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ABSTRACT 

The appearance of Very Large Scale I_ntegration caused a pronounced interest in concentrating 
on process and device modeling. The fundamental properties which represent the basis for 
all device modeling activities are sLmmarized. The sensible use of physical and 
technological parameters is discussed and the most inloortant physical phenomena which are 
required to be taken into account are scrutinized. The assumptions necessary for finding a 
reasonable trade-off between efficiency and effort for a model synthesis are recollected. 
Methods to bypass limitations induced by these assumptions are pin-pointed. Formulae that 
are applicable in a simple and easy way for the physical parameters of major importance are 
presented. The necessity of a careful parameter-selection, based on physical information, 
is shown. Some glimpses on the nomerical solution of the semiconductor equations are given. 
The discretisation of the partial differential equations with finite differences is 
outlined. Linearisation methods and algorithms for the solution of large sparse linear 
systems are sketched. Results of our two dimensional MOSFET model - MINIMOS - are 
discussed. Much emphasis is laid on the didactic potential of such a complex high order 
model. 

KEYWORDS 

Process modeling; semiconductor 
analysis of semiconductor devices. 

device modeling; very large scale integration; n~nerical 

INTRODLL~ION 

It was in the early 1960's when the first integrated circuits which just contained a few 
devices became commercially available. Since then an evolution has taken place so that the 
manufacture of integrated circuits with about 500.000 transistors per single chip is 
possible nowadays. This upcoming Very-Large-Scale-Integration (VLSI) certainly revealed the 
need of a better understanding of the basic device physics. The miniaturization of the 
single transistor, which is one of the inseparable preconditions of VLSI, brought about a 
collapse of the classical device models, because completely new phenomena emerged and even 
dominated the device behavior. One consequence of this evidence led to an unimaginable 
number of suggestions of how to modify the classical models to incorporate various of the 
new phenomena. Additionally new activities have been initiated to explore the physical 
principles which make a device operationable. The number of scientific publications which 
utilize the terms "device analysis", "device simulation" and "device modeling" (c.f./3/, 
/53/, /79/) has been increasing incredibly. 

The characteristic feature of early modeling was the separation of the interior of the 
device into different regions, the treatment of which could be simplified by various 
assuniotions like special doping profiles, complete depletion and quasineutrality. These 
separately treated regions were simply connected to produce the overall solution. If 
analytic results are intended, any other approach is prohibitive. Fully numerical modeling 
based on partial differential equations /156/ which describe all different regions of 
semiconductor devices in one unified manner was first suggested by Gum~mel /69/ for the one 
dimensional bipolar transistor. This approach was further developed and applied to 
pn-junction theory by De Mari /39/, /38/ and to IMPAXT diodes by Scharfetter and G~mlnel 
/129/. 

The first two dimensional nomerical analysis of a semiconductor device was carried out by 
Kennedy and O'Brien /82/ for the junction field effect transistor. Since then two 
dimensional modeling has been applied to fairly all i~portant semiconductor devices. Tnere 
are so many papers of excellent repute that it would be unfair to cite only a few. The 
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first results on three dimensional device modeling have been published recently. Transient 
analysis have been performed by e.g. /90/, /107/ and models for three space dimensions have 
been announced by e.g. /27/, /164/, /165/. 

PROCESS MODELING 

To enable the simulation of the electric behavior of a device the configuration of the 
device (i.e. geometry and composition of the material it is made of) is, obviously, one of 
the prerequisite pieces of input information. Optimal design of a device necessitates the 
capability to predict the effect of modifying any of the various process steps involved in 
device fabrication. One principle barrier for predictive device simulation is the 
uncertainty of the results of process models due to still inadequate understanding of their 
underlying solid-state physics and chemistry. Particularly in the develq0ment of devices 
for integrated circuits and their technology, the need for process models is growing 
dramatically due to the tight coupling of two and three dimensional device effects with the 
doping profile /49/. Owing to these purposes, many computer programs capable of modeling 
quite generally the various processing steps of device fabrication have been developed, and 
they have proven to be extremely valuable tools, e.g. IC~REM /122/, /123/; LADIS /151/; 
MEMBRE /112/; RECIPE /138/; SUPRA /29/, /84/, /85/, /102/ and the extraordinarily well 
established SUPR~M program /7/, /8/, /102/, /i01/, /119/. 

Apart from lithography which may be viewed as a fixed process that simply provides 
flexibility in layout /117/, /118/, the primary fabrication processes which determine the 
electrical characteristics of semiconductor devices, in particular silicon devices, are ion 
implantation, diffusion and thermal oxidation. Epitaxy, etching and deposition can 
certainly play an essential role in device fabrication as well. However, as the field of 
process modeling is extraordinarily wide and difficult, only the above cited process steps 
will be discussed here. Furthermore, it should be noted that only a small review of the 
most important models can he presented here due to the complexity of the underlying 
phenomena. The aim here is just to give a flavor on what problems have to be dealt with in 
providing this all-important input for device simulation. We also shall restrict ourselves 
to silicon processing. 

Ion Implantation 

Ion implantation is the most applied doping technique in the fabrication of silicon devices, 
particularly integrated devices. Implanted profiles are usually described by means of a 
distribution function f(x) and four characteristic quantities which are the mean value or 
projected range R : 

Go P 

= I <'f(x)'dx (i) 

the standard deviation ~n: 

~p = ~ I (x_Rp)2.f(x).dx 
~so 

(2) 

the skewness ~I : 
Go 

~_cD(X_Rp ) 3. f (x) -dx 

~i = - -  qp3 (3) 

and the excess or kurtosis P2: 
GO 

P2 = ~xD(x_Rp ) 4. f (x)'dx 

up4 (4) 

These quantities can either be calculated /88/, /19/ or measured /122/. 

At present the most universal distribution function is the Pearson type IV frequency 
function which has been introduced by Hofker /74/ for process modeling. It is based on the 
differential equation: 
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__f(y) = y - a  -f(y) y = x - R D 
bO+bl.y+b2.~2 

where the four constants a, b 0, b I and b 2 
quantities (i) to (4) 

= _ ~ ' % "  ~2+31 
a 

lO.~2-n .~12-18  

(5) 

can be expressed in the four characteristic 

(6) 

qo 2. (4.~2-3-~12) 
b0 = - 

l0 : 2-12. 2-18 
(7) 

bl = - ~P'~1"#2+3) 
10-p2-12~12-18 

(8) 

2 P2-3 ~2-6 

b2 = i0-- 2-12 218 
(9) 

The shape of f(y) varies considerably with b D, b I and b~. The form of solution of (5) 
evidently depends on the nature of the rootsVof The equation: 

b 0 + bl-Y + b2-Y 2 = 0 (10) 

However, only the so-called Pearson type IV distribution can be used for modeling 
implantation profiles. In this case (I0) does not have real roots which gives the 
restr iction: 

0 < ~I 2 < 32 

~2 > 

39-~i 2 + 48 + 6-~12+4)3/2 

32 - ~2 

(ii) 

Obeying this restriction the general solution of the differential equation (5) is given by: 

f(x) = K-(-(b0+b l.(x-Rp)+b 2-(x-Rp) 2)) ( 1 ). 
2"b2 

bl/b 2 + 2-a _.atan(2.b2-(x-Rp) + bl) ) (12) 

• exp(-~b2.~ - bl 2 ~ "b2"b0 - bl 2 

The constant K is the normalization constant to aocount for the incorporation of 
implantation dose. It can usually bedetermined only by numerical integration. 

the total 

Diffusion 

By means of diffusion processes one can obtain a desired shape of the distribution of 
dopants incorporated into the semiconductor by, e.g., ion implantation or which are 
deposited at the surface as a paste, fluid or gas of high concentration. The diffusion of 
dopants in semiconductors is described by the two laws of Fick, which read: 

~i = -Di" (grad Ct i - Zi-~ q • (Ct i - Cci) -grad ~ ) (13) 
k.T 

~Ct i 
+ div Ji = 0 (14) 

Ct i is the total concentration; Cc. is the electrically inactive part of the concentration, 
i.e. the concentration of dopants which is not well incorporated in the silicon lattice and, 
thus, is not ionized (e.g. neutral clusters). J. denotes the impurity flux; Z. is the 
charge state of the impurity (+i for singly ionized acceptors, -i for singly ionized 
donors). D. represents the diffusion coefficient which depends, in general, on all sorts of 
quantities ~s we shall discuss later. ~; is the electrostatic potential. The index i of all 
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above cited quantities denotes the i-th impurity type as there is usually more than one kind 
of impurity incorporated into the silicon when a diffusion process is performed. 

