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Implications of Analytical Investigations About
the Semiconductor Equations on Device

“Modeling

Programs

SIEGFRIED SELBERHERR, MEMBER, IEEE, AND CHRISTIAN A. RINGHOFER

Abstract—This paper gives guidelines for the development of com-
puter programs for the numerical simulation of semiconductor devices.
For this purpose, the basic mathematical results on the corresponding
elliptic boundary value problem are reviewed. Particularly, existence,
smoothness, and structure of the solutions of the fundamental semi-
conductor equations are discussed. Various feasible approaches to the
numerical solution of the semiconductor equations are described. Much
emphasis is placed on constructive remarks to help authors of device
simulation programs make decisions on their code design problems.
Thus criteria for an optimal mesh generation strategy are given. The
iterative solution of the systems of nonlinear and linear equations ob-
tained by discretizing the semiconductor equations is discussed. An
example shows the power of these concepts combined with modern
numerical methods in comparison to classical approaches.

I. INTRODUCTION

HE CHARACTERISTIC feature of early device modeling

is the separation of the interior of the device into dif-
ferent regions, the treatment of which could be simplified by
various assumptions like special doping profiles, complete de-
pletion, and quasineutrality. These separately treated regions
were simply put together to produce the overall solution. If
results in an analytically closed form are intended, any other
approach is prohibitive. Fully numerical modeling based on
partial differential equations [61] which describe all different
regions of semiconductor devices in one unified manner was
first suggested by Gummel [29] for the one-dimensional bi-
polar transistor. This approach was further developed and ap-
plied to p-n-junction theory by De Mari [13], [14] and to
IMPATT diodes by Scharfetter and Gummel [50] .

A two-dimensional numerical analysis of a semiconductor
device was first carried out by Kennedy and O’Brien [35] who
investigated the junction field effect transistor. Since then,
two-dimensional modeling has been applied to all important
semiconductor devices. There are so many papers of excellent
repute that it would be unfair to cite only a few. Additionally,
the first results on three-dimensional device modeling have
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now been published. Time dependence has been investigated
by [37] and [44] and models in three space dimensions have
been announced by, e.g., [8], [11], [67], and [68].

In spite of all these important and successful activities, the
need for economic and highly user-oriented computer pro-
grams becomes more and more apparent in the field of device
modeling. Especially for MOS devices, which have evolved
since their invention by Kahng and Atalla [32] toanincredible
standard, modeling in two space dimensions has become in-
herently important because current flow controlled by a per-
pendicular field is an intrinsically two-dimensional problem.
One such program which has been applied successfully in many
laboratories is called CADDET [59]. We have also tried to
bridge that gap and developed MINIMOS {51], [53] for the
two-dimensional static analysis of planar MOS transistors.

II. ANALYSIS OF THE STATIC
SEMICONDUCTOR EQUATIONS

In this section, we reivew some of the existing analytical re-
sults for the fundamental semiconductor equations concerning
existence and structure of their solutions. These results are of
importance in both the theoretical and practical context, since—
as we will see in the next section—the knowledge of the struc-
ture and smoothness properties of solutions is indeed essential
for the development of a numerical solution method. The
most familiar model of carrier transport in a semiconductor
device has been proposed by Van Roosbroeck [61]. It con-
sists of Poisson’s equation (2.1), the current continuity equa-
tions for electrons (2.2) and holes (2.3), and the current rela-
tions for electrons (2.4) and holes (2.5)

dive-grady=-g-(p-n+C) (2.1)
divi,=-q-R (2.2)
div._fp=q ‘R (2.3)

Tu=-q(up n-grad ¢ - D,, - grad n) 2.4
7p =-q - (up-p-grad Y + Dy, - gradp).  (2.5)

The relations form a system of coupled partial differential
equations. Poisson’s equation, coming from Maxwell’s laws,
describes the charge distribution in the interior of a semi-
conductor device. The balance of sinks and sources for elec-
tron and hole currents is characterized by the continuity equa-
tions. The current relations describe the absolute value, di-
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rection, and orientation of electron and hole currents. The
continuity equations and the current relations can be derived
from Boltzmann’s equation by not at all trivial means. It is
not our intention to present in this paper the ideas behind
these considerations. The interested reader is refered to [61]
and its secondary literature or textbooks on semiconductor
physics e.g., [7], [31], [52], [56].

2.1. The Validity of the Basic Semiconductor Equations

It is of prime importance to be aware that (2.4) and (2.5)
are not capable of exactly describing all phenomena occurring
in real devices. For instance, they do not characterize effects
which are caused by degenerate semiconductors (e.g., heavy
doping). References [38], [60], and [63] discuss some modi-
fications of the current relations, which partially take into ac-
count the consequences introduced by degenerate semicon-
ductors (e.g, invalidity of Boltzmann’s statistics, bandgap nar-
rowing). These modifications are not at all simple and lead to
problems especially in the formulation of boundary conditions
[47], [62]. In case of modeling MOS devices, degeneracy,
owing to the relatively low doping in the channel region is
practically irrelevant. For modern bipolar devices, though,
bearing in mind shallow and extraordinarily heavily doped
emitters, it is an absolute necessary to account for local de-
generacy of the semiconductor.

Just as further examples, (2.4) and (2.5) do not describe
velocity overshoot phenomena which become apparent at
feature lengths of 0.1 um for silicon and 1 um for gallium-
arsenide [25]. Certainly no effects which are due to ballistic
transport (the existence of which is still questionable [30])
are included. The latter start to become important for feature
sizes below 0.01 um for silicon and 0.1 um for gallium-arsenide
[26]. Considering the state of the art of device miniaturiza-
tion, neither effect has to bother the modelists of silicon de-
vices. For gallium-arsenide devices new ideas are mandatory
in the near future {25], [45]}, [46].

