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Two-Dimensional Green’s Function of a Semi-Infinite
Anisotropic Dielectric in the Wavenumber Domain

ALI R. BAGHAI-WADIJI, SIEGFRIED SELBERHERR, SENIOR MEMBER, IEEE, AND
FRANZ J. SEIFERT, MEMBER, IEEE

Abstract—A closed-form expression for the two-dimensional Green’s
function of a semi-infinite anisotropic dielectric in the wavenumber
space is presented, and then the validity and definiteness of the ob-
tained expression for arbitrary values of the wavenumber vector is
proven. The derived Green’s function is the Fourier transform of the
potential response to a point-charge source located on the surface of
a constantly stressed semi-infinite anisotropic dielectric. Therefore it
is the most significant part in calculating the two-dimensional charge
density and field distribution of the surface acoustic wave interdigital
transducers in the case of the electrostatic approximation. The inte-
grals associated with the inverse Fourier transform of the derived
Green’s function are discussed.

I. INTRODUCTION

SING the one-dimensional Green’s function in the

wavenumber space G(k,), one can show that, under
some symmetry conditions [1] or without any kind of re-
strictions on the geometry and electrical characteristics of
the fingers of surface acoustic wave (SAW) interdig-
ital transducers [2], charge density and potential on the
surface can be calculated without much effort—including
floating fingers if necessary. In the cases of greatest prac-
tical interest (aperture-apodized SAW filters, curved-fin-
ger SAW filters), the one-dimensional representation and
analysis of a SAW filter cannot fulfill the severe condi-
tions of a highly standardized design. In these cases the
calculation of two-dimensional charge distribution is in-
dispensible. Following mainly the same formalism as in
the one-dimensional case [2], the first problem arising is
to find the two-dimensional Green’s function in the wave-
number space G(k,, k,). We derive a closed-form expres-
sion for G(k,, k,), and prove the validity and definiteness
of the obtained expression for arbitrary values of the
wavenumber vector and discuss the integrals involved in
the inverse Fourier transform. From a mathematical point
of view, this function is well behaved and, as a conse-
quence of its properties, it is possible to calculate the
charge potential interrelation matrix (CPIM) elements [2)
in closed form. The calculation of CPIM elements is ac-
companied by numerous algebraic manipulations, which
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strongly depend on the form of Gtk,, k,). To emphasize
the eminence of the properties of G(k,, k,) for the evalu-
ation of CPIM elements in closed form, in this paper we
restrict ourselves to the derivation and a theoretical dis-
cussion of G(k,, k).

II. THEORY

We first consider a semi-infinite dielectric with a plane
surface and a set of infinitely thin electrodes deposited on
it. To facilitate one-dimensional (x) analysis, the fingers
may be of infinite length. The electrodes are assumed to
have negligible sheet resistivity. Under these conditions
the charge density o(x, w) and the potential ¢(x, w) at the
surface are related by a convolution equation involving
the Green’s function G(x):

o

Gx — x') - o(x’, w) dx’.

— oo

olx, w) = S M

Assuming o(x, w), o(x, w) to vary as exp (jwt) with
time ¢ and dropping this factor, we have

plx) = S_ Gix — x') - o(x') dx". (2)
The Fourier transform of (2) is [3]
ok = Gk - k). )

G(x) is the potential distribution on the surface if there is
a line charge source on the surface, neglecting piezoelec-
tricity. G(k,) is the Fourier transform of G(x). Piezoelec-
tricity can be accounted for to some extent using the per-
mitivity constants measured under constant stress e,-§ [4].
In the following the superscript T will be suppressed. The
tensor of the permitivity constants (4)

€1t €12 €3
(€) =] en € €3 4
€13 €3 €
is a symmetric positive definite matrix [5]; that is
€ > 0,60 >0,63>0 (5a)
€ € — €1 > 0,6 " €33 — €53 > 0,
€ €3 — €33 > 0 (5b)
det (¢) > 0 (5¢)
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Fig. 1. Point-charge source excitation of a semi-infinite anisotropic di-
electric.

The two-dimensional case (3) has the following form:
ok, k) = Glk,, k) - G(k,, k,). 6)

Glk,, k) is the Fourier transform of the potential distri-
bution on the surface of a constantly stressed semi-infinite
anisotropic dielectric, if a point-charge source is located
on it (Fig. 1).

