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ABSTRACT 

The fundamental transient semiconductor device equations are scaled appropriately 

such that a singular p·erturbation problem J s obtained. The singular perturbation 

parameter 1-2 (which is physically identif ... ed as the sauare of the minimal Debye length 

of the device under consideration) appears as multiplier of, the Laplace-operator 

in ~oisson's equation. We derive asymptotic expansions for the solutions of the 

semiconductor problem as~~ 0 by splitting up the solutionsinto (spatially) 

slowly varying'and fast varying terms. The fast varying terms (layer te~ms) dominate 

the behaviour of the solution in thin regions (layer reaions) about· junctions between 

differently doped areas of the device (for example pn-junctions) and decay 

exponentially away from the junctions. The slowly varying terms (reduced solutionP) 

solve the 'zero - space - charge - approximation' and are independent of 1-. 

The local transient behaviour of the potential and the carrier densities is 

used to construct efficient spatial grids and time step-sequences f.?r discretisation 

methods by equidistributing the local discretisation error. It is demonstrated that 

equidistributing meshes can be chosen such that the number of grid points is 

independent of the perturbation parameter A (and only depends on the bias and the 

prescribed error tolerance) . We illustrate the grid construction by presenting 

numerical results for the transient Gummel - algorithm applied to a one - dimensional 

diode. 
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1. THE SINGULARLY PERTURBED SEMICONDUCTOR DEVICE EQUATIONS 

The basic transient semiconductor device equations are ~sing standard notation) 

(see Van Roosbroeck (1950)) 

(1.1) (a) s L'iljl C{ (n - p - C) 

(1.1) (b) nt div (Dn Vn µnn Vijil R (n,p) 

(1.1) (c) pt div (DP Vp + µpp VtjJ) R (n,p) 

in some bounded spatial domain P. representing the device geometry and t > 0 • 

(1.1) is supplemented by mixed boundary conditions. ljl, n and pare prescribed at 

Ohmic contacts, the Dirichlet - boundary condition for 1~ is time - varying, those 

for n and p are time - indeoendent and Vljl, Vn Vp vanish at insulatinq seqments. 

Also semiconductor - oxide interfaces and Schottky contacts can be included into 

the followinq analysi~. 
The detailed form of the boundary conditions and of the recombination - generation 

term R is insignificant for the following discussion. Also initial conditions 

1jJ (t = 0), n (t = 0), and p (t = 0), which fulfill (1.1) (a) are given. 

We define (assuming that Dn,p and µn,p are constant) : 

(1. 2) max lei , 
(J 

diam (.\l) , 

and employ the following scaling (see Markewich, Ringhofer, Selberherr and Langer 

(1982) and Markewich (1983)) : 

where 

scaled 

With 

(1 .3) (a) ljls -1.. n 
UT ' ns c 
+ 

..t... (1 .3) (b) + x 
ts XS T T 

+ is the x spatial (independent) variable 

quantities. Then (1.1) transforms (after 

(1 .4) (a) n - p - D 

(1.4) (b) div Vn n llljl 

(1 .4) (c) div Vp + p Vljl 

S (n,p) R (Cn,Cp) and 

( 1. 5) r ' i 2 ;_Q_; 

l i J 

D 

and the subscript s denotes the 

dropping the subscript s) to 

S (n,p) ) t > 0 

+ x s n 

S (n,p) 

Where AD is the minimal Debye length of the device under consideration. 
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The scaling described above and the scaled problem (1.4) change slightly when 
on,p and µn,p are not constant but it is completely sufficient to use (1.4) for 

conceptual considerations. 

Note that (for modern Silicon devices) T is of the same order of magnitude 

as the electron - and hole - lifetime. 

Typically, 1.2 « 1 (e.g. 1. 2 • 10-• for a Silicon device with .!. = 5 • 10-• cm 

and a maximal doping of c 1oi 7 cm- 3 ), therefore (1.4) constitutes a singularly 

perturbed boundary value problem. For simplicity we assume that the device we consider 

has only one abrupt pn - junction r . That means that the scaled doping profile D 

has a jump - discontinuity across r . Therefore the solutions n and p of the 

reduced problem (that is (1.4) with A= O , also referred to as 'vanishing - space -

- charge - approximation' ) are discontinuous across r and (1.4) (b) (c) imply 

that the reduced potential iii ha.s a jump - discontinuity across r, too. 