2.2. Domain and Boundary Conditions

Most of the existing programs which solve the semicon-
ductor equations are restricted to a rectangular device geom-
etry. This is not essential as far as the analysis of the equations
is concerned. In this chapter we shall assume that (2.1)-(2.5)
are posed in a domain D of R” (n=1, 2, 3) with a piecewise
smooth boundary aD. Equations (2.1)-(2.5) are subject to
a mixed set of Dirichlet and Neumann boundary conditions.
This means that 8D consists of three parts, 0D = 6D, U 0D, U
oD3. 9D, denotes the part of the boundary where the device
is surrounded by insulating material. There one assumes the
boundary conditions

O /07, = on/o, = Op/o, = 0. (2.6)

Here 7 denotes the unit normal vector on 8D which exists
everywhere except at a finite number of points (arbitrarily
defined corners of the simulation geometry). 8D, denotes the
part of the boundary corresponding to the ohmic contacts.
There ¥, n, and p are prescribed. The boundary conditions
can be derived from the applied bias Wy and the assumptions
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of thermal equilibrium and vanishing space charge
V=Vp,+Vyiitin n-p=n} and n-p-C=0. (2.7)
The last two conditions in (2.7) can be rewritten as

n=(VC*+4-n?+0)2
p=(C?+4-n?-0C)2.

In many applications it is desired to consider controlled
insulator-semiconductor interfaces (e.g., MOS devices). So,
dD; denotes the part of the boundary which corresponds to
such an interface. There we have the interface conditions

—

J '—”;l_—'jp‘;l._]_:o

€som - OW/0N,| = €ing - OW/31 |

(2.8)

2.9)

ms

Again 71, denotes the normal vector on dD. €gp, and €
denote the permittivity constants for the semiconductor and
the insulator, respectively. /oW |, ~and 3W/d7, [, de-
note the one-sided limits of the derivatives perpendicular to
the interface approaching the interface. Within the insulator,
the Laplace equation: div grad ¥ = 0 holds.

2.3. Dependent Variables

For analytical purposes it is often useful to use other vari-
ables than n and p to describe the system (2.1)-(2.5). Two
other sets of variables which are frequently employed are
(¥, ¢n, p) and (¥, u, v) which relate to the set (¥, n, p) by

_e(‘I"ﬁPn)/Ut (‘Pp"l’)/Ut (210)

v. (2.11)

n=n; , D=n;-e

VU,

- U
n=n;-e ‘u, e,

p=n;-e

Equation (2.10) can be physically interpreted as the appli-
cation of Boltzmann statistics. However, (2.10) also can be
regarded as a purely mathematical change of variables so that
the question of the validity of the Boltzmann statistics does
not need to be considered. The use of (¥, 9, ¢,) a priori ex-
cludes negative carrier densities » and p, which may be present
as undesired nonphysical solutions of (2.1)-(2.5) if we use
(¥, n,p) or (¥, u,v) as dependent variables. As we will see
later in this section, the advantage of the set (¥, u, v) is that
the continuity equations (2.2), (2.3) and current relations
(2.4), (2.5) become self adjoint. This also has an important
impact on the use of iterative schemes for the solution of the
evolving linear systems (cf. Section IV). However, owing to
the enormous range of the values of u and v, the sets (¥, n, p)
or (¥, y,, ¢p) have to be preferred for actual computations.
We personally favor the set (¥, n, p).

2.4. The Existence of Solutions and Scaling

The basic answer to the question of existence of solutions
can be found in Mock [43] or under slightly different assump-
tions in Bank et al., [5]. Both proofs are based on Schauder’s
fixpoint theorem. They are both valid for arbitrarily shaped
domains and boundary conditions of the type previously de-
scribed without an interface (8D ={ }). Both papers con-
sider the case of vanishing generation/recombination rate
(R=0 in (2.2), (2.3)). In the setting of Mock, (¥, u, v) are
used as dependent variables. The equations are scaled so that
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the intrinsic carrier density »;, the thermal voltage Uy, and the
ratio elementary charge/permittivity are equal to unity. Thus
combining the continuity equations (2.2), (2.3) and current
relations (2.4), (2.5), we have the system

divgrad W =e¥ -y-e¥-p-C (2.12)
div(e¥ - gradu)=0 (2.13)
div(e™ Y - grad v) = 0. (2.14)

Then a map M: ¥ -y is defined (details in [4] or [43])
such that the evaluation of M requires the solution of (2.13)
and (2.14). A fixpoint ¢ * of M (M(W*) = W*} together with
the according functions (u, v) is a solution of the whole sys-
tem (2.12)~(2.14). The exitence of a fixpoint is shown by
Schauder’s fixpoint theorem. Questions concerning the degree
of smoothness of these solutions (the existence of derivatives)
are discussed in [42].

However, Schauder’s theorem is not constructive and does
not indicate that iterating the map M will actually lead to the
fixpoint. Moreover, it does not give any information about the
structure of the solution which is of vital interest for actual
computations. Since the dependent variables in the system
(2.1)-(2.5) are of different order of magnitude and show a
strongly different behavior in regions with small and large
space charge, the first step towards a structural analysis of
(2.1)-(2.5) has to be an appropriate scaling. A standard way
of scaling (2.1)~(2.5) has been given by De Mari [14]. There
¥ is scaled by the thermal voltage U,, n and p are scaled by
n; (similar to Mock [43}), and the independent variables are
scaled such that all multiplying constants in Poisson’s equa-
tion become unity. Although physically reasonable, this ap-
proach has the disadvantage that »n and p in general are still
several orders of magnitude larger than ¥. A scaling which re-
duces W, n, and p to the same order of magnitude has been
given by Vasiliev’a and Butuzov [65]. This approach makes
the system (2.1)-(2.5) accessible to an asymptotic analysis
which is given together with applications in [39]-[41]. There,
n and p are scaled by the maximum absolute value of the net
doping € and the independent variables are scaled by the char-
acteristic length of the device. More precisely, the following
scaling factors are employed:

quantity symbol value

x ! max (¥-3), X¥,¥inD
4 U, k-Tlq
n,p a max | C| (2.15)
After scaling, the equations become
A% divgrad¥=n-p-C
div(grad n- n - grad ¥) =~ R
div (grad p +p - grad ¥) = - R. (2.16)