By substituting (13) into (14) we obtain the classical form of the diffusion equation, a 
continuity equation, for the i-th dopant. 
~Ct i 

= div [D i'(grad Ct i - Z i" q "(Ct i - Cci)-grad ~;)] (15) 
k.T 

The electrostatic potential ~; is determined by the Poisson equation: 

div grad ~; = ~-( n - p - C ) (16) 

The quantity C represents the total net concentration of 
system with k impurities we have: 

k 
C = - ~" Z i-(Ct i - Cci) 

i=l 

all ionized impurities. For a 

(17) 

Note that in (17) the influence of, e.g., charged vacancies is neglected. In all process 
modeling programs I am familiar with the Poisson equation is not solved as an elliptic 
differential equation, but rather assuming vanishing space charge and Boltzmann statistics. 
The electrostatic potential can then be calculated explicitly. 

k-T C 
¥= .arsi~(----) (18) 

q 2-n i 

n. denotes the intrinsic concentration at the process temperature. It may be modeled as 
d~pending on the concentration of dopants, thus, representing an effective intrinsic 
concentration. The assumption of vanishing space charge is very poor when considering the 
coupled diffusion in a structure with pn-junctions. This problem is stressed in /5/. 

In the literature one can often find that field enhanced diffusion is accounted for with a 
so-called field enhancement factor multiplying the diffusion coefficient. It should be 
noted that the approach using a field enhancement factor is only correct if just one species 
of impurities is involved in the diffusion process. 

In the following I should like to discuss models for the diffusion coefficient D.. It is 
well established that the diffusion vehicles are the intrinsic point defects of thellattice, 
i.e. vacancies and interstitials /130/. Evidence exists that both kinds of defects are 
important for the diffusion of dopants in silicon. However, at this time there is a lack of 
mathematical models describing the diffusion by interstitials. Therefore, the following 
considerations are based on the vacancy mechanism. Hence, the diffusion coefficient D. is 
assumed to be the sum of several diffusivities /ii/, where each accounts for the impurlty 
interactions with different charge states of lattice vacancies. 

D i = D ° + D?'V-I + D~'V=I + D+'V+I (19) 

D ° is the diffusion coefficient for the dopants of the i-th species diffusing=with neutral 
i vacancies, D. for those diffusing with singly negative charged vacancies, D: for those 

diffusing w~th doubly negative charged vacancies, and D~ for those diffusin~ with singly 
1 

positive charged vacancies. Other types of configurations are certainly also imaginable; 
however, the cited ones are o0nsidered to be most relevant. V , V- and V are the 
concentrations of singly negative, doubly negative and singly positive charged vacancies 
normalized by the concentration of neutral vacancies. These concentrations can be modeled 
under the validity of Boltmnann statistics as: 

V- = n V = = (nn_)2 V + = P (20) 
n i ni ni 

n and p denot~ the electron and bole concentration, respectively. 
coefficients D~ are usually given as expressions in Arrhenius form: 

E ~ 
DX= D x al) 

oi" exp (- 
k-T 

The individual diffusion 

(21) 

Numerical values for the prefactors D x . and the so-called activation energies E x . are 
ol al 

summarized in /54/, /55/, /I19/, /134/. 

Although the model (19) for the diffusion coefficient is already quite sophisticated, it has 
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to be applied very carefully. An additional modification, usually an enhancement, of the 
diffusivity takes place in oxidizing ambients as will be discussed in the next section. If 
the dopant concentration becomes so high that it approaches its solubility limit in silicon 
- this is the case in many practical applications - the impurities are considered to 
precipitate or to cluster, and they will, supposingly, not diffuse. However, quantitative 
statements are very difficult to make at the moment. The interested reader should carefully 
check the, hopefully, forthcoming literature on that problem and related ones. Currently, 
the most frequently used model which describes the relation between the total concentration 
Ct and the electrically inactive (e.g. cluster) concentration Cc is based on the following 
differential equation. 
~Cc 
_~ = m-kc-(Ct - Cc) m - kd'Cc (22) 

kc and kd are the clustering and deelustering rate, respectively. These are usually assumed 
to be temperature dependent, m is the cluster size, i.e., the number of impurity atoms 
which form an electrically inactive complex, the cluster. However, in /152/ it is 
explained, particularly for arsenic, that the allowence for electrically charged clusters 
seems ho improve the agreement with experimental results. Different types of charged and 
uncharged clusters are further considered in /68/. These effects 2~c~ significant when 
the dopant concentration reaches the solubility limit (e.g. 3.10 Vcm - for arsenic at I000 
Celsius). I should like to speculate that in essence these statements are correct, but in 
order to derive models which are applicable for engineering purposes much more investigatory 
work has still to be carried cut. 

Very often it is assumed that the effect of dynamic clustering and declustering is 
negligible. Then we obtain an algebraic, equilibrium cluster relation between the total and 
the electrically active concentration. 

Ct = (Ct - Cc) +~c-(Ct - Cc) m (23) 

(24) 

coefficient ~c 

~c kc = m-__ 

kd 

Numerical values and the temperature dependence of the equilibrium cluster 
are presented in the report /119/. 

Oxidation 

The thermal oxidation cf 
fabrication of modern devices. 
of Deal and Grove in 1965 
situation between three fluxes. 

F1 = h-(C* - C ° ) 

F2 -- -D-~ "- D" ~ - ci 
Xox 

sili_-~n is one of the most important processing steps for the 
All existing models for oxide gr(~th are based on the work 
/40/. Their basic idea was the assumption of a steady state 

(25) 

(26) 

F3 -- ks.C i (27) 

F1 is the flux of oxidant from the bulk of the ga~ to the gas-oxide interface. C ° is the 
concentration of the oxidant at the oxide surface; C is the concentration of the oxidant in 
the oxide, which will be in equilibrium with the partial pressure in the bulk of the gas; 
and h is the gas phase mass transfer coefficient. 

F2 denotes the flux across the oxide, which is ass,~ed to be purely diffusive. C i is the 
oxidant concentration in the oxide at the oxide-silicon interface; Xox represents the oxide 
thickness. 

F3 is the flux corresponding to the oxidation reaction at the o~ide-silicon interface, k 
represents the chemical surface reaction rate /67/. In the steady state condition thes~ 
three fluxes are identical and can be expressed: 

ks -C* 
F = (28) 

k s ks'xo~ 
i +__~ + D 

The flux of oxidant reaching the oxide-silicon interface is described by the differential 
equation: 
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dXox 
NI'__ 

dt 
=F (29) 

N 1 is the number of oxidant molecules 
s~lution of (29) is: 

Xox(t) = Xox(0))2 + B-t - 

incorporated into a unit volume of oxide. The 

(30) 

with: 

A = 2-D-(L + 1 
k s ~) 

(31) 

B = ~ _ _  
2 "D'C* 

N1 

(32) 

B is refered to as the 
approaches: 

A2 
Xox2(t) = B't , t >> -- 

4"B 

parabolic growth rate coefficient because for large t (8.9) 

(33) 

For small time we observe that B/A describes a linear growth rate: 
A2 

Xox(t) : ~'(t + ~) , t << - 
4"B 

(34) 

By proper modeling of the growth rate coefficients, many ambient attributes can be accounted 
for (composition, pressure, . ..). However, for very thin oxides the flux models (25) to 
(27) appear to be oversimplified and have to be modified /76/, /119/. An enpirical formula 
for thin oxide thicknesses corresponding to (29) reads: 

B + Kl-exp(- t__) + K2"exp(- t__) 
dXox = ~i ~2 (35) 

dt 2-Xox + A 

A and B are defined in (31) and (32), respectively. The two supplementary terms compared to 
(29) involve functions decaying exponentially in time which dominate, as it has been 
confirmed by observation of an extensive collection of experimental data /i19/, oxide growth 
in the 2nm and 20nm regime, respectively. One can expect, however, that many more 
modifications of this type will be introduced in order to account heuristically for effects 
which can be seen experimentally but have not been understood completely on a theoretical 
basis. As excellent reviews on the many problems of oxidation /119/, /120/ can be 
recommended. A more fundamental treatment of the kinetics of c~ide growth, which is based 
on the solution of the Navier-Stokes hydrodynamic equation, has fortunately begun /28/. The 
most eomplete models for the growth rate coefficients B/A and B have been stm~narized in 
/i03/, /i19/. 

