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Abstract-We  describe  a  user-oriented  software tool-MINIMOS-for 
the two-dimensional  numerical  simulation of planar MOS transistors. 
The  fundamental  semiconductor  equations  are solved with  sophisticated 
programming  techniques to allow very low  computer costs. The  pro- 
gram is able to calculate the  doping profiles from  the technological pa- 
rameters specified by  the user. A new mobility model has been imple- 
mented which takes  into  account  the dependence on the impurity 
concentration, electric  field, temperature,  and especially the distance 
to  the Si-Si02  interface. The power of the program is shown by cal- 
culating the two-dimensional internal behavior of three MOST’S with 
1-pm gate  length  differing in respect to  the ion-implantation steps. In 
this way, the threshold voltage shift by a  shallow implantation  and  the 
suppression of punchthrough  by a deep  implantation are demonstrated. 
By calculating the  output characteristics without  and with  mobility re- 
duction,  the essential  influence of this  effect is shown. From  the sub- 
threshold  characteristics, the suppression of short-channel effects by ion 
implantation becomes apparent.  The MINIMOS program is available 
for  everyone for  just the  handling costs. 

I. INTRODUCTION 
ERY-LARGE-SCALE LNTEGRATION (VLSI) Of MOS v circuits  made  computer-aided  simulation an urgent ne- 

cessity in  modern MOS transistor design, particularly, as ex- 
perimental investigations  are  very  time consuming,  often  too 
expensive, and  sometimes  not  at all feasible. All the  analytic 
models published use certain  assumptions and regional ap- 
proximations,  which are often so restrictive that  only a very 
limited  predictability of MOS performance is achievable. 
Especially as the  structures have been  more  and  more minia- 
turized,  the applicability of  those simple models  turned  out  to 
be  insufficient.  In  order  to characterize modern devices in  a 
reasonable way,  the designer is forced to  apply higher order 
numerical  models. 

In  the  last  decade, several attempts have been  made to de- 
velop computer-simulation programs  based on two-dimensional 
models  without  too restrictive assumptions  according to physi- 
cal constraints [ l ]  -[lo] . But in almost  every  case,  a  wider 
application of these programs  was frustrated  either  by  limited 
performance  due  to missing numerical stability  or  by  the ne- 
cessity of too large an  amount  of  computer  operating  cost. 

We have developed MINIMOS, a  highly user-oriented  pro- 
gram package for  the  two-dimensional  simulation of planar 
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MOS transistors.  Modern  programming methods ensure  a 
maximum of flexibility and  the required  low computing costs. 
Dynamic  memory  management feasibility  has  been  included 
to adjust automatically  the  actual  memory  requirement. The 
main parts of the  solution  routines are assembly  coded to  
allow a very fast execution.  The  syntax  of  the  input language 
is easy to remember and fully compatible  with a  recently pub- 
lished proposal for a  unified input  syntax  for CAD  programs 
[ 11 ] . In  Section I1 of this  paper  the physical model which is 
implemented  in MINIMOS is described; the numerical treat- 
ment is discussed in Section 111, and  some  typical results are 
shown in Section IV. 

11. MODEL DESCRIPTION 
In  order to accurately analyze an  arbitrary  semiconductor 

structure  under all kinds of operating  conditions,  the basic 
carrier transport  equations in the classical case as first given by 
van Roosbroeck [ 121 must be solved. 

d i v E g r a d $ = - q ( p - n t  N A - N j )  

(Poisson’s equation) (1) 

div Jn - q -= qR 
a t  

Jn = - 4 (p, n grad $ - D, grad n) (4) 
(current relations). 

J p = - q C U p p g r a d i l l + D p g r a d p )  (5 ) 

These given equations can  be solved for  steady-state  oper- 
ation  by an iterative scheme given first  by Gummel [ 131 . 
Normalizing (1)-(5) in  the same way as de Mari [14]  did,  the 
steady-state  equations  become 

div grad $ = n - p - C 

div Jn = R 

div J p  = -R 

Jn = -/A, (n grad $ - grad n) 

J p  = - p p ( p  grad $ + grad p ) .  (6)  