Singular perturbation theory can be used to show that the reduced solutions 

n, p and W , subject to appropriate boundary conditions, interface conditions at r 
and the reduced initial conditions n (t = O) , p (t = O) and W (t = O) are close 

to the 'full solutions' n , p and * (the solution of (1.4)) away from r and 

from an when A is small and that an internal layer (a region of fast variation) 

occurs at r . It also can be shown that no layer occurs at Ohmic contacts and at 

insulating segments ( a boundary layer generally occurs at Schottky contacts and at 

oxide - semiconductor interfaces) (see Markewich (1983)). 

In order to obtain a uniform approximation to Vi ' n and p correction terms 

$ ' n. and p have to be added to iii ' n and p These correction terms fulfill 

(1. 6) I 
;p [ t. s,t J I ' I n. ( t. s,t J I ' I p [ f' s,t JI ;:; 

:> Ci (s,t) exp (-C2 (s,t) ~ ) 

where r r (x) denotes the distance from x to r , s s (x) is the point 

on r closest to x and Ci , C 2 > 0 depend on the potential drop across r (at s) 

at time t (see Markewich (1983)). The layer terms decay exponential.ly away from r . 
Estimates for the derivatives of the layer terms with respect to r and s are 

obtained by differentiating the right hand side of (1.6). Their derivatives with 

respect to t are uniformly bounded as A + O+. 

It can be shown that iii + $ , n + n and p + p approximate the solution of 

11.4) Vi , n and p resp. uniformly (in A ) throughout n for t > O (if the 

potentials applied to the Ohmic contacts approach stationary limitsas t + =). 

The derivatives of the solutions * , n , p in perpendicular direction to the 

junction are large (at most O (A~i) for the i-th deriv~tive), those in tangential 

direction and in t - direction are uniformly bounded in A • 

Qualitatively, the results remain valid for doping profiles which are exponentia·lly 

graded at junctions and analogous asymptotic results hold close to oxide - semi -

conductor interfaces (inversion layers) and Schottky contacts. 
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2. DIFFERENCE METHODS 

We assume that Gummel's method is used for the time discretisation of (1.4) 

(see Mock (1976)1, that the Laplacian is discretised with the usual second order 

accurate S'-'heme ( 7 points in three spatial dimensions, 5 points in two spatial 

dimensions and 3 points in one spatial dimension) and that the spatial operator 

in the continuity equations is discretised with the Scharfetter - Gummel - scheme 

(see Markowich, Ringhofer and Selberherr (1982)). 

As basic concept for the grid generation we use equidistribution of the local 

discretisation error combined with the finite - boxes - approach (see G. Franz 

et al (1982)). Since the Scharfetter - Gummel - method is uniformly (in A) 

convergent, it suffices to equidistribute the functional 

(2 .1) m 
E iji (l/J) 

. A.' h:Xm 
l/Jxxx (xi, yj, zi, tm) + 

,, h~ l/Jyyy (xi' yj, "i' i J 

+ \' h zm I l/Jzzz (xi' yj, Z i I tm) + titm I l/Jt (xi' y. I zi, i ] 

tm) 

tm) 

where h ~rn' h~ and h zm denote the spatial mesh - sizes in corresponding direction 
J i 

and tit is the m-th temporal mesh - size (tm+1 = t + tit xi+1 = x. + h ~m in the 
m m m l. l. 

m-th t me step & analogously for Yj+ 1 and zi+1) · 

E~ji (l/J) is (approximately) the local discretisation error of Poisson's equation. 
m Equidistribution of this term means that the mesh is chosen such that E iji (l/J) = O(o) 

on Q x [O,T] , where is the accuracy parameter and [O,T] is the desired 

simulation time - period. (1.6) implies that equidistributing spatial grids are 

exponentially graded near junctions. Away from junctions the spatial grid - sizes 

should be limited by O (o) (since the continuity equations have no multiplying 

factor A2 ) • 

Since l/Jt is uniformly bounded (in A ) time steps of width at least O (o) can 

be chosen. Note that the spatial mesh - sizes generally depend on the time step 

(moving grid) . This is due to the fact that the widths of the junction - layers 

depend on the applied potentials (the layers can shrink and extend, but do not 

move away from the junctions as t increases). Therefore spatially intermediate 

values for the discrete solution have to be obtained by interpolation. Of course 

time steps are allowed to increase when l/J (i,tl gets close to its stationary 

limit l/J (i,®l 

To illustrate the grid construction we take a one· - dimensional .diode (with 

the pn - junction at x = 0) and obtain 

(2.2) E~ (l/J) "!?- h m I l/Jxxx (xi' tm) + tit I l/Jt (xi' tm) l. i m 

(1. 6) yields 

(2. 3) E~ (l/J) h~ -c l.as.1J 
titm ! l/Jt (xi' tm) .. _]._ e m A + 

l. 
A. 