Another effect which has to be considered in the context of oxidation is the impact on the 
diffusion coefficient. It has been observed by several authors, e.g. /6/, /96/, /97/, that 
the diffusivity is enhanced. This ~nhancement is, most plausibly, based on diffusion 
mechanisms additionally to the vacancy diffusion mechanisms which we have outlined in the 
last section. The additional mechanism is due to intrinsic interstitials emitted from the 
oxidized surface as suggested by Hu /75/ and proved experimentally by, e.g. Antoniadis and 
Moskowitz /9/, /i0/. S(mne theoretical considerations on this subject can be found in /i00/. 
It is not clear at present how the vacancy and the interstitialcy mechani~n interact, or 
which one dominates, in the temperature range [800,I000]C /58/. Therefore, we have 
restricted ourselves solely to the vacancy diffusion mechanism in the last section. 
However, by postulating an enhancement of the interstitial concentration and their self 
diffusion during oxidation /6/, /ii/, /12/ an increase in the diffusivity of dopants is 
sound. Taniguchi et al° /147/ have suggested modifying the diffusivity of boron and 
phosphorus, ~articularly, with the following eapirical expression: 

. .~':COX. 0,3 . x 2,08eV. 
D = D v + L" (-~--) -exp(- 25~ - ~ ) (36) 

k'T 
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K = 

<i00> 

<ill> 

3,08.10-3 c ml'7 
s0,7 

2,67.10- 3 C ml'7 
s~77,7 

(37) 

D v is the effective diffusion coefficient for inert ambients; x denotes the distance to the 
oxide-silicon interface; K is a constant derived from fits to experimental data. The 
qualitative dependence of the oxidation enhanced diffusion coefficient upon the oxide growth 
rate, the distance to the interface and te,10erature is plausible. Therefore, pragmatically, 
such a model can prove to be very valuable, but it clearly demonstrates how poorly the 
diffusion kinetics are understood. It should be noted that oxidation retarded diffusion has 
also been observed experimentally, e.g. /119/. This effect can be made plausible by the 
allowance of vacancy consumption by interstitials during oxidation. Similar models to (36) 
can be found in /8/, /119/, /122/, /123/. 

DEVICE MOOELING 

The most familiar model of carrier transport in a semiconductor device has been 
proposed by Van Roosbroeck /156/. It consists of Poisson's equation (38) , the current 
continuity equations for electrons (39) and holes (40) and the current relations for 
electrons (41) and holes (42) 

div C grad ~;= -q.( p - n + C ) (38) 

div ~n = -q'( G - R ) + q-~n/~t (39) 

div ~ = q-( G - R ) - q-~p/~t (40) 
P 

~n = -q-( Pn'n-grad ~;- Dn.grad n ) (41) 

% = -q" ( Pp'p'grad ~;+ Dp.grad p ) (42) 

These relations form a system of coupled partial differential equations. Poisson' s 
equaticn, which is one of Maxwell's laws, describes the charge distribution in the interior 
of a semiconductor device. The balance of sinks and sources for electron- and hole currents 
is characterized by the continuity equations. The current relations describe the absolute 
value, direction and orientation of electron- and hole currents. The continuity equations 
and the current relations can be derived from Boltzmann's equation by not at all trivial 
means. The ideas behind these considerations cannot be presented here due to limited space. 
The interested reader should refer to /156/ and its secondary literature or text books on 
semiconductor physics e.g. /21/, /73/, /131/, /139/. 

However, it is of prime ini0ortance to note that the equations (41) and (42) do not 
characterize effects which are caused by degenerate semiconductors (e.g. heavy doping). 
/91/, /154/, /158/ discuss soma modifications of the current relations, which partially take 
into account the consequences introduced by degenerate semiconductors (e.g. invalidity of 
Boltzmann's statistics, bandgap narrowing). These modifications are not at all simple and 
lead to problems especially for the formulation of boundary conditions /i13/, /157/. In 
case of modeling MOS devices, degeneracy is, owing to the relatively low doping in the 
channel region, practically irrelevant. For modern bipolar devices, though, bearing in mind 
shallow and extraordinarily heavily doped emitters, it is an absolute necessity to account 
for local degeneracy of the semiconductor. 

Just as further examples (41) and (42) do not describe velocity overshoot phenomeDm which 
become apparent at feature lengths of 0.1~m for silicon and l~m for gallium-arsenide /61/; 
and certainly no effects which are due to ballistic transport, the existence of which is 
still questicnable /72/, are included. The latter start to become important for feature 
sizes below 0.01pro for silicon and 0.1~m for gallium-arsenide /60/. Considering the state 
of the art of device miniaturization, neither effect has to bother the modelists of silicon 
devices. For gallium-arsenide devices new ideas are mandatory for the near future /61/, 
/i09/, /108/. 
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A&s~tions and Discussion of Parameters 

It is imperative to discuss the parameters of the semiconductor equations to get some 
insight into the complexity of that mathematical model and the difficulty of a more or less 
rigorous solution. 

The permittivity ~ in Poisson's equation in the most general case is a rank two tensor. 
Because all common semiconductor materials grow in cubic crystal structure and because 
silicon-dioxide is amorphous no anisotropy exists and the permittivity can be treated as a 
scalar quantity. Furthermore, one can savely assume that the permittivity is homogenous 
with sufficient accuracy for even degenerate semiconductors. 

The electrically active net doping concentration C in Poisson's equation is the most 
important technological parameter. To obtain this quantity by mathematical analysis /49/ is 
at least as cumbersome as to accurately analyze seine semiconductor device, because the 
physics of the technological processes which determine the doping concentration still lacks 
basic understanding. The need of modeling in this area is drastically increasing in view of 
VIBI devices. One-dimensicnal process modeling is fairly well established nowadays, but 
two-dimensional simulation is just appearing /49/, /151/. Some glimpses of modeling doping 
profiles with handy analytical expressions are given in e.g. /133/. One assunption which is 
usually made with satisfactory success (at room temperature) is the total ionization of all 
dopants (43). 

c=% NA=  N; /43) 

As long as the Fermi level is separated several thermal voltages from the impurity level, 
this assumption holds quite nicely. For modern bipolar transistors, however, it certainly 
becomes questionable for the emitter region (degenerate material). 

The electron density n and the hole density p are co, monly assumed to obey Boltzmann's 
statistics (44). 

n = ni-e~;- ~n)/UT p = ni.e~P - ~/UT (44) 

This assumption principally neglects degeneracy; but moderate degeneracy can be included 
/52/ by introducing an effective, doping dependent intrinsic number (45). 

n i = n i (T,N) 

ni(T'N) = ni(T) .e52.7K. (in(N/1017cm-3)+~(in(N/1017cm-3)) 2 +0.5)/T 

n i (T) = 3.88 • 1016cm -3" (T/K) i. 5. e-7000K/T 

(45) 

N=ND+N A 

The temperature dependence of the intrinsic number is based on the influence of the 
effective carrier masses and the bandgap. More elaborate formulae for these effects which 
might be imperative for low ten!perature applications can be found in /62/. The formula for 
bandgap narrowing in (45) was first suggested by Slotboom /136/. For a doping concentration 
of 1.3-1017 cm -3 the intrinsic number has already increased by twenty percent. 

The mobility of electrons pn and holes ~p is in principle a rank two tensor function of many 
arg~nents. One ends up with a so called "mobility" after averaging and combining various 
physical mechanisms which are still not analyzed thouroghly enough to be modeled 
satisfactorily /77/. 

Another assLmption which is unfortunately not at all free of doubts is the validity 
Einstein-Nernst relations (46). 

of the 

Some guidelines on how to extend these relations for degenerate material are given in e.g. 
/14/. It is important to remember that the current relations (41) and (42) do not 
differentiate between lattice temperature and electron temperature. Therefore, if one has 
to deal with hot electrons in a precise manner, the current relations have to be updated; in 
particular the mathematical structure of the diffusion current term has to be refined. 

Dn :"nUT b PpUT (461 
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The last parameter which remains to be dealt with for a qualitative characterization is the 
net generation/recombination rate (G-R) in (39) and (40). This quantity has to describe a 
number of physical processes which are responsible for generation/recombination of electron- 
hole pairs. These processes and their interactions are also not analyzed to a satisfactory 
level so that one has to use heuristic expressions for a model which is at least plausible 
in the underlying physics. Some suggestions for these formulae will be given in section 
2.4. 

Additional Assumptions for MOS-Models 

The fundamental semio0nductor equations describe the internal behavior of any semiconductor 
device. However, for certain devices these equations may be simplified without significant 
loss of accuracy. As the MOSFET is a minority carrier device, the current is given mainly 
by the continuity equation of one carrier type. If avalanche is neglected, only little 
carrier generation occurs in the MOSFET. 

