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ABSTRACT - The advent of Very Large Scale Integration has 
been an incentive to concentrate-persistently on device 
modeling. The fundamental properties which represent the 
basis for all device modeling activities are summarized. 
The sensible use of physical and technological parameters 
is discussed and the most important physical phenomena 
which are required to be taken into account are 
scrutinized. The assumptions necessary for finding a 
reasonable trade-off between efficiency and effort for a 
model synthesis are recollected. Methods to bypass 
limitations induced by these assumptions are pin-pointed. 
Simple and easy to use formulae for the physical parameters 
of major importance are presented. The necessity of a 
careful parameter-selection, based on physical information, 
is shown. Some glimpses on the numerical solution of the 
semiconductor equations are given. The discretisation of 
the partial differential equations with finite differences 
is outlined. Linearisation methods and algorithms for the 
solution of large sparse linear systems are sketched. 
Results of our two dimensional MOSFET model - MINIMOS - are 
discussed with typical applications. Much emphasis is laid 
on the didactic potential of such a complex high order 
model. 

1. INTRODUCTION 

The first integrated circuits which just contained a few 
devices became commercially available in the early 1960's. Since 
that time an evolution has taken place so that today the 
manufacture of integrated circuits with over 400.000 transistors 
per single chip is possible. This advent of the so-called Very
Large-Scale-Integration (VLSI) certainly revealed the need of a 
better understanding of the basic device physics. The 
miniaturization of the single transistor, which is one of the 
inseparable preconditions of VLSI, brought about a collapse of 
the classical device models, because totally new phenomena 
emerged and even dominated the device behaviour. One consequence 
of this evidence led to an unimaginable number of suggestions of 
how to modify the classical models to incorporate various of the 
new phenomena. Additionally new activities have been initiated 
to explore the physical principles which make a device 
operationable. The number of scientific publications which 
utilize the terms "device analysis", "device simulation" and 
"device modeling" (c.f ./3/, /41/, /59/) grew in an incredible 
manner. 
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At first it seems necessary to clarify these frequently used 
terms to facilitate the intelligibility of the subsequent 
chapters. Consulting a dictionary one will find among many more 
the following interpretations: 

Analysis 
e separation of a whole into its component parts, possibly 

with comment and judgement 
e examination of a complex, its elements, and their 

relations in order to learn about 

Simulation 
• imitative representation of the functioning of one system 

or process by means of the functioning of another 
• examination of a problem not subject to experimentation 

Modeling 
• to produce a representation or simulation of a problem or 

process 
• to make a description or analogy used to help visualize 

something that cannot be directly observed 

Therefore, analysis is at least intended to mean "Exact 
Analysis" and simulation must inferentially mean "Approximate 
Simulation" using only to some extent physically motivated 
models. Modeling is necessary for analysis and simulation, but 
with a different objective. However, any model should at least 
reflect the underlying physics. 

The characteristic feature of early modeling was the 
separation of the interiour of the device into different regions, 
the treatment of which could be simplified by various assumptions 
like special doping profiles, complete depletion and 
quasineutrality. These separately treated regions were simply 
connected to produce the overall solution. If analytic results 
are intended, any other approach is prohibitive. Fully numerical 
modeling based on partial differential equations /117/ which 
describe all different regions of semiconductor devices in one 
unified manner was first suggested by Gummel /52/ for the one 
dimensional bipolar transistor. This approach was further 
developed and applied to pn-junction theory by De Mari /27/, /28/ 
and to IMPATT diodes by Scharfetter and Gummel /93/. 

A two dimensional numerical analysis of a semiconductor 
device was carried out the first time by Kennedy and O'Brien /62/ 
who investigated the junction field effect transistor. Since 
then two dimensional modeling has been applied to fairly all 
important semiconductor devices. There are so many papers of 
excellent repute that it would be unfair to cite only a few. 
Recently also the first results on three dimensional device 
modeling have been published. The time dependence has been 
investigated by e.g. /67/, /78/ and models for three space 
dimensions have been announced by e.g. /18/, /125/, /126/. 

In spite of all these important and successful activities, 
the need for economic and highly user oriented computer programs 
became more and more apparent in the field of device modeling. 
Especially for MOS devices which have evolved to an incredible 
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standard, modeling has become inherently important because 
current flow controlled by a perpendicular field is an 
intrinsically two dimensional problem. One such program which 
has been applied successfully in many laboratories is called 
CADDET /113/. We have also tried to bridge that gap and 
developed MINIMOS /95/ for the two dimensional static analysis of 
planar MOS transistors. 

In the next chapter the fundamental properties which are the 
basis for all device models are summarized. Much effort is laid 
on the documentation of various physical effects which possibly 
have to be taken into account when synthezising a device model 
for some special application. The assumptions which are usually 
made to ease modeling are presented and their validity is, at 
least qualitatively, discussed. Simple and easy to use formulae 
are presented which allow phenomenological simulation of the most 
important physical parameters with which the modelist has to 
deal. In the third chapter analytical results of investigations 
about the semiconductor equations are presented. In the fourth 
chapter the numerical solution of the basic semiconductor 
equations is discussed. The two main methods for the solution of 
the differential equations (i.e. finite differences and finite 
elements) are briefly compared. A few linearisation schemes are 
presented and judged for adaequacy in terms of effort and 
efficiency. Classical algorithms for the solution of the sparse 
algebraic systems which are obtained by linearisation of the 
discrete semiconductor equations are explained in the fifth 
chapter. The sixth chapter entirely deals with applications of 
MINIMOS. 