The assumptions, which have to be made to  obtain these  equa- 
tions are 

homogeneity of the  permittivity 

0018-9383/80/08~~0-1540$00.75 0 1980 IEEE  



SELBERHERR et a l . :  TWO-DIMENSIONAL MOS TRANSISTOR ANALYZER 

total  ionization  of all impurities 

C=ND - NA = N ;  - N;i. (8) 

The  model  implemented in the MINIMOS program assumes 
some additional simplifications, which are  good approxima- 
tions  in  most MOS-transistor simulations: 

no  bandgap narrowing 

ni = const (9)  

no recombination  and generation 

R = $  

only channel  carriers contribute  to  current flow 

if n-channel  device: J p  $ 

if p-channel device: Jn = $ (1 1 )  

homogeneous  temperature  distribution all over the device 

T = const, (1 2) 

The device temperature  is  kept  constant,  but can be varied 
within  the range of 250-450 K. 

Thus  the  model is reduced to  the following nonlinear  system 
of partial  differential  equations: 

For  n-channel devices: 

div grad J, = exp (+ - Gn) - exp ( @ p  - +) - C 

div Jn = @ 

Jn = -y, n grad $,, 

G p  = const  (that is: J p  = $). ( 1 3 4  

For  p-channel devices: 

div grad + = exp (+ - Gn) - exp (Q - +) - C 

div J p  = @ 

J p =-/A p P  grad @ p  

Gn = const  (that is: J, = $). ( 1  3b) 

It  should be noted  that  substrate  currents  cannot be  calculated 
with  this  model  directly, because recombination  and gener- 
ation are neglected and  the  quasi-Fermi level of  the  bulk  ma- 
jority carriers is assumed to be constant. However,  a  fairly 
satisfying estimation is obtainable in  calculating the  ionization 
integral over the  whole device [ 1 5 ] .  The  reasonability of  the 
simplifications introduced  thus follows. 

The  most  important  input  parameter is, without  any  doubt, 
the  doping  profile. As two-dimensional  doping profiles have 
not  been  analyzed  in  detail, as far as we know,  the MINIMOS 
program offers several possibilities for  the  definition  of  the 
doping profile [ 161 . First  an  approximation,  which is satis- 
factorily  accurate  in  many cases, can be  calculated by 
MINIMOS itself with  analytic expressions in closed form [17] - 
[ 1 9 ] .  Secondly SUPREM, the  Stanford University B o c e s s  
- Engineering Models program [ 2 0 ] ,  may be used to calculate 
specific  vertical  profile  shapes  very accurately,  which are fitted 
in  the  lateral  direction.  The  third way is t o  define a doping 
profile point by point,  which  of  course is the  most  complicated 

A F 

SEMICONDUCTOR 

Fig. 1. The basic  simulation geometry. 

way,  but  offers  the  practicability  to simulate DIMOS struc- 
tures,  for  example,  and even more  complex  structures. 

The physical parameters,  which have to be modeled are the 
thermo voltage (UT), the  intrinsic  number (ni), and  the  cariier 
mobilities (pn, p,). 

ni = ni (T)  = 3.88 X 10'6T3'2 exp (- 7000/T) ( ~ m - ~ ) ,  

pn = ~ n  ( T , E P , E T , Y , C , ~ )  (cm'/V* S) . '. 

y p  = y p  (T,  Ep,  ET, y ,  C, p )  (cm'/V . s). (14) 

Since  published mobility  models [21]  -[23] do  not seem tb 
be  satisfactory, a completely new mobility  model has  been de- 
veloped [ 2 4 ] .  We assume mobility to be  a function of t e h -  
perature ( T ) ,  the electric-field component parallel to  the direc- 
tion of current  flow (Ep), the electric-field component 
perpendicular t o  the Si-SiOz interface (ET),  the distance to 
this interface ( y ) ,  the  concentration  of  impurities (C), and  the 
mobile  carrier density (n or p ) ,  respectively. The  implemented 
formulas are given in  detail in  Appendix I. 

111. NUMERICAL  TREATMENT 
In  the following explanations  only  n-channel devices are con- 

sidered, as the  only  difference  in p-channel devices is in  the 
change of some signs and  constants. 