Here, for simplicity only, u,, and u, have been assumed to
be constant. It should be noted that the following analysis
also holds if the usual smooth dependence of y,, and Up on n,
p, and grad W, e.g., [54], is assumed. Since the independent
variable X has been scaled, (2.16) is now posed on a domain
D?® with maximal diameter equal to 1. The small constant A2
multiplying the Laplacian in (2.16) is the minimal Debye length

of the device

2= e U,

g«

! and a are defined in (2.15). Thus for high doping (o >> 1),
A% will be small. For instance, for a silicon device with charac-
teristic length 25 um and a = 10%° ¢cm™?, we compute for A?
at approximate room temperature 7= 300 K: A? =4 X 1071,

R denotes again the scaled generation/recombination rate.
In the analysis given in [41], the usual Shockley-Read-Hall
term has been used, which after scaling is of the form

__np- (N
ntp+2-(EN?

(2.17)

1 .

{= 5 (2.18)
R is in general a (not necessarily mildly) nonlinear function
of n, p, and grad ¥. Thus different models of R may influence
the analytical results requite drastically. Thisis obviously to be
expected, because in many operating conditions the device be-
havior depends strongly on the net generation/recombinationR.

2.5. The Singular Perturbation Approach

Equation (2.16) represents a singularly perturbed elliptic
system with perturbation parameter A. The advantage of this
interpretation is that we can now obtain information about
the structure of solutions (2.16) by using asymptotic expan-
sions. In the subdomains of D® where the solutions behave
smoothly, we expand them into power series of the form

WEN =S wi® N, w= (b p)T

i=0

(2.19)

which implies 2 smooth dependence on A. C—the scaled
doping—is smooth in these subdomains and exhibits a sharp
transition across the p-n junctions in the device. For the case
of an abrupt junction this behavior is represented by a dis-
continuity across an n - 1 dimensional manifold I': (x = x(s),
s of R"™1) in the device. Thus I is a point in one dimension,
a curve in two dimensions and a surface in three dimensions.
Of course, one curve or surface has to be used for each junc-
tion. Since the procedure is the same for each of the junctions,
it is demonstrated only for one junction. In the case of an
exponentially graded doping profile, C consists of two parts

c=C"+C" (2.20)
where AC” and ¢~ are discontinous, C" is piecewise smooth,
and €' is exponentially decaying to zero away from I". In the
vicinity of T, the expansion {2.19) is not valid and has to be
supplemented by a “layer” term according to the singular per-
turbation analysis

W(EN = S [WiE) +w) (s, 6] - N,

i=0

w=(¥,np)7. (2.21)
Here the following coordinate transformation has been em-
ployed. For a point in the vicinity of I, s denotes the param-
eter value at the nearest point on I and ¢ denotes its distance
perpendicular to I" {cf. Fig. 1). Thus the solution of the semi-
conductor equations exhibits internal layers at p-n junctions.
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Fig. 1. Local coordinates of the layer solution.

The w{” and w; in (2.21) can now be determined separately
and the structure of the solution is given by its partition into
the smooth part £ w; - A\’ and its rapidly varying part £ A
A. wg has to satisfy the reduced equations

0=ny~po-C~ 2.22)
div (grad ng - ng - grad ¥5)=-R™ (2.23)
div {grad pg + po - grad ¥5) =-R". (2.24)

For the sake of simplicity, but without loss of generality,
the mobilities u, and w, have been assumed to be constant.
Equations (2.22)-(2.24) subject to the boundary conditions
(2.6)-(2.9). Of course, the condition of vanishing space charge
is redundant with (2.22). Since C ™ is discontinous at I’ and
(2.22)-(2.24) represent a second-order system of two equa-
tions, four “interface conditions” have to be imposed at I
They are of the form

Mo - ecq}‘ilszﬁ— =ng e 0|55, (2.25)
pye” %=%-=Po ' ewisﬁm (2.26)
Tng Mulgez-=Tny i fgeze (2.27)
%'"ﬂkfﬁfg nylz=ve (2.28)

where wlz- and wlz, denote the one-sided limits of w as x
tends to I" from each side. 7, denotes the unit vector on I
7,,; and 'fp; are the zeroth-order terms of the smooth parts
of the (scaled) electron and hole current densities.

J,,”O =grad ng - ng - grad ¥y’

J;o =grad pg + po - grad ¥y (2.29)

Equations (2.22)-(2.24) together with (2.25)-(2.28) and the
boundary conditions (2.6)-(2.9) define the reduced problem
whose solution is an O(\) approximation to the full solution
away from I". As we will see in the next section, the reduced
problem is a useful tool for the development and analysis of
numerical methods since it (especially the conditions (2.25)~
(2.28)) has to be solved implicitly by any discretization method
which requires a reasonable number of grid points.