Therefore, the eqs. (39)-(40) may be rewritten as 

div ~n = 0 (47) 

3 = 0 (48) 
P 

for the n-channel device and 

div ,~ = 0 (49) 
P 

= 0 (50) 

for the p-channel device. However, it should be kept in mind that these assumptions are 
valid only if the avalanche effect is negligible (see chapter 6). 

The channel width of a MOSFET is usually (often) much larger than the depletion widths. As 
a consequence the partial derivatives in that direction can be neglected and the 
semiconductor equations reduce to two dimensions. The neglection of the derivative of the 
potential in source-drain direction is a proper assumption only for long-channel devices. 
The so called "gradual-channel approximation" was the basis of a lot of one-dimensional 
models. These models fail to predict accurately the behavior of modern miniaturized 
devices. 

If the avalanche effect should be included, the asstmptions (47)-(50) are no longer valid 
and both continuity equations have to be solved with inhomogeneity terms. As a consequence, 
the ionization-generated majority carriers (holes for an n-channel MOSFET) flow to the 
substrate as they are repelled from the source and drain junctions. There are several 
options to account for the voltage drop which is induced by the substrate current: (a) a 
truly three-dimensional analysis; (b) extension of the simulation over the entire bulk area; 
(c) extension of the two-dimensional simulation over the depletion region and using an 
(effective) bulk resistor (Fig. i). If one wants to avoid excessive computing time associ- 
ated with (a), option (c) is to be preferred because it allows inclusion of current spread 
into the third dimension and, also, consumes less ccmputing time than (b). In that way the 
voltage drop across the parasitic bulk resistor simulates a more positive bulk bias and, if 
large enough, is able to forward-bias the parasitic bipolar npn transistor (according to 
source, hulk, and drain). This causes a larger drain current and facilitates the breakdown 
which then will occur at smaller drain voltages /127/. 
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Fig. i: Current flow in deep bulk 

In the following we should like to suggest an easy method to estimate the value of the bulk 
resistor. It is assumed that the current spreads at an angle of 45 degrees /18/ into both 
directions perpendicular to its flow (x- and z- direction in Fig. I). This assumption is 
arbitrary but not implausible, and, furthermore, if we neglect any diffusion current, we 
obtain the following expression for the electric field in the deep substrate. 

= IB IB (51) 

dy ~ = (~y) (W+2y) 

with K standing for the conductivity of the substrate and A the area of the current flow. L 
and W are channel length and channel width, respectively. Integrating this equation along y 
from the end of the simulation area d s to the bulk contact we obtain 

d 

RBul k s 1 in .L+2d . . W+2d = - - in (~--~) . (52) 
IB ~)( ~--~s' _ ) 

For L=W this equation simplifies to 

d-d s 
(53) 

RBulk = ~q-~+~-~ (L+2ds) " 

This calculation is fairly crude compared to the elaborate solution of the basic equatlons. 
However, any more precise calculation would be very complicated and the present method is 
sufficient to investigate the influence of the parasitic bulk resistance at least quali- 
tatively. 

MODELS OF PHYSICAL PARAMETERS 

M~eling Mobniti 

The mobility of carriers is, as already mentioned, an eminently complex quantity. 
Additionally it is an important parameter, because all errors in the mobility lead to a 
proportional error of the current through the multiplicative dependence. This is certainly 
one of the primary results any model should yield reliably. The formulae which will be 
given below describe phenomenologically the mobility in silicon; the subscripts n and p 
denote electrons and holes, respectively. 

To model mobility at least plausibly, several scattering mechanisms have to be taken into 
account, the basis of which is lattice scattering. This effect can be described by a sir~ole 
power law /77/, /131/ in dependence of temperature (54). 
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PL(T) = A. (T/K) -g (54) 

A : 7.12-108 ~/vs A = 1.35-108 ~/vs 
n ~ 

gn 2.3 = 2.2 

The pure lattice mobility is reduced through the scattering processes at ionized impurities. 
(55) is a well established formula which models temperature dependent ionized impurity 
scattering /26/ and electron-hole scattering /52/. The latter is extremely important in low 
doped regions where high injection takes place. 

PLI (N,T) : ~L(T)'a + ~min" (i - a) (55) 

1 a = 
1 + (T/300K) b. (N/N0) c 

N = 0.67. (5L'+u + NA-) + 0.33-(n + P) 

~minn = 55.24 cm2/Vs @minp = 49.7 cm2/Vs 

b = -3.8 b = -3.7 
n p 

c n 0.73 Cp 0.7 

NOn 1.072-1017 cm -3 = cm = N0p i. 606 • 1017 -3 

Similar expressions which have been partly deduced from measurement and/or theory have been 
presented in /13/, /41/, /45/, /87/, /129/. 

To properly simulate the mobility in MOS transistors, one has to deal with surface roughness 
and field dependent surface scattering. /33/, /124/, /143/ presented interesting measured 
results on inversion layer mobility; /150/, /149/ gave some excellent ideas on how to treat 
theoretically these and other scattering mechanisms; /163/ suggested a heuristic formula for 
field dependent surface scattering which is applicable for two-dimensional simulations, but 
whose adequacy is questioned in /150/. However, we have developed (56) which models 
phencmenologically with best fit to measurement surface roughness as well as field dependent 
surface scattering /132/. 

Y+Yr (56) 
Pus(Y'Ep'Et'N'T) -- PU (N,T) y+b • Yr 
Yr = Y0 / (l+Ep/Ep0) 

b = 2+Et/Et0 
= ~ I o, (Ex. J .+Ey .~ )  / I Jx2+~  2) 1/2) 

E = max(0,(E .J -E .J ) . j j ( j 2 + j 2 ) ) × y  
t 7 x y y x 

Y0n = 5.10- cm Y0p = 4"10-7 cm 

Ep0 n = 104 V/c~ Ep0 p = 8"103 V/cm 

Et0 n = 1.8-10 5 V/cm Et0 p = 3.8"105 V/cm 

In regions with a high electric field component parallel to current flow, drift velocity 
saturation has to be taken into account. (57) combines, also phenomenologically, this 
physical effect and the lattice-impurity-surface mobility using a Mathiessen-type rule with 
a weakly temperature dependent saturation velocity /25/, /77/, /78/. 

~tot(Y'%'Et'N'T) = (~LIS (''")~+- (Vs/Ep)P)i/~ (57) 

v = 1.53"I09.T -0"87 cm/s v = 1.62-I08-T -0"52 cm/s 
sn sp 

= -2 P - - -  -1 II n ~ p  

Mode lin~ Gener a t i qn/Recombina t ion 

To simulate satisfachorily transfer phenomena of majority carrier current and minority 
carrier current in just a simple diode, it is an absolute necessity to model carrier 
recombinaticn and generation as carefully as possible. (58) represents the well known 
Shockley-Read-Hall term for modeling thermal generation/recombination. The carr ier 
lifetimes can be simulated as being doping dependent /36/, /104/. 
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2 
n. -p-n 

( G- R )th =-- 1 
~n (P+Pl) +~p (n+nl) 

~n = 3.95 • 10-5s/(I+N/7.1 • 1015cm-3) Tp = 3.52 • 10-5s/(I+N/7.1 • 1015cm -3) 

Surface generation/recombination /70/ can be treated in a fairly similar manner by (59). 

(58) 

2 
n, - p-n 
l 

( G - R )S = (p~l)/Sn+(n+nl)/~p " J(y) (59) 

J(y) : Dirac-Delta functicn, y=0 denotes an interface 

S n = i00 cm/s Sp = i00 cm/s 

Impact ionization can be modeled by an exponentially field dependent generation term /31/, 
/32/. The constants in (60) are essentially taken from /155/. 

B.~ 
n n n 

Ga = T "An'eXp ( - _-~-C_- ) + 
E-J 

n 
B-~ 

P "A .exp ( - p- p ) (60) 
+ q P E'J 

P 
A n = 7.10 5 cm -I Ap = 1.588-106 -l 

B = 1.23"106 V/cm B = 2.036"106 V/cm 
n p 

It should be noted that this form of simulating avalanche is relatively crude compared to 
more exact considerations, but the underlying physical principles are so complex that a 
trade-off in accuracy and complexity leads to that type of formula. The ionization 
probabilities ~n,p for silicon as a function of the electric field have been measured by 
various authors: Mc Kay /98/, /99/, Miller /105/, Chynoweth /31/, /32/, Lee /83/, Moll 
/i10/, /lll/, Ogawa /114/, Van Overstraeten /155/, Grant /63/, Dalal /37/. Their results 
are s~marized in Fig. 2 for electrons and in Fig. 3 for holes. Additionally, the measured 
results are compared to theoretical results of Baraff /17/ (material constants from Sze 
/144/, /145/). Also drawn in Fig. 2 and Fig. 3 are theoretical limits published by Okuto 
/115/, /116/, which imply that all the energy the carriers can obtain from the electric 
field is used to generate additional carriers. Furthermore, the energy loss per single 
ionization has been taken to be 1.6eV for electrons and l.SeV for holes (see also /71/). A 
more concise treatment of the ionization probabilities has been undertaken theoretically by 
/4/, /30/, /86/, /135/, /146/, /148/, /150/, /153/, /162/ and experimentally by /125/, 
/140/. 