The  set  of  equations  determined in [13] with  the electric 
potential (I)) and  the  quasi-Fermi level of  the  electrons ( G B )  
can be linearized and solved either  iteratively [13] or s i m u l -  
taneously.  The  simultaneous  solution is quite a  numerical job 
and  offers major  advantages only under special conditions 
[ l o ]  ; thus we conclude  that  the iterative  way is preferable 
[ 1 6 ] .  To solve the  partial  differential  equations, we have 
chosen  the  method of finite differences. The basic geometry 
we use for  simulation is  given in Fig. 1 ~ 

A. Poisson's Equation 
If we linearize the first of  the  equations in (1.3a) we obtain 

+EXACT = + + 6 

div grad 6 - 6 (n  t p )  = n - p - C - div grad + t 0 (6'). 

( 1 5 )  

Equation (15) is an elliptic differential  equation, a so-called 
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“Helmholtz”  equation.  The  discretization  of  this  equation to 
finite differences can be done  with  standard  methods  [25], 
[26]  without any difficulty. Care has  to be taken  only  with 
the discretization of the  interface (line BE in Fig. l) ,  because 
of the  discontinuity  of  the space  charge. In  the  oxide region, 
Poisson’s equation reduces to  the simpler  Laplacian equation 

div grad $ = 4. (1 6) 

B. Boundary  Conditions for the Electric Potential 
At  the  contacts (AB: Source, CD: Gate, EF: Drain, GH: 

Bulk), which  are assumed to be ohmic,  the  potential is kept 
constant  to  the applied voltage plus the  appropriate  built-in 
voltage caused by  the doping. 

At  the  interface,  the  electric  potential  has  to  obey  the law of 
Gauss (17), which is the guiding principle for  the  discretization 

At the vertical boundaries (AH,  CB,  DE,  FG), the  lateral 
electric  field has to vanish.  This  can easily be  implemented  by 
mirrowing the  electric  potential  at  the  boundary  [25]. 

C. Continuity Equation 
For  the  solution of the  continuity  equation  the  efficient 

difference approximations, w h c h  have been  proposed by 
Scharfetter and Gummel  [23]  ’are  extended  to  two dimensions. 

Because of  the large validity range of these difference  ap- 
proximations,  which was  one of the main reasons for  our  de- 
cision, only a  few  mesh points are required  for  accurate calcu- 
lations. However, it should  be  noted  that various other 
methods have been  published, e.g., [2] , [4]. 

D. Boundary  Conditions for the Continuity Equation 
At  the  source  contact (AB) and the  drain  contact (EF) the 

carrier density is kept  constant  to  the value of the  doping 
concentration. 

At  the  interface (BE) no  current  component in the y direc- 
tion is allowed. 

At  the vertical boundaries (AH,  FG) the  lateral  current  com- 
ponent  has  to vanish. At  the bulk contact (HG) no  current 
components are allowed. 

Some  detail  on  the difference approximations are given in 
Appendix 11. For a  basic background see [25]-1271. 

E. Mesh  and Initial Guess 
The mesh is nonuniform  and generated automatically to 

account  for bias values and  the  doping profile.  It is  made  such 
as to keep  the  potential  drop  between neighboring  mesh points 
to less than 10 thermo-voltages.  The minimum  mesh size is 
25 times 25  nodes;  the  maximum size is 60 times 60 nodes. 
As the  actual  number  of  mesh  points  contributes significantly 
to  the necessary computer  time  and  computer  memory,  the 
estimation  of  the  optimal  mesh size has to  be performed very 
carefully. With similar extensive  care an  initial  solution has to 
be  calculated. We use one-dimensional fits based on  the 
standard  semiconductor  theory followed by a simultaneous 
solution  of a system consisting of  the two-dimensional Poiss1.m 

equation  and  the one-dimensional continuity  equation. If the 
potential  drop  between neighboring mesh  points is too large 
after this simulation  step,  the  actual mesh is refined and  the 
initial solution is recalculated, until a desirable configuration 
is obtained. 

l? Solution 
The SIP method of Stone  [28]  turned  out t o  work  best for 

both  the Poisson’s equation  and  the  continuity  equation.  The 
relaxation  methods [20],  [22]  do  not converge as fast as de- 
sired.  The method  of  Dupont, Kendall, and  Rachford  [29] is 
probably  comparable to  the SIP method concerning solution 
time,  but  the overhead computing seems to be more complex. 
Thus  the SIP method  has  been  preferred. 