The equations for the rapidly varying parts w;\ reduce to
ordinary differential equations. This means that only deriva-
tives with respect to the “fast™ variable #/X occur. Since the
rate of decay of w;\ depends heavily on ¥, the width of the
layer grows with the applied voltage; a fact which is absolutely
well known by device physicists, but which becomes nicely
apparent by the singular perturbation approach.
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III. NUMERICAL SOLUTION OF THE
SEMICONDUCTOR EQUATIONS

In this section we discuss some of the problems occurring in
the numerical solution of the semiconductor equations and the
analysis of existing numerical methods. From the viewpoint
of numerical analysis, there are essentially four major topics to
be considered. The first one is the type of discretization to be
used. There exist programs for both Finite Element and Finite
Difference discretizations of the system (2.1)-(2.5). As out-
lined in the previous chapter the solution exhibits a smooth
behavior in some subregions of the domain whereas in others
it varies rapidly. Thus a nonuniform mesh is mandatory and
adaptive mesh refinement is desirable. So the second topic is
the question how to set up the mesh refinement algorithm,
i.e., which quantities have to be used to control the mesh. Each
type of discretization will lead to a large sparse system of non-
linear equations and so the solution of this system is the third
topic. As the fourth topic, we discuss the linear equation solvers
which have to be used in topic three. For topics one to three,
many methods have been designed especially for the semi-
conductor equations. These points will be discussed in this
section. For topic four, standard numerical analysis is com-
monly used and so its discussion will be deferred to Section IV,
For the sake of simplicity in nomenclature we shall only con-
sider the two-dimensional case in this chapter. However, all
results given in the following can be generalized to three di-
mensions in a straightforward manner. So, the equations are
posed in a domain D of R? and ¥ = (x, )7 denotes the inde-
pendent variable.

3.1. Discretization Schemes

Using Finite Elements or Finite Differences, one has to take
into account that Poisson’s equation (2.1) is of a different
type than the continuity equations. Poisson’s equation—in
the scaling of Markowich [40] —using the variables (¥, u, v)

>\2-divgrad‘lf=e""u—e'\k~v-C (3.1

is a singularly perturbed elliptic problem whose right-hand
side has a positive derivative with respect to . Thus it is of
a standard form (as discussed in, e.g., [22]) except for the
discontinous or exponentially graded term C. Equations of
that type are generally well behaved and it suffices to apply
a usual discretization scheme, In the case of Finite Differ-
ences equation (3.1) is discretized by

(3.2)
(3.3)

A? - (div grad W), = ny - py — Clxi, ¥5)

Efya,; = (Yisr,j~ Vi lhy

Ejiya = \ITRE )L
hi=Xi41 - X;
Ki=Yje1 =¥

(div grad W); ;=2 - (Efeypa,j~ Eiyja, /B + hizy)
+ 2 (B jayz ~ Edjoy2 )+ kj-y)-
(3.4)

Here ¥, n;;, and p;; denote the approximations to W, 1, and
p at the gridpoint (x;, ¥;). Ef%y2,j denotes the value of oW/ax
at (xX;41j2 = (it Xi00)/2, 7). Eijay denotes the value of
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oW/ay at (x; Yj+y2 = (¥; +j41)/2). If one of the neighbor-
ing gridpoints (x;+1,¥;), (Xi-1, ), (i Vj+1), (s Yj-1) does
not exist—as possible in a terminating line approach [1], [2]
or in the Finite Boxes approach [24]—(3.4) has to be modified.
We will go into some detail concerning these modifications in
the next section. In the case of Finite Elements, classical
shape functions can be used (i.e., linear shape functions for
triangular elements, bilinear shape functions for rectangular
elements).

It turns out that the discretization of the continuity equa-
tions is more crucial than the discretization of Poisson’s equa-
tion. The usual error analysis of discretization methods pro-
vides an error estimate of the form

3.5)

where w,, denotes the numerical approximation to w(x, y) =
(¥, n,p)T. H denotes the maximal gridspacing. The constant
¢ will, in general, depend on the higher order derivatives of w.
The singular perturbation analysis [41] shows that derivatives
of ¥ ,n andp in(2.21)are of magnitude O(A™*)-0(A™%)
locally near the junction (X is defined in (2.17)). Reference
[41] shows also that, even if a nonuniform mesh is used, the
amount of gridpoints required to equidistribute the error term
in (3.5) can be proportional to A™2 which is of course pro-
hibitive. Therefore, a discretization scheme is needed where
the constant ¢ in (3.5) does not depend on the higher deriva-
tives of the rapidly varying terms ¥" n”, and p”. For the
case of Finite Differences such a scheme was given by Schar-
fetter and Gummel [SO]. They approximate

max lwh—wl <=c¢'H

7n=gradn— n - grad ¥ (3.6)
divJ, = 8J%/ax + dJY /0y =R (3.7)
by
Trreynj = S¥ier; = Wi )2) - (Miwn j = ni ik
=Mt e, 2 (Yinq, ;- Yy ) Ry
JrJz/,-,]-H/z =8V jer - Wi )I2) - (g — 1y )k
= (it ng )2 (Y jer — V5 kG (3.8)
§(s) =s - coth (s)
Rijj=2 Unyyyyg - T ez Y+ hiy)
+2'(Jr)z}i,]-+1/2 —JrJl),',j_I/Z)/(k]"l'kj—l) (3.9)
')’Ci+1/2,;' denotes the value of J5 at (x4 172 = (X; + X;41)/2,¥))-
J,J,’l.’].ﬂ/2 denotes the value of J at (x;, ¥4+ 1/2= (¥j + ¥j+1)/2)-

The continuity equation for holes is discretized analogously.
Scharfetter and Gummel give a physical reasoning for the der-
ivation of their scheme. Markowich et al., [41] proved that
in one dimension the Scharfetter-Gummel scheme is uniformly
convergent. That means that the error constant ¢ in (3.5) does
not depend on the derivatives of ¥, #n”, and p~ in (2.21)
and, therefore, not on A. For two dimensions, [41] shows
that the choice {(s) = s - coth (s) is necessary for uniform con-
vergence. Exponentially fitted schemes like the Scharfetter-
Gummel scheme have been analyzed by Kellog [33], [34] and
Doolan [17] (for different classes of problems). The reason

for the uniform convergence of these schemes is that inside
the p-n-junction layers, the interface conditions (2.25) and
(2.26) are satisfied automatically if lgrad \If\ is large and the
gridspacing is not O(A).

