Volts drain-bias and 0
Volts bulk bias. The internal layers at the two pn-junctions and the layer at
the semiconductor-oxide interface are visible. These layers are even more ap-
parent in the electron concentration (Figure 13).

We finally remark that a comparison of the results obtained by solving the
model equations and measurements is given by Selberherr [11], [12]. Excellent
agreement (of the current-voltage characteristics) was established for most
physically relevant biasing situations.
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Fig. 10. Electron current density Fig.
(-20v) [A/em?] (1in).
R
R
Fig. 12. Electrical potential. Fig. 13. Electron distribution.
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