A geometrically  spaced  set of six  or  nine cyclically varied 
iteration parameters is used with  the SIP method, similar to 
Stone’s idea. In case of Poisson’s equation,  the  maximum 
iteration  parameter can easily and  directly be estimated as ex- 
plained  in [28]. In case of  the  continuity  equation, a fairly 
small value (0.25)  has  to  be  chosen as the  maximum  iteration 
parameter. An accurate  theoretical  explanation of this fact 
was not  obtainable.  It can be  found in the  rather  poor  condi- 
tion  (non-Hermitian) of the  continuity  equation. 

Local iteration  parameters, as proposed  by  Jesshope [30],  
have been tried,  but  no real improvement  could  be observed. 
The  stopping  criterion  for  the  iteration process is an absolute 
error  in  the electric potential  of thermo-voltages.  This 
small error can  be obtained within  3 to  100 linearization 
cycles at  the  most,  depending mainly on bias values. The  total 
simulation time for one operating  point is within 5 to   60 s 
central processor time  on a CDC Cyber 74  computer  depend- 
ing on bias values and  doping  profile. 

IV. RESULTS 
In  this section we want  to present some typical applications. 

It is not easy to provide interesting results for  the experienced 
reader, which are also impressive and easy to understand  for 
readers with general interest  in modeling but  without specific 
knowledge of MOS devices. We have chosen the  effects of ion 
implantation  on  short-channel devices for the purpose of 
demonstrating  the use of MINIMOS. Three devices are calcu- 
lated whose properties become apparent  from  the original 
simulation  input decks presented in Fig. 2. The  following dis- 
cussion of Fig. 2 shall also demonstrate  the ease of using the 
MINIMOS program. 

The  first line is a title  line, whch  is used only  to  identify  the 
output pages. The  input  syntax is totally based on a master 
key,  key,  and value structure.  The  next  input  line, which is 
the “DEVICE” statement, characterizes the device.  Specified 
is an n-channel device (CHANNEL=N) with  an  aluminum gate 
(GATE=AL), an oxide thickness of  500 a (TOX=500.E-8),a 
channel  width of 10 pm ( w = 1 0 . ~ - 4 )  and a channel length of 
1 pm ( ~ = 1 . ~ - 4 ) .  The “BIAS” statement specifies the  operating 
point. We choose a  drain voltage of 2 V (uD’~.) and a gate 
voltage of 0 V (uG=@). The  substrate voltage is assumed to be 
zero  by MINIMOS, if not specified explicitly. The “PROFILE” 
statement specifies the  substrate  doping  and  the source-drain 
diffusion. In the examples  presented here we used the simplest 
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ONE - MICRON  ANALYSIS  (DEVICE 1) 
DEVICE  CHANNEL=N  GATE=AL TOX-500.E-8 Wx10.E-4 L=l.E-4 
BIAS UD=2. UG=O. 
PROFILE NB=l.E15 ELEM=PH  DOSE=l.ElS  AKEV=4O  TOX=500.E-8 

+ TEMP=1000  TIMEs900 
END 

ONE - MICRON ANALYSIS (DEVICE 2) 
DEVICE  CHANNEL-N  GATE=AL TOXm500.E-8 Wz10.E-4 L=l.E-4 
BIAS UD=2. UG-0. 
PROFILE NB=l.E15 ELEM=PH  DOSE=l.E15  AKEV=4O  TOX-500.E-8 
+ TENP=l000  TIME=900 
IMPLANT  ELEM=B DOSE=3.E11 AKEV=20  TEMP-900  TIME=900 
END 

ONE - MICRON  ANALYSIS  (DEVICE 3 )  
DEVICE  CHANNEL-N  GATE== TOX=500.E-8 W=10.E-4 Ls1.E-4 
BIAS UD=2., UG=O. 
PROFILE NB=l .E15 ELEM=PH  DOSE=l .E15 AKEV=40  T0X~500.E-8 
+ TEMP=1000  TIME=9OO 
IAMPLANT ELEM=B DOSE=3.E11 AKEV=20  TEMP=900  TIME=9OO 
IMPLANT  ELEM=B DOSE=2.E11 WEV=120 
END 

Fig. 2. Some typical input decks. 