TO analyze high injection conditions, Auger recombination has to be included as an 
antagonism to avalanche generation. Already the use of a simple formula like (61) in 
general gives satisfactory results /34/, /36/, /50/, /52/. 

G - R )Aug = (hi2 - p'n ) (Cn'n + Cp'p ) (61) ( 

C = 2.8" i0-31 cm6/s C = 9.9.10 -32 cm6/s 
n p 

Finally, all generation/recombination phenomena have to be combined to one total quantity. 
The usual w~y to do so is to simply sum up all terms (62). However, that means that no 
interaction of the different phenomena does exist. 

(G-R)to t = (C--R)th + (G-R)s + (G-R)Aug + G a (62) 
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ANALYTICAL INVESTIGATIONS ABOUT THE S ~ M I ~ R  ]~JATIONS 

In this chapter we present some of the existing analytical results for the fundamental 
semioonduct~r equations. Particularly, we are interested in the possible boundary 
conditions, dependent variables and an appropriate scaling approach. We shall discuss the 
structure of solutions t~ the semiconductor equations, because these results are of 
importance in both the theoretical and practical context, since - as we shall see in the 
next d%apter - the knowledge of the structure and smoothness properties of solutions is 
essential indeed for the development of a numerical solution method. 
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Domain and Boundary Conditicns 

Most of the existing programs which solve the semiconductor equations are restricted to a 
rectangular device geometry. This is not essential as far as the analysis of the equations 
is aoncerned. In this chapter we shall assume that the equations (38)-(42) are posed in a 
domain D of R n (n=1,2,3) with a piecewise smooth boundary ~D. Equations (38~-(42) are 
subject to a mixed set of Dirichlet and Neumann boundary conditions. That means ~D consists 
of three parts ~)=~DIV~D?U~D3. ~D 1 denotes the part of the boundary where the device is 
surrounded by insulating ma15erial. There one assumes the boundary conditions: 

~n.L= ~n/~nl= ~p/an[= 0 (63) 

Here nl denotes the unit normal vector on ~D which exists anywhere ex_cept at a finite number 
of points (arbitrarily defined corners of the simulation geometry). ~D 2 denotes the part of 
the boundary corresponding to the ohmic contacts. There ~;, n and p are prescribed. The 
boundary conditions can be derived from the applied bias % and the assumptions of thermal 
equilibrium and vanishing space charge: 

= % + ~0uilt-in' n'p = ni 2, n - p - C = 0 (64) 

The last two conditions in (64) can be rewritten as: 

~ • n. C2+4 2 + c)/2 n -- ( 1 

P = (4 C2+4"n. 2 - C)/2 
i 

(65) 

Modeling MOS devices one has also to account for controlled insulator-semiconductor 
interfaces. ~D~denotes the part of the boundary which corresponds to such an interface. 
There we ~ve t~le interface conditions: 

3n-n ± = = o 
(66) 

~sem'~nl] sem = Cins'~nll ins 

Again n~ denotes the normal vector on ~D. C and C. denote the permittivity constants 
for the semiconductor and the Insulator res~tlvely. ~n~Isein and ~n~l - . In . In denote the 

onesided limits of the derivatives perpendicular to the interface approaching the interface. 
Within the insulator the Laplace equation: div grad ~;= 0 holds. 

Dependent Variables 

For analytical purposes it is often useful to use other variables than n and p to describe 
the system (38)-(42). Two other sets of variables which are frequently enployed are 
~,~n,~p) and (~;,u,v) which relate to the set ~,n,p) by: 

n = ni. e (~;4~n) /Ut, p= n.l-e ~'~/Ut (67) 

n = ni.e~P/Ut-u, p = ni.e-~KUt, v (68) 

(67) can be physically interpreted as the application of Boltzmann statistics. However (67) 
also can be regarded as a purely mathematical change of variables so that the question of 
the validity of the Bolt~nann statistics does not need to be considered. The use of 
(~n,~) a priori excludes negative carrier densities n and p, which may be present as 
undesirC~d nonphysical solutions of (38)-(42) if we use (~n,p) or ~u,v) as dependent 
variables. As we will see later in this chapter the advantage of the set (~u,v) is that 
the continuity equations (39), (40) and current relations (41), (42) become self-adjoint. 
This also has an important impact on the use of iterative schemes for the solution of the 
evolving linear systems (cf. chapter 5). However, owing to the enormous range of the values 
of u and v, t.he sets ~,n,p) or (~n,~p) have to be prefered for actual computations. We 
personally favour the set (~;,n,p). 
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Scaling 

Since the dependent variables in the system (38)-(42) are of different order of magnitude 
and show a strongly different behavior in regions with small and large space charge the 
first step towards a structural analysis of (38)-(42) has to be an appropriate scaling. A 
standard way of scaling (38)-(42) has been given by De Mari /39/. There ~; is scaled by the 
thermal voltage Ut, n and p are scaled by n i (similar to Mock /106/) and the independent 
variables are scaled such that all multipying constants in Poisson's equation become unity. 
Although physically reasonable this approach has the disadvantage that n and p in general 
are still several orders of magnitude larger than ~ A scaling which reduces ~;, n and p to 
the same order of magnitude has been given by Vasiliev'a and Butuzov /160/. This approach 
makes the system (38)-(42) accessible to an asymptotic analysis which is given together with 
applications in /92/, /95/ and /94/. There n and p are scaled by the maximu~ absolute value 
of the net doping C and the independent variables are scaled by the characteristic length of 
the device. More precisely the following scaling factors are employed. 

quantity symbol value 

1 max(~-~), x,y in D 

~; U t k-T/q 

n,p • maxlC I 

(69) 

After scaling the equations become: 

12-div grad ~; = n - p - C (70) 

div ( grad n - n.grad ~) = -R 

div ( grad p + p.grad ~;) = -R 

Here, for simplicity only, Pn and ~;D have been assumed to be constant. It should be noted 
that the following analysis also holds if the usual smooth dependence of );n and ~p on n, p 
and grad ~ e.g./133/ is assumed. Since ~st~e independent variable x has been scaled, 
equations.2(70) are now posed on a domain D with maximal diameter equal to one. The small 
constant ~ multiplying the Laplacian in (70) is the minimal Debye length of the device: 

12 : C.Ut (71) 

12 .q.~ 

1 and ~ are defined in (69). Thus for high doping (~>>i) ~2 will be small. 
for a silicon device with characteristic length 25~m and ~=10ZUcm-J we compute 
approximate room temperature T=-300K: 12=4.10 -10 . 

For instance 
for 12 at 

R denotes the scaled generation/recombination rate, which is in general a (not necessarily 
mildly) nonlinear function of n,p and grad~ Thus different models of R may influence 
analysis results quite drastically. This is obviously to be expected as in many operating 
conditions the device behavior strongly depends on the net generation/recombination R. 

The Sinc/ular Perturbation Almproach 

(70) represents a singularly perturbed elliptic system with perturbation parameter ~ The 
advantage of this interpretation is that we can now obtain information about the structure 
of solutions of (70) by using asymptotic expansions: In the subdomains of D s where the 
solutions behave maoothly we expand them into power series of the form: 

oo 

w(x,~ = ~'wi(~ ) .I i, w=~n,p) T (72) 

i=0 

which implies a smooth dependence on 
C - the scaled doping - is smooth in these subdomains and exhibits a sharp transition across 
the pn-junctions in the device. For the case of an abrupt junction this behavior is 
represented by a discontinuity across an n-i dimensional manifold r: (~=x--(s), s of ~n-l) in 
the device. Thus r is a point in 1 dimension, a curve in 2 dimensions and a surface in 3 
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dimensions. Of course one curve or surface has to be used for each junction. 
procedure is the same for each of the junctions it is demonstrated only for one 
In the case of an exponentially graded doping profile C consists of twoparts: 

C=C~+C ^ 

Since the 
junction. 