The results for Finite Difference schemes suggest that a simi-
lar approach (like the exponentially fitted schemes) should be
used in the case of Finite Elements. This fact has been intu-
itively observed by Engel [21] for the one-dimensional case. A
modeling group at IBM has tried to make use of the Scharfetter-
Gummel scheme for Finite Elements in two and three space
dimensions [8], [9], [12]. However, we have the impression
that their approach still needs quite a bit of analysis, although
it has also been used effectively by other modelists e.g., [49] .
Macheck [36] has tried to develop a more rigorous discretiza-
tion for Finite Elements using exponentially fitted shape func-
tions. He uses classical bilinear shape functions for ¥ and

0 (x, »)= [1- 01 (x, )] - [1 - 92(x, )]
0y (x, ) =10, 3) * [1 - 02(x, )]
a3(x, ¥) = 01(x, ) @2 (x, )

ag(x,¥) = [1- ¢1(x,¥)] 02 (x,») (3.11)
for n, and
p1(x,3)=[1- 010, 3)] - [1 - 02(x, )]
p2(x,¥) = 01(x,») - [1- 02(x, )]
p3(x,») = 01(x, ) - 02(x,¥)
pax,»)=[1-01(x,»)] - 02(x, ) (3.12)
for p where
)
o1(x,7) =f<x,—a—;)
v
@2(x,¥) =f(y, 7)
oiton=i{x- )
o2 (x,¥) *f(y,— %y‘l_’) (3.13)
with
f(x, @) = (exp (ax) - 1)/(exp (@) - 1). (3.14)

The advantage of these shape functions is that they nicely
accomodate the layer behavior of the solution. They de-
generate into the ordinary bilinear shape functions when the
electric potential is constant. In order to be able to switch
from coarse to fine grid spacing in different subdomains transi-
tion elements have to be used (as outlined in the next sub-
section). However, no theoretical investigations have been car-
ried out so far to analyze the uniform convergence properties
of this method.

3.2. Grid Construction

Since subregions of strong variation of W, n, and p alternate
with regions where these quantities behave smoothly (i.e., their



SELBERHERR AND RINGHOFER: ANALYTICAL INVESTIGATIONS

y)v1-

X1 X X

Fig. 2. A typical Finite Boxes configuration.

gradients are small) different mesh sizes are mandatory in these
subregions. Thus the discretization scheme should be able to
switch locally from a coarser to a finer grid. For the exponen-
tially fitted (Scharfetter-Gummel) Finite Difference discretiza-
tion schemes this can be done by the Finite Boxes approach
[24]}. Grid lines can terminate when the mesh is likely to be
made more coarse (cf. (Fig. 2). The point (x;4,,;) does not
belong to the mesh. Thus the equations for the point (x;, ;)
have to be modified since ¥;,y ;, Ris+1,j> and p;4q j are not
available. This is done by proper interpolation between the
(7- st and (j+ 1)st y level. So (div grad ¥); is approxi-
mated by

(div grad W); ; =2 - ((k;-, ~Eix+1/2,j+l + k;
By, -kt ko)
= Ef it hioy)
+ 2 (B ey - ELjoyp2)/ (ki + Ki-q).
(3.15)

Ef /2.7, EYjsyj2, etc., are defined in (3.3). The continuity
equations are approximated by

2 '((k/-l .Jr)lci+1/2,]'+1 +kf 'Jrfi+l/2,j_1)/(kj+kj—1)

- Jzi_l/z,l')/(hi + hi—l) t2- (J'J;i,]'+l/2
_J'J:i,j—l/z)/(kj+kj"1)=Rivf' (316)
J’fi—l/z,j’ JV)I};’,/'+1/2’ etc., are defined in (3.8). For reasons of

numerical stability, only one gridline is allowed to terminate
at a box. This approach is a generalization of the “Terminating
Line” approach introduced by Adler [1], [2] as already
mentioned.

In the Finite Element approach of Macheck [36] transition
elements composed of three triangles are used to increase mesh
coarseness locally (cf. Fig. 3). Within these triangles a different
set of shape functions has to be used. They are derived by
holding the current densities 7,, and 7p constant along the
edges of a triangle similar to the approach of [10].

In the Finite Element, as well as in the Finite Difference
(Boxes) approach, the question arises which criteria should
be used to generate the mesh. If the user of a simulation pro-
gram has to define his elements or nodes a priori as input pa-
rameters, this could perhaps be done by experience {10] . How-
ever, if—as it is the case for modern user-oriented programs—
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Fig. 3. A transition element to coarsen a mesh.

an adaptive mesh selection is desired, mathematically formu-
lated criteria are a sine qua non. Generally such criteria should
satisfy two conditions. Firstly, they should not cause the pro-
gram to construct more gridpoints/elements than necessary to
achieve a certain accuracy. Secondly, they should guarantee
that a prescribed relative accuracy & is really achieved once
they are satisfied. A usual way to design adaptive mesh refine-
ment procedures is to equidistribute the local truncation error
of the discretization scheme. In the case of Finite Differences,
this error is proportional to the mesh size and the third and
fourth derivatives of ¥, n, and p. Markowich [41], however,
showed that it is practically not possible to equidistribute this
quantity. In the case of a simple MOS transistor 0(8 “2A™?)
gridpoints would be required. On the other hand, the singular
perturbation analysis shows that the solution of the difference
scheme approximates the solution of the reduced problem
(2.22)-(2.24) even if this criterion is not satisfied inside the
layer regions (inversion layer and space charge regions). There-
fore, the quantity to be equidistributed is the discretization
error of Poisson’s equation (i.e., the partial derivatives of the
space charge times the mesh sizes). This equidistribution can
be relaxed inside the p-n-junction layers by, e.g., simply limit-
ing the number of gridpoints there.