way  of  defining a doping  profile,  which is the  direct calcula- 
tion  by MINIMOS. The  other possibilities have been explained 
above.  A substrate  doping  of 10’’ cm-3 ( ~ ~ = 1 . ~ 1 5 )  and a 
source-drain implantation  with  phosphorus (ELEM=PH), an 
implantation  dose of 10’’ cm-’  DOSE=^ . ~ 1 5 )  and an implan- 
tation energy of 40 keV ( ~ K E v = 4 0 )  is specified. The  im- 
plantation is done  through  an  isolation  oxide of 500 A 
(TOX=500.E-8) and an annealing step is performed  at 1000°C 
(TEMP=IOCO) for 900 s ( T I M E = ~ ~ o ) .  The  second  input deck 
has an “IMPLANT” statement,  which defines  a channel  im- 
plantation  with  boron (ELEM=B), a dose of 3 X 10” cm-* 
(DOSE=3.E11), an energy of 20 keV ( ~ K E v = 2 0 ) ,  annealed at 
900°C   TEMP=^^^) for 900 s ( T I M E = ~ o ~ ) .  The third  input 
deck  has  an  additional “IMPLANT” statement specifying  a sec- 
ond,  deeper  channel  implantation  with  boron (ELEM=B), a 
dose of 2 x 10” cm-’ ( ~ o s E = 2 . E 1 1 ) ,  and an energy of 120 
keV (AKEV=120). I t  is assumed that  both  channel  implanta- 
tion  steps are  annealed at  the same  time. It is fairly well 
known  that  the first of our  three  model devices is “normally- 
on”  and  that  the shallow implantation of device 2 is needed 
to  obtain a “normally-off” device with positive threshold volt- 
age. Furthermore,  the  deep  implantation of device 3 is neces- 
sary to avoid punchthrough. These effects will now  be demon- 
strated  by  two-dimensional  plots of the physically  relevant 
quantities in the  interior of the  three  model devices. 

The  calculated  doping  density  distributions are shown in 
Figs. 3-5. From these  figures one  can read the  depth  of  the 
p-n junctions  under  source  and  drain being approximately 
3000 A. The surface concentration of the  source  and drain 
regions is 5 X 10’’ ~ m - ~ .  The effective channel  length is re- 
duced  by  the  lateral  subdiffusion  to  about 0.6 pm.  The shallow 
channel  implantation  for  adjusting  the  threshold voltage is t o  
be  seen in Figs. 4, 5 .  Additionally, Fig. 5  shows the  deep 
implantation  for  punchthrough suppression. The  threshold 
voltage was barely affected  by  the  deep  implantation. 

Fig. 6 shows the  distribution  of  the  electric  potential  for  the 

I? 

Fig. 3. Doping concentration for device 1 (~rn-~). 

I? 

Fig. 4. Doping concentration for device 2 (cm”). 
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\?’ 
Fig. 5 .  Doping  concentration for device 3 (cmJ). 

Fig. 6. Electric  potential for device 1 (UT). 

I? 

Fig. 7.  Concentration of electrons for device 1 (cmJ). 

first  device.  The  drain  contact is on  the  right-hand side.  In 
the  depletion regions of  the reverse-biased drain  bulk  diode, 
the  potential  decreases  approximately linearly  and it is nearly 
constant in the  highly  doped  source  and  drain regions. A 
slight  barrier is visible at  the  source-channel  diode.  The po- 
tential  distribution  for devices 2 and 3 are not shown  here,  be- 
cause  there  are  hardly  any  differences. 

Fig. 7 shows  the  electron  distribution  for  the  first device. 
The  surface  concentration in the  channel is fairly  high  due to 
the  fact of operating in the  strong  inversion  region. As noted 
before,  the  threshold voltage for this  nonchannel-implanted 
device is slightly  negative.  One also can see the carrier  mini- 
mum near  the  drain  contact  representing  the  pinchoff  region. 

Fig. X shows  the  concentration of electrons in the  second  de- 
vice. The  surface  concentration  has  decreased  in  the  channel 
area  by  the  channel  implantation, as expected.  In  spite  of  this, 
there  occurs  somewhat  of  a  carrier  channel  at a depth  of  about 
2000 A. This is caused  by  punchthrough as will become 
clearly apparent  from  the  current-density  distributions. 