(73) 

where C~and C ̂ are discontinous, C~ is piecewise smooth and C ̂  is exponentially decaying to 
zero away from P. 
In the vicinity of ~ the expansion (72) is not valid and has to be supplemented by a "layer" 
term according to the singular perturbation analysis: 

oo 

w(x,~ -- ~[w.~(x) + w[(s,t/~]-~i, w=(~n,p)T 

i=0 

(74) 

Here_ the following coordinate transformation has been employed: For a point in the vicinity 
of~ s denotes the ~arameter value at the nearest point on|" and t denotes its distance 
perpendicular to ~. Thus the solution of the semiconductor equations exhibits internal 
layers at pn-junctions. 

The w7 and w~ in (74) can now be determined sepa[ately and the structure of the solu~ion is 
given ~y its ~artition into the smooth part Z~;~i~ l and its rapidly varying part~;~-~, w~ 
has to satisfy the reduced equations: 

0 = n o - Po -<3~ (75) 

div (grad n~ - n~.grad~o ) = - R  ~ (76) 

div (grad Po + Po'grad~o ) : -R~ (77) 

For the sake of simplicity but without loss of generality the mobilities~n and~D have been 
assumed to be constant. (75)-(77) is subject to the boundary conditions (63)=(66). Of 
course the oon~ition of vanishing space charge is redundant with (75). Since C- is 
discontinous at ~ and (75)-(77) represents a_s~ond order system of two equations four 
"interface conditions" have to he imposed at ~. They are of the form: 

n ~ . e " ~ I ~ _ ~ _  = n ~ . e ' 4 ~ l ~ _ ~ +  

p~'e~l~_~_ = P~'e~l~_~+ 
= 

: 

(78) 

(79) 

(8O) 

(81)  

~ = grad n~ - n~.grad ~o 

~Po grad Po + Po'g rad ~o 

(75)-(77) together with (78)-(81) arid the boundary conditions (63)-(66) define the reduced 
problem whose solution is an O(A) approximation to the full solution away from r. As we 
will see in the next chapter the reduced problem is a useful tool for the development and 
analysis of numerical methods, since it (especially the conditions (78)-(81)) has to he 
solved implicitly by any discretisation method which requires a reasonable number of grid 
points. 

The equations for the rapidly varying parts w$ reduce to ordinary differential equations. 
That means that only derivatives with respect to the "fast" variable t/~occur. Since the 

(82) 

where 
wl~ and wI~ denote the onesided limits of w as ~ tends to P from each side. nl denotes 
the-unit nor~l vector on r. ~ and ~^ are the zeroth order terms of the smooth parts of 

the (scaled) electron and hole current densities. 
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rate of decay of w~ depends heavily on ~ the width of the layer grows with the applied 
voltage; a fact which is absolutely well known by device physicists, but which becomes 
nicely apparent by the singular perturbation approach. 

~CAL SOLUTION OF THE SEMICONEUCIDR EQUATIONS 

In this chapter we discuss some of the problems occuring in the numerical solution of the 
semiconductor equations and the analysis of existing numerical methods. From the viewpoint 
of numerical analysis there are essentially three major topics to be considered. The first 
one is the type of discretisation to be used. There exist programs for both Finite Element 
and Finite Difference discretisations of the system (38)-(42). As outlined in the previous 
chapter the solution exhibits a smooth behavior in some subregions of the domain whereas in 
others it varies rapidly. Thus a nonuniform mesh is mandatory and adaptive mesh refinement 
is desirable. So the second topic is the question how to set up the mesh refinement 
algorithm i.e. which quantities have to be used to control the mesh. Each type of 
discretisation will lead to a large sparse system of nonlinear equations and so the solution 
of this system is the third topic. 

For the sake of simplicity in nomenclature we shall only consider the tw~-dimensional case 
in this chapter. However, all results given in the following can be generalized to three 
dimensions in a straightforward manner. So, the equations are posed in a domain D of R 2 and 

= (x,y)T denotes the independent variable. 

Discretization Schemes 

Using Finite Elements or Finite Differences one has to take into 
equation (38) is of a different type than the continuity equations. 
the scaling ofMarkowich /92/ using the variables ~u,v) 

~2-div grad q; = eq;-u - e-~.v - C 

account that Poisson's 
Poisson's equation - in 

(83) 

is a singularly perturbed elliptic problem whose right hand side has a positive derivative 
with respect tow 
Thus it is of a standard form (as discussed in e.g. /56/) except for the discontinous or 
exponentially graded term C. Equations of that type are generally well behaved and it 
suffices to apply a usual discretisation scheme. In the case of Finite Differences using 
the index convention given in Fig. 4 equation (83) is discretized by: 

~2. (div gradh~ ij = nij - Pij - C(xi'Yj) (84) 

E~i+i/2,j = ~;i+l,j-~i,j)/h i 

EY = i,j+i/2 @~i,j+l-~i,j)/kj 

h i = Xi+l-X i, kj = Yj+l-y j 

(div grad ~ i,j = 2. (E~i+i/2,j - 

+ 2. (~i,j+i/2 - 

E~i-i/2, j) / (hi+hi_ l) 

E~i, j-I/2 ) / (kj+kj_ I) 

(85) 

(86) 
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Fig. 4: The index convention used 

If one of the neighbouring gridpoints (x.__,y.), (x..,y.), (xi,Y4+~) , (x~,y. ~) does not 
• . lel i- 3 exist - as possible in a terminatlng llne approach /i/, ~2/ or in th4 @inite~B~e~ approach 

/59/ - (86) has to be modified. In the case of Finite Elements classical shape functions 
can be used (i.e. linear shape functions for triangular elements, bilinear shape functions 
for rectangular elements). 

It turns out that the discretisation of the continuity equations is more crucial than the 
discretisation of Poissons's equation. The usual error analysis of discretisation methods 
provides an error estimate of the form: 

max lWh-W i <= c'H (87) 

w h denotes the numerical approximation to w(x,y)=~n,p) T. H denotes the maximal 
grids-pacing. The constant c will in general depend on the higher order derivatives of w. 
The singular p@rturbation analysis /95/ shows that derivatives of~, n ̂ and p^ in (74) are 
of magnitude O(~ -3) - 0(~ -4) locally near the junction (~ is defined in (71)). /95/ shows 
also that, even if a nonuniform mesh is used, the amountoof gridpoints required to 
equidistribute the error term in (87) can be proportional to ~,-z which is of course 
prohibitive. Therefore a discretisation scheme is needed where the constant c in (87) does 
not depend on the higher derivatives of the rapidly varying terms ~, n ̂ and p^. For the 
case of Finite Differences such a scheme was given by Scharfetter and Gtmmel /129/. They 
approximate: 

~n = grad n - n'grad ~; 

div % : + aJ n y = 

(88) 

(89) 

by: 

J~ni+i/2, j = ~((~;i+l,j-~i,j)/2)'(ni+l,j-ni,j)/h i - 

J~i,j+i/2 

- (ni, j+ni+l, j)/2- (~i+l, j-~i, j)/hi 

= ~((~i,j+l-~i,j)/2) • (ni,j+l-ni,j)/k j - 

(9o) 

- (ni,j+ni,j+l)/2" (~i,j+l'~i,j)/kj 

~(S) = s'coth(s) 

2" (J~ni+i/2, j - J~ni_I/2, j) / (hi+hi_ l) + 
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+ 2. J~ - (91) ( ni,j+i/2 J{i,j-i/2)/(kj+kj-l) = Ri, j 

The continuity equation for holes is discretized analogously. Scharfetter and Gtmm~l gave a 
physical reasoning for the derivation of their scheme. Markowich et al. /95/ proved that in 
one dimension the Scharfetter-Gunm~l scheme is uniformly convergent. That means that the 
error constant c in 187) does not depend on the derivatives of~, n ̂ and p^ in (74) and 
therefore not on ~. For two dimensions /95/ shows that the choice ~(s) = s.coth(s) is 
necessary for uniform convergence. Exponentially fitted schemes like the Scharfetter-Gummlel 
scheme have been analyzed by Kellog /81/, /80/ and Doolan /44/ (for different classes of 
problems). The reason for the uniform convergence of these schemes is that inside the 
pn-junction layers the interface conditions (78)-(81) are satisfied automatically if Igrad~ 
is large and the gridspacing is not 0(~. 