3.3. Linearization Schemes

Each discretization scheme (Finite Differences or Finite
Elements) will lead to a large sparse system of nonlinear equa-
tions to be solved. The theory of iterative methods to solve
these equations is to a large extent independent of the discre-
tization used, and so it is convenient to view the whole prob-
lem as solving a nonlinear system of equations iteratively by
solving linear systems. The existing numerical methods can es-
sentially be divided into two classes. The first approach, a
block nonlinear iteration algorithm, is due to Gummel [29]
and uses the fact that the current relations are linear in the
variables # and v (as defined in (2.11)). In these variables the
equations become (again we use the scaling of [36])

A2 -divgradW=eY u-eV-v-C (3.17)
divj,,=R, .—fn=e‘l’ - grad u (3.18)
div.7P=—R, .7p=—e"l' - grad v. (3.19)

Gummel’s approach works as follows. Given (V,u, v)¥,

¥k*1 s computed by solving

\Ilk+1

k+1
. - k
kz-dlvgrad\lfk”=e cuk - e v - C

(3.20)



58 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-3, NO. 1, JANUARY 1984

subject to the appropriate boundary conditions. Then u**!
and v**! are computed from

div._].,,"’+1 = R(grad wk*1 % o),

Tkt = ¥**! - grad y**1 (3.21)
div_J‘l’,€+l = - R(grad wk*1 yk ok,

- k+1

Thtt = o VT L prad okt (3.22)

together with the boundary conditions for # and v. Equations
(3.21) and (3.22) are two decoupled linear equations for u**?
and v**1. Poisson’s equation (3.2) is nonlinear in this setting
and therefore it has to be solved iteratively itself in each step
by a Newton-like method. Since Newton’s method is an inner
iteration within the overall iteration process (3.20)-(3.22), it
may not be necessary to let thisinner iteration “fully converge”
[27]. 1t could for instance be considered necessary to do only
one Newton step for each iteration. This would lead to the
linear equation

A2 - div grad wk*l = (e‘I’k cuk 4 e“l’k RN C LA 2
(3.23)

instead of (3.20). The advantage of Gummel’s method is ob-
vious. (3.20)-(3.22) can be solved sequentially, which de-
creases the required amount of storage and computing time
drastically for each step. However, bad convergence properties
can be observed in the case of high currents. This is explained
by viewing (3.20)-(3.22) as iterating the map M: (u*, v*)~
(@**1, v**1) where the evaluation of M involves the solution
of (3.20). Then the norm of the linearization of M (as an
operator acting in the appropriate spaces) at the fixpoint
M(u*, v¥) = (u*, v*) is proportional to the current densities
[42].

The second approach to the solution of the nonlinear equa-
tions (2.1)-(2.5) is a damped modified Newton method. To
solve the geneal equation F(x) = 0, one computes the sequence
x*) by

M¥ - 8% = - F(x%), (3.24)

For the usual Newton method, M* = F'(x*) and ¥ =1
holds. Bank and Rose [4] have given criteria for the choice
of the damping parameters #¥ which guarantee global conver-
gence. Moreover they investigate how well 6% has to approxi-
mate the classical Newton step in order to get a certain rate

of convergence. They find that the rate of convergence is p
(1 <p<2)if

|M* - 8% + F(x*)| = 0(|F(x*)|7)

ok
-e ¥ k-¢

k
+eV" -y A

xk+l=xk 4k gk

(3.25)

holds asymptotically for k - o, Alternatively, Bank and Rose
[3] suggested M* = ¥ + F'(x*) where X¥ is proportional to
|F(x*)|. Franz [24] tested this method with good success.
However, he additionally chose damping parameters ¢* accord-
ing to Deuflhard [15], [16].

Since this approach has the disadvantage that all three equa-
tions are solved simultaneously --and, therefore, the storage re-
quirements are fairly large—we suggest a Block-Newton-SOR

(successive overrelaxation) method [24]. Defining F=(F,,
F,, F3)T, Newton’s method at step k is

oV on 0

v " p sk Fl(‘I’k,nk,pk)

dF, 3F, OF, . ok

—_— == = 8 =- | Fy(¥ , .
a\p an ap n 2( ksnk pk)

sp* Fy(¥ ,
oF, OF, OF, p s(¥5, 0", p%)
o on  Ip

(3.26)

Under the assumption that the Jacobian is definite, one can
use a classical block iteration scheme (iteration index m) for
the solution of the kth Newton step

oF, k
—-— 0 0
o swk m+1
OF, OF, .
v on ”k
1)
oFy oFy o | |
o omn  op
OF, aF, |k
Fi (&%, nk p*) m op
1( k _k _k i 6\I,k "
=- |Fo (V" n", - oF
2 ‘ r°) 0 o [s) sk
F3(\Ijk’nk’pk) ap k
00 0 op
(3.27)

Since the coefficient matrix of (3.27) is block lower triangu-
lar, one can decouple the elimination process into three linear
systems, (3.28)-(3.30), which have to be solved sequentially

oFk
_a__\pl, 8‘11km+1 - —Fl(‘l/k,l’lk,pk)
dFk oFk
- =L pkm - L. spkm (3.28)
on 0
oFk
S5 8nk T = (WK, ¥, p*)
n
OFF X OFf
-yl = spkm (329
v o OF (3.29)
oF¥
oy 0P = Fa(WF ¥ pb)
p
oFk oF%

= gpkmer —an—3. snkm*1.(3.30)

This iteration method has (like Gummel’s method) the ad-
vantage that the equations can be solved sequentially. To end

up with the Block-Newton-SOR method, one has to resubsti-
tute the series expansions on the right-hand side of (3.28)-
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(3.30) and to introduce a relaxation parameter c:

%F\;li.g\pkm+1=—w-F1(\I/k,nk+ sn*™  p* + spkm)
(331)
ﬂ-&nkm” =-w - Fy(WF+ sWkm*1 pk pk 4 spkm)
on C
(332)
%?»-61)""’” = - Fa(WKegphm1 pky spkm+1 ppy

(3.33)

This method converges linearly [48]. However, we still have
to perform through investigations in order to properly judge
the convergence properties.