Fig. 9 shows  the  electron  distribution in the  third device. 
The  second  implantation results in a monotonic  decrease of 
the carrier  density from  the transistor  surface into  bulk,  which 
indicates  the  suppression  of  punchthrough. 

Fig. 10 shows  the  lateral  current  density  distribution in the 
first  device.  For  better visibility, the  plot  on  the  right-hand 
side shows  the  complement of the  current  density.  In  the 
channel  near  the  source  side  the  current is forced to flow  at 
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the surface  by the transversal component  of  the field. But 
already in  the  middle  of  the  channel, a typical  short-channel 
effect,  one can watch  current spreading  caused by  the drain 
influence.  It also should be noted  that  the  current  channel is 
fairly  wide. The reason for  this  phenomenon i s  to be found in 
a kind of punchthrough  mode  which is partially  suppressed  by 

The lateral current  distribution  and  complement  for  the sec- 
ond  transistor are shown  in Fig. 11. As one  can see, this de- 
vice  is operating  in  the  punchthrough  mode.  The  current flow 
takes place  in  a  wide channel in the  bulk. An additional  thin 
current  sheet  at  the surface is also apparent. 

Fig. 12 shows the  lateral  current  distribution  and  comple- 

results in a  suppression of  punchthrough  in  this  operating 
point.  The  entire  current flows at  the  semiconductor surface. 
The  two small additional peaks in  these  plots  are not  at all 
arbitrary.  They  may easily be understood  by physical  reason- 
ing: the  current  starts t o  flow  in  a thin area  below the source 
contact.  It spreads out in the  n-doped source region first and 
is forced to  a thin  current  sheet  in  the  channel  afterwards.  The 
influence of the drain region widens  this channel again in  the 
pinchoff area. Below the  drain  contact,  the  current flows 
again in a thin area  because it  has to  pass through  the  contact. 

The output characteristics  for  a  gate voltage of 1 V are 
shown  in Fig. 13.  For  comparison,  the  simulation results 
without  mobility  reduction are shown as dashed curves. A de- 
cisive influence of  this  effect can be seen. It is most  pro- 
nounced  for device 1 which hardly shows any  saturation 
without  mobility  reduction. 

Fig. 14 shows the  subthreshold characteristics for  two differ- 
ent drain voltages. The full drawn lines denote  2 V, the dashed 
lines 100  mV.  The slope is  the same for all three devices at a 
drain voltage of 100 mV.  It is decreased at  2-V  drain voltage 
for devices 1  and 2 by an additional  punchthrough  current. 

which is caused by  the  short-channel  effect, is also a minimum 
for device 3. 

Comparison  of MINIMOS simulation results with  experi- 
mental  data  has  shown  that good  agreement can be obtained 
[16]. We do  not  repeat this comparison  here because  a real 
proof of the validity of a simulation program  like MINIMOS is 
only possible in comparing a wide range of  different devices by 
various  users. Therefore, we invite every interested reader to 
check MINIMOS himself, as it is available to  everybody  for 
just  the handling costs. 

Lengths in Microns the high inversion condition. 

€10 ment  for  the  third device. The  second  channel  implantation 

E5 

n? 

Fig. 8. Concentration of electrons  for  device 2 (cmJ). 

LenSths in Microns The  shift  of  the characteristics for  different drain voltages, 

~ 1 9  

€10 

E5 
o? V.  CONCLUSION 

In this  paper we describe  a user-oriented program package 
for  the  two-dimensional numerical simulation  of planar MOS 
transistors. Sophisticated programming techniques  and  op- 
timal numerical  algorithms allow very low computer costs. 
Our  motivation  for  the development of this program was 

\? to gain more principle  physical understanding of MOS 
Fig. 9. Concentration of electrons for device 3 ( ~ r n - ~ ) .  transistors, 
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Fig. 10. Lateral  current  density for device 1. 

Fig. 11. Lateral  current  density for device 2. 

Fig. 12. Lateral c ~ r r e n t  density for device 3. 
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UG .1v 
I 

b UDIV 

0 1 2 3 

Fig. 13. Output  characteristics  with UC = 1 V. 