The results for Finite Difference schemes suggest that a similiar approach (like the 
exponentially fitted schemes) should be used in the case of Finite Elements. This fact has 
been intuitively observed by Engel /51/ for the one-dimensional case. A modeling group at 
I~Mhas tried to make use of the Scharfetter-Gunm~l scheme for Finite Elements in two and 
three space dimensions /22/, /23/, /35/. However, we have the impression that their 
agproach needs still quite a bit of analysis, although it has been used effectively by other 
modelists too e.g. /121/. Macheck /89/ has tried to develop a more rigorous discretisation 
for Finite Elements using exponentially fitted shape functions. He uses classical bilinear 
shape functic~ns for ~;and 

~l(x,y) = [i - ~i(x,y)]-[l -~(x,y)] (92) 

~2(x,y) = ~(x,y) -[I - ~(x,y)] 

~3(x,y) = ~l(x,y) • ~(x,y) 

~4(x,y) = [i - ~i(x,y)]- ~2(x,y) 

for u, and 

PI(x,Y) = [i - ~l(x,Y)]'[l - ~2(x,Y)] 

P2(x,y) = gl(x,y) -[I - f2(x,y)] 

~3(x,y) = ~l(x,y) • ~2(x,y) 

~4(x,y) = [i - ~l(x,y)]- U2(x,y) 

(93) 

for v, where 

~l(x,y) = f(x,~ (94) 

~(x,y) = f(y,~ 

Ul(x,y) = f(x,- ~x ) 

~2(x,y) = f(y,- 

with: f(x,a) = (exp(ax)-l)/(exp(a)-l) (95) 

The advantage of these shape functions is that they accomodate nicely the layer behavior of 
the solution. They degenerate into the ordinary bilinear shape functions when the electric 
potential is constant. In order to be able to switch from coarse to fine grid spacing in 
different subdomains transition elements have to be used /89/. However, no theoretical 
investigations have been carried out so far to analyse the uniform convergence properties of 
this method. 

Grid Construction 

Since subregions of strong variation of ~;, n and p alternate with regions where these 
quantities behave smoothly ( i.e. their gradients are small) different meshsizes are 
mandatory in these subregions. Thus the discretisation scheme should be able to switch 
locally from a coarser to a finer grid. However, the question arises which criteria should 
be used to generate the mesh. If the user of a simulation progr~ has to define his 
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elements or nodes a priori as input parameters, this could perhaps be done by experience 
/24/. If - as it is the case for modern user oriented programs - an adaptive mesh selection 
is desired, mathematically formulated criteria are a "sine qua non". Generally such 
criteria should satisfy two conditions. First they should not cause the program to 
construct more gridpoints/elements than necessary to achieve a certain accuracy. Secondly 
they should guarantee that a prescribed relative accuracy d is really achieved once they are 
satisfied. A usual way to design adaptive mesh refinement procedures is to equidistribute 
the local truncation error of the discretisation scheme. In the case of Finite Differences 
this error is proportional to the meshsize and the third and fourth derivatives of ~ n and 
p. Markowich /95/ however showed that it is practically, not possible to equidistribute this 
quantity. In the case of a simple MOS-transistor 0(~-2~ -2) gridpoints would be required. 
On the other hand the singular perturbation analysis shows that the solution of the 
difference scheme approximates the solution of the reduced problem (75)-(77) even if this 
criterion is not satisfied inside the layer regions (inversion layer and space charge 
regions). Therefore the quantity to be equidistributed is the discretisation error of 
Poisson's equation (i.e. the partial derivatives of the space charge times the meshsizes). 
This equidistribution can be relaxed inside the pn-junction layers by e.g. simply limiting 
the number of gridpoints there. 

Linear ization Schemes 

Each discretisation scheme (Finite Differences or Finite Elements) will lead to a large 
sparse system of nonlinear equations to be solved. The theory of iterative methods to solve 
these equations is to a large extent independent of the used discretisation and so it is 
convenient to view the whole problem as solving a nonlinear system of equations iteratively 
by solving linear systems. The existing numerical methods can essentially be divided into 
two classes: The first approach, a block nonlinear iteration algorithm, is due to Gumnel 
/69/ and uses the fact that the current relations are linear in the variables u and v (as 
defined in (68)). In these variables the equations become (again we use the scaling of 
/89/) : 

~2-div grad ~; = e~.u - e-~.v - C (96) 

div ~ = R, ~ = e~.grad u (97) 
n n 

div ~p = -R, % = -e-~.grad v (98) 

Gummel's approach works as follows: Given (~u,v) k ~+i is computed by solving: 
+i 

~2.div grad ~+i = e~+l.u k _ e ~ .v k _ C (99) 

subject to the appropriate boundary conditions. Then u k+l and v k+l are computed from: 

div 3k+Z : RCgrad #+Z,uk,vk) ik÷l e k+l 
n ' n = -grad u 

_~+i k+l 
div ~k+l = -R(grad ~+l,uk,v k) ~k+l = -e .grad v p ' p 

(zoo) 

(101) 

together with the boundary conditions for u and v. (i00) and (101) are two decoupled linear 
equations for u k+l and v k%l. Poissons's equation (99) is nonlinear in this setting and 
therefore it has to be solved iteratively itself in each step by a Newton like method. 
Since Newton's method is an inner iteration within the overall iteration process (99)-(101) 
it may not be necessary to let this inner iteration "fully converge" /64/. 

The advantage of Gummels's method is obvious. (99)-(101) can be solved sequentially which 
decreases the required amount of storage and computing time drastically for each step. 
However, bad convergence properties can be observed in the case of high currents. This is 
explained by viewing (99)-(101) as iterating the map M: (uk,vk)4P(uk+l,v k+l) where the 
evaluation of M involves the solution of (99). Then the norm of the linearisation of M (as 
an operator acting in the appropriate spaces) at the fixpoint M(u*,v*)=(u*,v*) is 
proportional to the current densities /93/. 

The second approach to the solution of the nonlinear equations (38)-(42) is a dan~0ed 
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modified Newton method. To solve the general equation F(x)=0 one computes the sequence <xk> 

by: 

Mk.4 k = -F(xk), x k+l = x k + tk.~ k (102) 

For the usual Newton method M k = F' (x k) and t k = 1 holds. Bank and Rose /16/ have given 
criteria for the choice of the damPin S parameters t k which guarantee global convergence. 
Moreover t_hey investigate how welld k has to approximate the classical Newton step in order 
to get a certain rate of convergence. They obtain that the rate of convergence is p (l<p<2) 
if: 

[Mk.~ k + F(xk) l = O(IF(x k)[p) (103) 

holds asymptotically for k • co. 
Alternatively Bank and Rose /15/ suggested M k : ~kI + F' (x k) where ~k is proportional to 
IF(xk) l. Franz /59/ tested this method with good success. However, he additionally chooses 
damping parameters t k according to Deuflhard /42/, /43/. 

Solution of Linear Systems 

For any of the linearization procedures which have been outlined in the last chapter a large 
sparse linear equation system (104) has to be solved repeatedly. 

A.x = b (104) 

A has been derived by linearizing discretized PDEs. Hence A has only five to nine nonzero 
entries per row and block (a block is formed by the three discretized equations); A is very 
sparse. For the solution of these special types of linear systems of equations two classes 
of methods, can, in principle, be used: direct methods which are based on elimination and 
iterative methods. An excellent survey on that subject has been published recently by Duff 
/46/. Classical Gaussian eliminaticn is not feasible for our systems of equations because 
the rank of A in (104) is very large and A has many coefficients which are zero. Therefore, 
modifications of the classical Gaussian elimination algorithm have to be introduced to 
account for the zero entries. There exist quite a few activities on that subject (c.f. 
/47/) and powerful algorithms which treat the nonzero coefficients only are available (so 
called sparse matrix codes). Another serious drawback of direct methods lies in the fact 
that the upper triangular matrix which is created by the elimination process has to be 
stored for back substitution. This matrix usually has more nonzero entries than the matrix 
A. Therefore, memory requirement of direct methods is substantial. One advantage of the 
linear systems obtained from the discretised semiconductor equations is that no pivoting in 
order to maintain numerical stability is needed. In spite of all drawbacks of direct 
methods, their major advantage is high accuracy of the solution. However, we feel that for 
the semiconductor problems iterative algoritlm~ are to be emphasized. Nevertheless we and 
many others have observed difficulties with respect to the convergence speed of iterative 
methods, so that the direct methods, which require an exactly predictable amount of computer 
resources, will always stay in consideration. 

The fundamental idea of relaxation methods (which are the best established iterative 
methods) is the splitting of the coefficient matrix A (104) into three matrices D, E, F 
(105). 

A = D - E - F (105) 

D denotes the diagonal entries of A; -E denotes a lower triangular matrix which consists of 
all sub-diagcnal entries of A; and -F denotes an upper triangular matrix which consists of 
all sLper-diagonal entries of A. 