IV. SoLUTION OF LINEAR SYSTEMS

For any of the linearization procedures which have been out-
lined in the last chapter, a large sparse linear equation system
(4.1) has to be solved repeatedly

A-x=b. (4.1)

A has been derived by linearizing discretized PDE’s. Hence
A has only five to nine nonzero entries per row and block (the
blocks are defined in (3.26); A4 is very sparse. For the solution
of these special types of linear systems of equations, two
classes of methods can, in principle, be used—direct methods
which are based on elimination and iterative methods. An ex-
cellent survey on that subject has been published recently by
Duff [18]. Classical Gaussian elimination is not feasible for
our systems of equations because the rank of 4 in (4.1) is
very large and A has many coefficients which are zero. There-
fore, modifications of the classical Gaussian elimination algo-
rithm have to be introduced to account for the zero entries.
There exist quite a few activities on that subject (c.f., [19])
and powerful algorithms which treat the nonzero coefficients
only are available (the so-called sparse matrix codes). Another
serious drawback of direct methods lies in the fact that the
upper triangular matrix which is created by the elimination
process has to be stored for back substitution. This matrix has
usually more nonzero entries than the matrix 4. Therefore,
memory requirement of direct methods is substantial. One ad-
vantage of the linear systems obtained from the discretised
semiconductor equations is that no pivoting in order to main-
tain numerical stability is needed. In spite of all the drawbacks
of direct methods, their major advantage is high accuracy of
the solution. However, we feel that for the semiconductor
problems iterative algorithms should be emphasized. Never-
theless, we and many others have observed difficulties with re-
spect to the convergence speed of iterative methods, so that the
direct methods, which require an exactly predictable amount
of computer resources, will always stay in consideration.

The fundamental idea of relaxation methods (which are the
best established iterative methods) is the splitting of the co-
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efficient matrix 4 (4.1) into three matrices D, E, F (4.2)

A=D-E-F (4.2)

where D denotes the diagonal entires of A4, -E denotes a
lower triangular matrix which consists of all subdiagonal en-
tries of A, and - F denotes an upper triangular matrix which
consists of all superdiagonal entries of 4.

With an arbitrary nonsingular matrix B which has the same
rank as A4, the linear system (4.1) can be rewritten as

B:-x+(A-B)-x=b. (4.3)
One obtains an iterative scheme by setting

B-x¥*'=p-(4- B) x*. (4.4)
Equation (4.4) can be solved for x**!

xk*lt=(-B1-4)-x*+B71 -p. (4.5)
The scheme (4.5) will converge if condition (4.6) holds

p(I-B1-A)<1. (4.6)

Equation (4.6) is a necessary and sufficient condition where
p denotes the spectral radius [64]. Any relaxation method
can be derived by differently choosing the matrix B from the
splitting of 4 (4.2). The simplest scheme, the point-Jacobi
method, uses D for B. Matrix D is a diagonal matrix and,
therefore, is easily invertible. The Gauss-Seidel method uses
D - F for B. The matrix D - E is a lower triangular matrix.
Therefore, one has only to perform a forward substitution pro-
cess for its inversion. The SOR uses a parameter w within the
range ] 0, 2[. The iteration matrix B is defined

B=Djw- E. (4.7)

Since B is again a lower triangular matrix, its inversion is in-
stantly reduced to a substitution.

The major advantage of these iterative methods lies in their
simplicity. They are very easy to program and demand only
small amounts of memory. As already noted, they converge
if condition (4.6) holds. However, this is generally difficult to
prove. A sufficient condition for convergence is that 4 is posi-
tive definite (4.8), which is the normal case for five-point-star
discretized PDE’s.

xT-4-x>0

It should be noted again here that the current relations and
continuity equations are not self-adjoint if (¥, n, p) are used
as variables (see (2.10), (2.11)). However, the transformation

p=e"\p ‘v (4.9)

results in a similarity transformation of the iteration matrix in
(4.6). Thus the spectral radius of the iteration matrix is not
influenced and the same convergence properties are obtained
as if the system had been discretized in its self-adjoint form
with (W, u, v) as variables.

Some point-iterative schemes can by accelerated quite re-
markably with the conjugate gradient method or the Chebyshev
method. An excellent survey on these topics can be found
in [28].

forall x#0. (4.8)

n=e” ‘u,
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Various activities can be observed for the development of
more powerful algorithms with the advantages of iterative
schemes. One of the best known algorithms which has been
established in semiconductor device analysis is Stone’s strongly
implicit procedure [58]. Stone’s idea was to modify the origi-
nal coefficient matrix 4 by adding a matrix N (whose norm is
much smaller than the norm of A) so that a factorization of
(4 +N) involves less computational effort than the standard
decomposition of 4. Assuming this has been done, the devel-
opment of an iterative procedure is then fairly straightforward
because the equation can be written as

(A+tN) x=(A+N)-x+(b-A4-x) (4.10)
which suggests the iterative procedure
A+N) - x** P =U4+N)-xF+ (- 455 (4.11)

When the right-hand side is known and if (4 + V) can be
factorized easily, (4.11) gives an efficient method for directly
solving for x¥*!. Furthermore, one would intuitively expect a
rapid rate of convergence if NV is sufficiently small compared to
A. We will refrain from explaining in detail Stone’s suggestion
of how to choose the perturbation matrix NV because this has
been done thoroughly in many publications e.g., [23], [55],
[58]. A major disadvantage of Stone’s method is that it is
only applicable for linear systems obtained by a classical Finite
Difference discretization. It is not applicable for systems ob-
tained by the Finite Boxes approach or the general Finite
Element approach.

There exist a few algorithms which are similar to Stone’s
method in terms of underlying ideas. The most attractive are
the method of Dupont ef al., [20], the ““alternating direction
implicit” methods, e.g., [6], [23], [66], and the Fourier
methods [57], [64]. However, more of these sophisticated al-
gorithms lack general applicability.