Fig. 14. Subthreshold  characteristics  with UD = 0.1 V (dashed  lines) 
and UD = 2 V (full drawn  lines). 

t o  bridge the gap between  technology modeling and circuit 
design, 
to provide both designers and  technologists  with an easy 
usable but  yet  accurate MOS simulation program. 

It  has been shown  in this  paper that these goals have been 
achieved by  the program.  This has been demonstrated  by 
calculating the two-dimensional  shapes of  the relevant physical 
quantities  and  the current-voltage characteristics  of 1 -pm  gate 
length MOST'S differing  in the  ion  implantation  steps. Many 
features become apparent,  which are not accessible to mea- 
surement  such as the carrier density  and  current  density dis- 
tributions  within  the devices. The same holds  true  for  the 
influence of mobility  reduction  effects,  which is directly seen 

from  two  sets of output characteristics. It is hoped  that 
MINIMOS will be  broadly used as it is available to  everyone 
and  keeps  the  computer costs uniquely  low. 

APPENDIX I 
In  this  section  the  formulas  for  electron  and hole mobility 

are given. The detailed  derivation with all references will be 
published separately 1241. 

A. Electron Mobility 
The mobility is merged out  of  two  components  mainly 

&(T, Ep,  ET,y, C, n )  = (l/pLIp t l/pEPETP)-'/P. 
The merging function is a type  of Mathiessens rule with a tem- 
perature  dependent weight [ 3 2 ]  

p = 2.57 X To.66. 
pLI  describes the  influence  of  lattice  scattering,  impurity 

scattering,  and screening as a function of temperature.  Thus 
pLI  = pLI(T, C, n). 
pEPET describes the  influence of velocity saturation and 

surface scattering as a function of temperature and the dis- 
tance  to  the  Si-Si02  interface.  Thus 

~EPET=~EPET(T,E~,ET,Y). 
pLI  is also constructed  from  two  components; where p L  de- 

notes  the  pure  lattice  mobility as a function of temperature 
and P I  denotes  the  impurity  scattering  mobility  after Brooks 
P I  

1 . 1 ~  = 7.12 x (cm2/V s) 

7.3 x 1017~1.5 
1.11 = c . f (1 .52X 1O1'T2) (cm2 /V s) 

n 

with f(x) = In (1 t x) - x/( 1 t x). 

given first by  Debye [34] 
These two  mobility  components  are merged by a formula 

with 

pEPET is also built  up  from  two  parts, where PEP describes 
the  influence  of velocity saturation  (hot-electron  effect) and 
PET models surface  scattering 

I .53 X 109 ~ - 0 . 8 ~  PEP= - 
-EP 

PET= IO8 * (y t 2 X 10-7)1/2 * h (ET)-'/2 (cm2/V * s) 

with h (x) = x t (x2)1/2 . 

rule with  the weight 2 
These two  parts are combined empirically with a Mathiessens 

pEPET= (1/pEP2 + 1/pET2)-'/2. 
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Some  of  the  constants given in this  survey  are  certainly  de- 
batable  and will probably be updated  after  modeling  a  wide 
range of  different  types  of devices. However, using these 
values we have obtained so far excellent  quantitative agree- 
ment of simulation  and  measurement  in  our  studies. 

B. Hole  Mobility 
As the  formulas  for  hole  mobility  are  identical  according  to 

the  mathematical  structure  with  the  formulas  for  electron  mo- 
bility,  they are just  summarized in this  section  in  a  straight- 
forward  manner to  show  the  relevant  constants. 

Let 

p L  = 1.35 X 10' T-2*2  (cm2/V - s) 

and 

then 

pLI = p L  (1 + g  ( ( y z  )) 
Let 

1 .62 x 108 T - 0 . 5 2  
PEP = 

EP . ( y  y + + 4 x  2 x 10-7 1 0 - ~ ) l P  
(cm2/V s) 

and 

PET= 2.6 x 10' ( y  + 4 x 1 0 - ~ ) ' / ~  . h ( - E ~ ) - ' / ~  

(cm2/V * s) 

then 

pEPET=  (l/pEP2 + l/pET2)-'12. 

Let 

0 = 0.46T0*17 

then 

p p  (T,  E ~ ,  E T ,   y ,  c, p )  = ( I / ~ L I ~  t I / ~ E P E T P ) - ~ I P .  