With an arbitrary non singular matrix B which has the same rank as A the linear system (104) 
can be rewritten to (106): 

B.x + (A-B).x = b (106) 

One obtains an iterative scheme by setting: 

B.x k+l : b - (A-B)-x k (107) 

(107) can be solved for xk+l: 
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x k+l = (I-B-I.A).x k + B-l.b (108) 

The scheme (108) will converge if condition (109) holds: 

q(I-B-I-A) ( 1 (109) 

(109) is a necessary and sufficient condition where q denotes the spectral radius /159/. 
Any relaxation method can be derived by differently choosing the matrix B from the splitting 
of A (105). The simplest scheme, the point-Jacobi method, uses D for B. Matrix D is a 
diagonal matrix and, therefore, it is easily invertible. The Gauss-Seidel method uses D-E 
for B. The matrix D-E is a lower triangular matrix. Therefore one has only to perform a 
forward substitution process for its inversion. The successive overrelaxation method (SOR) 
uses a parameter wwithin the range ]0,2[. The iteration matrix B is defined: 

B = D/W- E (ii0) 

Since B is again a lower triangular matrix, its inversion is instantly reduced to a 
substitution. 

The major advantage of these iterativemethods lies in their simplicity. They are very easy 
to program and demand Only low memory requirement. As already noted, they converge if 
condition (109) holds. However, this is generally difficult to prove. A sufficient 
condition for convergence is that A is positive definite (iii) which is the normal case for 
five-point-star discretized PDEs. 

xT-A.x ) 0 for all x~0 (iii) 

It should be noted again here that the current relations and continuity equations are not 
self adjoint if (~;,n,p) are used as variables (see (47), (48)). However, the 
transformation: 

n = e~;-u, p = e-~.v (112) 

results in a similarity transformation of the iteration matrix in (109). 
Thus the spectral radius of the iteration matrix is not influenced and the same convergence 
properties are obtained as if the system had been discretized in its self adjoint form with 
(~u,v) as variables. 

Sc~e point-iterative schemes can by accelerated quite remarkably with the conjugate gradient 
method or the Chebyshev method. An excellent survey on these topics can be found in /65/, 
/66/. 

Various activities can be observed for the development of more powerful algorithms with the 
advantages of iterative schemes. One of the best known algorit~Ips which has been 
established in semiconduchgr device analysis is Stone's strongly implicit procedure /142/. 
Stone's idea was to modify the original coefficient matrix A by adding a matrix N (whose 
norm is much smaller than the norm of A) so that a factorization of (A+N) involves less 
computational effort than the standard decomposition of A. Asstmling this has been done, the 
development of an iterative procedure is then fairly straightforward because the equation 
can be written as: 

(A+N) "x = (A+N)"x + (b-A'x) (i13) 

which suggests the iterative procedure: 

(A+N)-x k+l = (A+N).x k + (b-A-x k) (114) 

When the right hand side is known and if (A+N) can be factorized easily, (i14) gives an 
efficient method for directly solving for x k+l. Furthermore, one would intuitively expect a 
rapid rate of convergence if N is sufficiently small oompared to A. We will refrain from 
explaining in detail Stone's suggestion of how to choose the perturbation matrix N because 
this has been done thoroughly in many publications e.g. /57/, /137/, /142/. A major 
disadvantage of Stone's method is that it is only applicable for linear systems obtained by 
a classical Finite Difference discretisation. It is not applicable for systems obtained by 
the Finite Boxes approach /59/ or the general Finite Element approach. 
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There exist a few algorithms which are similar to Stone's method in terms of underlying 
ideas. The most attractive are the method of Dupont et al. /48/, the "alternating direction 
implicit" methods e.g. /20/, /57/, /161/ and the Fourier methods /141/, /159/. However, 
most of these sophisticated algorithms lack general applicability. 

NO matter which iterative method is used one has to deal with the question of an appropriate 
termination (convergence) criterion. Usually (115) is applied with a properly chosen 
relative accuracy C: 

I xk+l-xk I < C" Ix k+l I (115) 

Since increments still accumulate when (115) is already satisfied we suggest to use (116) 
instead of (5.12) : 

Ixk+l-xkl < C-Ixk+ll • (I-~(G)) (116) 

lim k+l k -, xk_xk-i I • (G) can be estimated as k~ x -x / 

One disadvantage of all strcngly implicit methods and also the direct methods is that they 
cannot be implemented efficiently on a cfmputer with a pipe-line architecture (vector 
processor). Some comments on that subject have been given in /46/. 

AN EXAMPLE 

The main power of a fully numerical model lies in its ability to provide the distributions 
of all physical quantities in the interior of a device. However, one has to bear in mind 
that the only possible check of numerical calculations is an elaborate comparison of 
experimental and theoretical results. The particular example in this chapter is intended to 
highlight the didactic potential of the fully numerical model MINIMOS. 

Fig. 5 shows the doping profiles of two devices the geometrical channel length of which is 
1.6pm. The oxide thickness is 30nm; the junction depth is about .44p and the lateral 
subdiffusion is about 0.23~m. The profile on the right hand side has just an additional 
channel inplantation in order to suppress the punch through effect. We shall now discuss 
some of the internal physical quantities of these two devices for an operating condition 
with 0V at source, gate and substrate; and 7V at drain. The picture on the right hand side 
of the next figures (Fig. 6, Fig. 7 and Fig. 8) corresponds to the doping profile on the 
right hand side of Fig. 5. 
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L 
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e~ DEVICE I 

Fig. 5: Device 1 - Doping profile - Device 2 

~e DEVICE 2 
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Fig. 7 shows the electron distribution in a logarithmic scale. The punch through channel is 
fully suppressed by the deep channel ir~plant. It also seems wortwhile to note that the 
qualitative behavior of the electron density at the surface is identical for both devices. 

I ~ '~( ,,<d d8= Ov 
' i  d O = S v  
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, t ~ ~ 1 JB = O v =; 

D % . ~  ' 

DEVICE 1 

Fig. 7: Device 1 - Electron density - Device 2 

Fig. 6 shows the contour lines of the electric potential for both devices. We can nicely 
observe a saddle point in the picture on the left hand side, which is the typical indication 
of punch through in weak inversion. This phenomenon has been reported for many years by all 
authors working on multi dimensional MOS models. The picture on the right hand side 
exhibits a well pronounced barrier between source and the channel region, thus indicating a 
proper subthreshold behavior. 
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Fig. 8: Device 1 - Electron current density - Device 2 

In Fig. 8 the lateral component of the electron current density is given for both devices. 
The punch through channel is even better visible than in the last figure. The tongue-like 
appearance of the lateral oomponent of the electron current density in the picture on the 
right hand side is typical for devices functioning properly in the subthreshold region. It 
should be mentioned, although it is trivial, that the scale of these pictures differs more 
than four orders of magnitude. At the chosen bias point (0V at gate, 7V at drain) no 
significant impact ionization takes place in both devices. The reason for this fact can be 
found in the absolute current level which is simply too low /126/, /128/. To da~onstrate 
the influenoe of impact ionization we have cho6en the bias point with 0V at source and 
substrate, IV at gate and 7V at drain. All figures in the following correspond to this 
operating condition. The pictures on the right hand side of these figures are the 
simulation results obtained with ionization coefficients set to zero. 
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Fig. 9: with aval. - Electric potential - without aval. 
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Fig. 9 shows the electric potential. Almost no barrier exists between source and channel, 
whereas an acceptable barrier is still simulated when neglecting i, pact ionization. 

$e DEVICE 2 

Fig. i0: with aval. - Generation rate - without aval. 

In Fig. i0 the ionization rate is plotted in a qu_asi logarithmic scale (log(1018+GA)-18). 
The peak value reads about 2.5.1027 pairs per cm 3 and second. 

The carrier densities are given in Fig. ii and Fig. 12. A large increase of the carrier 
densities due to avalanche generation can be seen from these figures. This inrease results 
not only from carrier generation but also from the rigid source-substrate barrier lowering 
(cf. Fig. 9). 
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Fig. ii: with aval. - Electron density - without aval. 
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Fig. 12: with aval. - Hole density - without aval. 

CONCLUSION 

The state of the art in modeling processes and the electrical behavior of semiconductor 
devices has been sketched. The underlying physics has been discussed and the importance of 
increasingly sophisticated numerical methods has briefly been outlined. It has become 
evident that only progress in basic physics will lead to the development of models which are 
capable of simulating device behavior mere reliably and which will match the technological 
advances of the recent device miniaturisation. One highly important objective of a model, 
its ability to predict the performance of a new device prior to having built the actual 
device, can only be reached if the physical parameters of the basic equations are analyzed 
even more thoroughly. This possibly implies a complete re-evaluation of some commonly 
aocepted assumptions and approximations. The power of a n~erical model to predict device 
behavior has been demonstrated using our MOS-transistor simulation program MINIMOS. 
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