inside the layer, where cm only depends on the bias applied at t tm 
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The optimal equidistributing spatial grid therefore is 

(2.4) h.m 
1 

lltJ o >. e Cm >. 

(see Ascher and Weiss (1981)). The number of grid points inside the layer is O (o1 ) 

(and is therefore asymptotically independent of >. !) 

Spatial grids for two dimensional problems are constructed in 

Ringhofer and Selberherr (1982). 

The time - grid is chosen such that 

(2.5) 

holds (see Chong (1978)). 

Markewich, 

Of course, the equidistribution technique can be applied to other time -

discretisation - methods by modifying the local error functional (2.1) (see Mock 

(1976) for other discretisation schemes). 

The equidistribution technique was used for the simulation of a one - dimensional 

diode (with t 2.5 x 10-3 ; c = - 10 17 in [-t,-;Y,tJ c = 10 15 in C;~t,t] 

that gives >!- = 2.6744 x 10-7 ) with the applied bias shown in Figure 1. 

The accuracy parameter was set to 10-2 and between 120 and 135 spatial grid 

points were used (the exact number depends on the time step). 305 time steps were 

used on the simulation interval [ O, 2. 3 J • Figure 2 she· s the potential distribution 

and Figure 3 the electron density. The accumulation of electrons during the high -

injection time interval [0.5,1] is clearly visible. It can be seen that the layer 

width depends on time (it is largest in the high - injection time interval). 

A discussion of the convergence properties of discretisation schemes for 

Poisson's equation when equidistribution is relaxed , is given in Markewich, 

Ringhofer and Selberherr (1982) for the stationary case.The results carry over to the 

parabolic semiconductor problem. 

i 
~1 

i 
.,.4 

"',I 

0 

F'igure 2 

.: 

~i 
I 
i 

~ ! o,s i ~,s. 
' Figure 1 tp] 

I 
rJ o. 
. ! 

i 
~i 

t 

Figure 

89 



3. REFERENCES 

U. Ascher and R. Weiss ( 1981) 

'Singular Perturbation ~robleMs I 

First Order Systems with Constant Coefficients' 

to appear in SIAM J. Numer. Anal. 

A. F. Franz , G. A. Franz , S. Selberherr , C. A. Ringhofer and P. A. Markewich 

( 198;) 

'Finite Boxes : A Generalisation of the Finite Difference Method Suitable for 

Semiconductor Device Simulation' 

presented at the conference on 'Numerical Simulation of VLSI Devices'. Boston, 1982 

P. A. Markewich , c. A. Ringhofer , s. Selberherr and E. Langer (1982) 

'A Singulary Perturbed Boundary Value Problem Modelling A Sel'liconductor Device' 

to appear in SIAM J. Appl. Math. 

P. A. Markewich , C. A. Ringhofer and S. Selberherr (1982) 

'A Singular Perturbation 11.pproach for the Analysis of the Fundamental 

Semiconductor Equations' 

presented at the conference on 'Numerical Simulation of VLSI Devices'. Boston, 1982 

P. A. Markewich (1983) 

'Asymptotic Analysis of the Fundamental Semiconductor Device Equation' 

to appear as MRC - TSR 

M. Mock ( 1976) 

'Time Discretisation of a ~onlinear Initial Value Problem' 

Journal of Comp. Physics, Vol 21, pp 20 - 37 

W. v. Van Roosbroeck (1950) 

'Theory of Flow of Electrones and Holes in Germanium and other 

Semiconductors 1 

Bell Syst. Techn. Jour:1dl, Vol 29, pp S60 - 607 

T. H. Chong (1978) 

'A Variable Mesh Finite Difference Method for Solving a Class of 

Parabolic Differential Equations in One Space Variable' 

.:-:I~·1 J. Numer. _l\nal, Vol 15, :Jo 4, pp 835 - 857 

90 