The  functions f, g,  h are  identical  for  electron  mobility  and 
hole  mobility. 

APPENDIX I1 
In this section  some  formulas  for  the  discretized  Poisson 

equation  and  the  discretized  continuity  equation  are given. 
Fig. 15 shows  a  typical  finite-difference  node  scheme to which 
we refer in the  following  formulas. 

A.  Poisson's Equation in the  Semiconductor  Region 
Let 

eii = 0.5 (xi + xi-1) (yj  + Yj-1) 

and 

&j = (Yj + Yj-1 )/xi  

gtj = (xi + xi-1 )/Yj 

Fig. 15. Typical node for finite differences. 

(Bernoulli  function) 
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Interactive  Two-Dimensional  Design of Barrier- 
Controlled MOS Transistors 

SALLY LIU, BERNARD HOEFFLINGER,  MEMBER, IEEE, AND DONALD 0. PEDERSON,  FELLOW, IEEE 

Absrruct-An interactive  program has been  developed for  the graphic 
generation and  the  solution of two-dimensional impurity, carrier, po- 
tential, and field distributions in small-geometry MOS transistor  con- 
figurations. Emphasis is placed on conversational operation  and 
three-dimensional  display on a  graphics  terminal with a generation  rate, 
for  any self-consistent  two-dimensional solution, of less than few min- 
utes  for each computation  and drawing. Although  this  limited the 
approach to a solution of the  potential problem only,  the barrier- 
controlled characteristics in weak inversion and weak injection (punch- 
through) are produced  efficiently and provide quantitative  data  for 
slopes, threshold voltages, and  punchthrough voltages, as well as their 
two-dimensional dependence on device geometry, doping, and terminal 
voltages. Examples are presented for NMOS transistors  with  various 
enhancement  and buried  channel implants. The program is useful both 
as a  pre-selector for  structures to be simulated  with  a more  elaborate 
two-dimensional potential  and  transport program and as  a generator of 
parameters for a device model in a  circuit  simulator. 

W 
I. INTRODUCTION 

ITH DECREASING transistor dimensions, it  has be- 
come  more  difficult  to describe MOS transistors  with 

equations  that are simple enough  for  hand  calculations  or  pro- 
grammable  calculators and  yet retain sufficient accuracy to 
provide  useful information  about  the device characteristics 
[ l ]  . Since  transistor models are  used widely in circuit  simu- 
lators, device models  compatible  with  these  simulators have 
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received widespread attention. Current-charge-voltage equa- 
tions  with sets of “device parameters” are often used [2],   [3].  
Look-up  tables  for  current,  capacitance,  and voltage have be- 
come a feasible alternative when dealing with large circuits 
[4] ,  [S I .  Both  types  of  transistor  representations require 
either available device data  with  parameters  extracted  from 
them [ 6 ] ,  [7],   or parameter  estimates  obtained  from  one- 
dimensional or pseudo-one-dimensional  physical  models of 
the transistors [ 11 . 

For  the design of a new generation of  transistors,  an im- 
proved form  of  computer-oriented modeling is required.  The 
numerical solution  of  the two-dimensional potential  and trans- 
port  equations can  describe integrated field-effect transistors, 
and significant contributions  to  this  problem have evolved 
over the past ten years [ 8 ]  - [ l o ] .  In  this  activity,  initially, 
idealized impurity  distributions  and boundaries have been 
assumed to facilitate solutions. However, with very small de- 
vice geometries, modern process simulators show extremely 
inhomogeneous two-dimensional impurity  distribution  and 
shaped boundaries,  which  must  then be considered in the  po- 
tential  and  transport  solution. 

One way  in attacking  this  complex  problem is the use of 
very capable maxicomputers, selecting  a  sample situation, and 
developing  a solution  with every possible effect included. Yet 
what is needed even here is a more limited computer program 
which is efficient enough to offer quick solutions  at  the  de- 
signer’s desk.  In  particular, a rapid interactive design capacity 
needs to  be established  including  two-dimensional device 
geometries, impurity  distributions,  and  solutions  for  at least 
the  most  important device characteristics. 

In the  work  reported  here, program TWIST (Two-dimen- 
sional  Interactive Simulation of MOS Transistors) is developed 
based on a minicomputer  together  with a  graphics  terminals. 
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