By substitution one can show that solutions of the form

plx,y,2) = S_G S_m ok, k)

— jlenslessk, + €xslessky) - 2

- exp [ jk,x + jk,y

+ [Pk, k)" - 2] dk, dk, N
with
T
Pl k) =1{") (en | (8a)
y y
2
€1 €12
(er) = ) (8b)
€12 €7
€5 = enless — (e13/€3s)’ (8¢c)
€5 = enley; — (exless)’ (8d)
€12 = €nlesy — €penless (8e)
and
o(x, y,2) = S_ S_ Pk, ky) - exp [jkex + jkyy
— (k2 + k) - 7] dk,dk, &)

satisfy the Laplace equation in substrate and vacuum, re-
spectively. The boundary condition at the surface is

Dz(x’ Yy, O+) - Dz(xv Yy, 0-) = a:(x’ )’) (10)

D, and g, are the z-component of the dielectric displace-

ment D and the charge density on the surface, respec-
tively. Using (7), (9), and (10), we obtain

1
o'Vk3+k§+€33'
- Gk, k). (11
Equation (11) compared with (6) gives G(k,, k,). If there

ok, k) =

Vp ks, ky)
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is no variation in y-direction-(k, = 0), —(_;(k,, k,) reduces
to

Gk = (12)

(o + €33 €) - |k
which is the well-known electrostatic Green’s function for
a line charge source [6], [7]. An analogous statement is
valid for k, = 0. The inversion symmetry of the indices
and the variables of (8) should also be noted; that is

G(1, 2, ky, k) = G2, 1, ky, k). (13)

For completeness we show that p(k,, k,) in (7), (8a), and
(11) can not be negative. With k, # 0, k, # 0 the positive
definiteness of (eg) from (8b) is a sufficient condition for
P(k., k,) being nonnegative, since p(k,, k,) is a quadratic-
form (8a). Now assume (¢p) is a positive definite matrix,
that is

(14a)

The corresponding inequalities for the pair of directions
(1, 3) and (2, 3) are

2 . 2 2
det (ep) = €71 " € — €520 > 0.

€ e — €3 >0 (14b)
€h - €h — € >0 (14¢)

€%, €213, and €% can be easily constructed from (8c), (8d),
and (8¢). Adding (14a), (14b), and (14¢) after some ma-
nipulation gives

* €12€13€23 > 0.
(15)

The left-hand side of the inequality (15) is exactly the
determinant of (¢), which is positive, as stated in (5). The
reversed argumentation also is true: (15) splits uniquely
into the inequalities (14) because of the inversion sym-
metry of the indices 1, 2, and 3 in (14) and (15). There-
fore (14a) is valid, and it implies the positiveness of p(k,,
k).

To emphasize more explicitly the eminence of the pos-
itiveness of p(k,, k,), we will briefly discuss the type of
the integrals that occur in the inverse Fourier transform
from wavenumber space into real space. The latter is a
necessary step for solving the electrostatic problems using
the elegant formalism of the Green’s function in the
wavenumber domain. Following mainly the same solu-
tion procedure as discussed in [2] we obtain relatively
complicated integrals in the (k,, k,)-plane. Transforma-
tion to a polar coordinate system (k,, k,) = (k, ¢), con-
siderably simplifies these integrals. The integral in k is of
the following form (16):

2 2 2
€11€22€33 — €11€33 — €x€13 — €33€Ty — 2

® sin (ka,) sin (kay)
. dk 16
SO ka] kaz ( )
with the solution (17), [8]
r. ! an

2 max (a, a)’
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a, and a, are proportional to sin (¢) and cos (¢), respec-
tively. The integral in ¢ has a more complicated structure.
With y = tan (¢) and a subsequent effortful algebraic ma-
nipulation, one can show that this integral reduces to a
sum of either some integrals that can be directly evaluated
or integrals which can be reduced to the following ty
(18): .
m:q+n

m
d
S,, P21t * Vpaam

depending on the sign of
A=b—-(Bi-D- G-

(18)

where

2

— .2 — -
by =€n, by =€, by = ¢€pn.

€2, €12, and €% are the elements of ( €p) in (8b). Integrals
of the type (18) can be solved in closed fonn [8]. Then

D2.1(n) and p, ,(») in (18) are
pai=b = 1) 9> +2b, g+ (3 — 1)

P22 =b; -0’ +2b, - n + by

P2.2(n) directly reflects the form of p (k,, k). In fact p, »(»)
can be obtained formally from p (k,, k,) by the substitution
(ky, ky) = (n, 1). Therefore p, 5(1) is a quadratic-form.
That means p, ,(n) > O for arbitrary values of 5. The
solution of (18) generally contains radicals of positive
second-order polynomials, arsh ( f(7)) and log (g(n)) with
well-behaved functions f(n) and g(n). Note that an arbi-
trary change of the variable in (18), that is n = h(7), does
not injure the positiveness property of p; 5(1). Exactly this
attribute of p, ,() makes it possible to transform the in-
tegrals to types which are easier to handle. A linear com-
position of the results of the above mentioned integrals
determines in a more or less trivial but effortful manner
the charge potential-interrelation matrix (CPIM) ele-
ments [2].