No matter which iterative method is used, one has to deal
with the question of an appropriate termination (convergence)
criterion. Usually (4.12) is applied with a properly chosen
relative accuracy €

|t - XK <e [xFE (4.12)

Since increments still accumulate when (4.12) is already
satisfied, we suggest using (4.13) instead of (4.12)

lxk+1 _ xkl <e- ’xk+1l (1 - p(G)). (4.13)

0(G) can be estimated as

Hm |2 - x5 - xk_ll.
k —~>oo
One disadvantage of all strongly implicit methods and also
the direct methods is that they cannot be implemented effi-
ciently on a computer with a pipeline architecture (vector pro-

cessor). Some comments on that subject have been given
in [18].

V. A GLIMPSE ON RESULTS

As an illustrative example, a relatively simple structure—a
two-dimensional diode—is chosen. Fig. 4 shows the doping
profile as birds-eye-view plot. A substrate with 10'* cm™2 ac-

ceptor concentration and an exponentially graded n-region
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Fig. 5. Initial mesh in Finite Boxes interpretation.

with 10'® cm™ maximum doping is assumed. The initial
mesh is automatically generated from the doping profile and
the geometry definition. The simulation domain (device geom-
etry) is a square of 100 X 100 um size. At the n-region, an
ohmic contact with length 20 um is assumed. The substrate is
fully contacted. The initial mesh for a Finite Boxes program
is shown in Fig. 5 and for a Finite Element program in Fig. 6.
The point allocation is identical for both representations. The
grid consists of 121 points versus 178 when all gridlines are
extended throughout the device. This clearly demonstrates the
advantage of the Finite Boxes approach. In Finite Flement
representation one has to deal with 80 rectangular elements
and 17 transition elements which consist of 51 triangles.

Fig. 7 shows the final grid for an operating condition of
0.7-V forward bias in Finite Boxes representation. This mesh
is obtained after several adaption processes using the criteria
given in Section III. It consists of 270 points (versus 480 for
the classical approach). In Fig. 8 the potential distribution is
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drawn. From this plot, and even better from the electron den-
sity (Fig. 9), one can nicely deduce the effects of high injec-
tion e.g., the substrate is flooded with carriers, Fig. 10 shows
the magnitude of the electron current density. The peak value

is about 180 A/cm?.

The sharply pronounced peak which

exists at the transition of the Dirichlet boundary condition to

the Neumann boundary condition corresponds to a singularity

Physically interpreted, this effect is

well known as contact-corner-current-crowding.
Fig. 11 shows the final grid for an operating condition of

-20-V (reverse) bias in Finite Element representation. This
mesh consists of 363 points (625 for classical Finite Differences)
which correspond to 277 rectangular elements and 41 transi-
tion elements (123 triangles). The electron density for this
operating point is given in Fig. 12. One nicely observes the

of the carrier densities.
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Fig. 8. Potential distribution (0.7 V) [V] (lin).
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tron density in that region owing to thermal generation. In
Fig. 13 the magnitude of the electron current density is drawn.
The singularity at the contact corner is, although still existent,
not so pronounced. Note that there are about seven orders of
magnitude difference in the peak value compared to Fig. 10.

VI. CONCLUSION

In this paper we have presented an analysis of the steady-
state semiconductor equations and the impact of this analysis
on the design of device simulation programs. By appropriate
scaling we have transformed the semiconductor equatjons into
a singularly perturbed elliptic system with nonsmooth data.
Information obtained from the singular perturbation analysis
has been used to investigate stability and convergence of dis-
cretization schemes with particular emphasis on the adaptive
construction of efficient grids. We have reviewed algorithms
for the solution of nonlinear and linear systems of the dis-
cretized semiconductor equations. An example has demon-
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Fig. 13. Electron current density (—20 V) [A/cm?] (lin).

strated the power and flexibility a device simulation program
can achieve when using the information we have presented for
program design.
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Three-Dimensional Monte Carlo Simulations—
Part |I: Implanted Profiles for Dopants in
Submicron Device

A. M. MAZZONE anD G. ROCCA

Abstract—Monte Carlo methods are used to simulate implants. The
results fall into two different groups. On one side, size-dependent
effects due to the presence of the mask are analyzed and discussed. On
the other side, physical mechanisms dependent on dose and energy, like
channeling and transition crystal-amorphous, are briefly reviewed.

I. INTRODUCTION

HERE IS A continuous trend towards scaled-down de-
vices, and MOS with gatelength of a few thousands ang-
stroms are actively being studied almost everywhere.

If one considers that 1000 A represents approximately two
hundred atomic planes, it is plausible to say that process
modeling must incorporate, today or in the near future, the
methods traditionally used for lattice studies, like Monte Carlo
and molecular dynamics.

These methods, defined “computer experiments” by G. H.
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Vinejard, who lead the modern school of lattice simulation,
circumvent the analytical difficulties connected with transport
and percolation problems treating the given case without any
a priori assumption. Though plagued by a limited knowledge
of atomic parameters, the resulting picture is rarely far from
reality.

In the case of ion implantation, the current means of analyt-
ical evaluation are based on statistical approaches which regard
the target as homogeneous and amorphous. These methods
have reached a high degree of sophistication and the assumption
of a homogeneous target has been actually removed. Smith
and Gibbons [1] used a semi-analytical method to solve in one
dimension the linear Boltzmann equation for a multilayered
target and Christel and Gibbons [2] extended the method to
the ion-beam induced interface mixing. Apart from these
works, statistical approaches generally lead to an accurate eval-
uation of the moments of the ion range and of the deposited
energy distribution. However, an arbitrary choice for the cor-
responding distribution function remains.

0028-0070/84/0100-0064301.00 © 1984 IEEE