HI. CoNcLusION

We have derived a closed-form expression for the two-
dimensional Green’s function of a semi-infinite aniso-
tropic dielectric in the wavenumber space and proved the
validity and definiteness of the derived expression for ar-
bitrary values of the wavenumber vector. It is shown that
this function is well behaved, with the pleasant conse-
quence that the integrals occurring in the inverse Fourier
transform can be expressed in closed form. The integrals
associated with the inverse Fourier transform of the de-
rived Green’s function are discussed.

ACKNOWLEDGMENT

Helpful discussions with W. Griebel, M. Kowatsch,
and H. Stocker are acknowledged.

REFERENCES

[1] V. M. Ristic and A. Hussein, **Surface charge and field distribution
in a finite SAW transducer,”” JEEE Trans. Microwave Theory Tech.,
1979, vol. MTT-27, pp. 897-901.

317

[2] A. R. Baghai-Wadji, S. Selberherr, and F. Seifert, ‘*On the calculation
of charge, electrostatic potential and capacitance in generalized finite
SAW structure,’’ in Proc. IEEE Ultrason. Symp., 1984, pp. 44-48.

[3] D. C. Champeney, Fourier Transform and Their Physical Application.
New Jersey: Academic, 1973, pp. 15-20.

[4] B. A. Auld, Acoustic Fields and Waves in Solids. New York: Wiley-
Interscience, 1973, vol. 1, pp. 380-381.

[5] M. H. Protter and H. F. Weinberger, Maximum Principles in Differ-
ential Equations. New Jersey: Prentice-Hall, 1967, pp. 56-61.

[6] R. F. Milsom, N. H. C. Reilly and M. Redwood, ‘*Analysis of gen-
eration and detection of surface and bulk acoustic waves by interdigital
transducers,”’ IEEE Trans. Sonics Ultrason., vol. SU-24, pp. 147-
166, 1977.

[7] D. P. Morgan, ‘“‘Quasi-static analysis of generalized SAW transducers
using the Green’s function method,’* IEEE Trans. Sonics Ultrason.,
1980, vol. SU-27, pp. 111-123.

[8]) I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and
Products. New York: Academic, 1980, pp. 80-81, 414.

Ali R. Baghai-Wadji was born in Marand, Iran,
on May 6, 1953. He received the Dipl. Ing. de-
gree in electrical engineering from the Vienna
University of Technology.

At present he is a Research Assistant at the
same university completing the requirements for
the Dr. Techn. degree. His areas of interest in-
clude the radiation and scattering of piezoelectric
and electromagnetic waves, the development and
application of methods for the analysis and design
of acoustic devices and related problems.

o T

Siegfried Selberherr (SM'79) was born in Klos-
terneuburg, Austria, on August 3, 1955. He re-
ceived the degree of Dipl. Ing. in Control Theory
and Industrial Electronics from the Technical
University of Vienna in 1978.

Since that time he has joined the Institut fir
Allgemeine Elektrotechnik und Elektronik at the
Technical University of Vienna as an assistent
professor. He finished his thesis on two-dimen-
sional MOS-transistor modeling in 1981.

Dr. Selberherr received the **Dr.Emst Fehrer'’
award in 1983. Dr. Selberherr holds the venia docendi on computer-aided
design since 1984. His current topics are modeling and simulation of de-
vices and circuits for application in electronic systems. He authored and
coauthored more than 80 publications in journals and conference proceed-
ings. Furthermore, he wrote Analysis and Simulation of Semiconductor De-
vices. Dr. Selberherr is a member of the Association for Computing Ma-
chinery, the Society of Industrial and Applied Mathematics, and the
Verband deutscher Elektrotechniker. He is Editor of The Transactions of
the Society for Computer Simulation.

Franz J. Seifert (M'79) was born in Vienna,
Austria, in 1933. Parallel to practical work in
electronics, he studied communication engineer-
ing and got his Dipl. Ing. degree in 1961 from the
Vienna University of Technology.

Here, his doctoral thesis contained the devel-
opment of new microwave methods for semicon-
ductor diagnostics, finished by the Dr. Techn. de-
gree in 1965. He attained the Dozent (tenure) in
electronics 1973, and he became Professor in
charge of the Applied Electronics group at the Vi-
enna University of Technology in 1974.

His work and interests, demonstrated by the author- and coauthorship
of many technical papers, five patents, and two scientific awards comprice
SAW filter design, SAW sensor applications, spread-spectrum systems and
microwave applications in industrial measurements. He is a member of the
Austrian Association of Electrical Engineers (OVE).