Throughout this paper all constants and quantities are given 
in the following units, if not specified otherwise: lengths in 
cm, times in s, temperature in K, voltages in V, currents in A. 
The units are often omitted to gain transparency in the formulae. 

2. SOME FUNDAMENTAL PROPERTIES 

To accurately analyze an arbitrary semiconductor structure 
which is intended as a self-contained device under various 
operating conditions, a mathematical model has to be given. The 
equations which form this mathematical model are often called the 
fundamental semiconductor equations; these will be discussed in 
the first section of this chapter. 

The second section will deal with assumptions which have to 
be made for special applications additionally to those which have 
already been used in the derivation of the equations and which 
are beyond the scope of this presentation. Furthermore, all 
quantities which are involved in the basic equations will be 
outlined more or less qualitatively. It will become apparent 
that the fundamental equations employ a set of physical and 
technological parameters. An in-depth analysis of all these 
parameters is far f rorn being finished at the moment - or the 
results of such an analysis are of overwhelming complexity -
because of inherent methodical difficulties. 

The third section will deal with additional assumptions 
which can be made to ease and speed up models for MOS-devices. 
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The topic of the fourth section of this chapter is the 
description of some suggestions for a heuristic simulation of the 
most important parameters (i.e. mobility, generation/ 
recombination) based, as it were, on physical principles. 

2.1 The Fundamental Semicond~£_!:_or Equations 

The most familiar model of carrier transport in a 
semiconductor device has been proposed by Van Roosbroeck /117/. 
It consists of Poisson's equation (2.1), the current continuity 
equations for electrons (2.2) and holes (2.3) and the current 
relations for electrons (2.4) and holes (2.5) 

div c grad 'fl = -q. ( p - n + c ( 2 .1) 

->. 

div J = -q. ( G - R ( 2. 2) n 
~ 

div J = q. ( G - R ( 2. 3) p 
->. 

J = -q· ( P ·n·grad 'II - D n·grad n ( 2. 4) 
n n 

->. 

J = -q· ( P ·p·grad 'II+ D ·grad p ( 2. 5) 
p p p 

These relations form a system of coupled partial 
differential equations. Poisson's equation, which is one of 
Maxwell's laws, describes the charge distribution in the interior 
of a semiconductor device. The balance of sinks and sources for 
electron- and hole currents is characterized by the continuity 
equations. The current relations describe the absolute value, 
direction and orientation of electron- and hole currents. The 
continuity equations and the current relations can be derived 
from Boltzmann's equation by not at all trivial means. The ideas 
behind these considerations cannot be presented here due to 
limited space. The interested reader should refer to /117/ and 
its secondary literature or text books on semiconductor physics 
e.g. /12/, /56/, /94/, /101/. 

However, it is of prime importance to note that the 
equations (2.4) and (2.5) do not characterize effects which are 
caused by degenerate semiconductors (e.g. heavy doping). /68/, 
/115/, /119/ discuss some modifications of the current relations, 
which partially take into account the consequences introduced by 
degenerate semiconductors (e.g. invalidity of Boltzmann's 
statistics, bandgap narrowing). These modifications are not at 
all simple and lead to problems especially for the formulation of 
boundary conditions /83/, /118/. In case of modeling MOS 
devices, degeneracy is, owing to the relatively low doping in the 
channel region, practically irrelevant. For modern bipolar 
devices, though, bearing in mind shallow and extraordinarily 
heavily doped emitters, it is an absolute necessity to account 
for local degeneracy of the semiconductor. 

Just as further examples (2.4) and (2.5) do not describe 
velocity overshoot phenomena which become apparent at feature 
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lengths of O.lPm for silicon and lPm for gallium-arsenide /46/; 
and certainly no effects which are due to ballistic transport, 
the existence of which is still questionable /55/, are included. 
The latter start to become important for feature sizes below 
O.Olprn for silicon and O.lpm for gallium-arsenide /45/. 
Considering the state of the art of device miniaturization, 
neither effect has to bother the modelists of silicon devices. 
For gallium-arsenide devices new ideas are mandatory for the near 
future /46/, /80/, /79/. 

2. 2 Assumptions and Dis~ussion of Parame.!:~!.§_ 

It is imperative to discuss the parameters of the 
semiconductor equations to get some insight into the complexity 
of that mathematical model and the difficulty of a more or less 
rigorous solution. 

The permittivity£ in Poisson's equation in the most general 
case is a rank two tensor. Because all common semiconductor 
materials grow in cubic crystal structure and because silicon
dioxide is amorphous no anisotropy exists and the permittivity 
can be treated as a scalar quantity. Furthermore, one can savely 
assume that the permittivity is homogenous with sufficient 
accuracy for even degenerate semiconductors. 

The electrically active net doping concentration C in 
Poisson's equation is the most important technological parameter. 
To obtain this quantity by mathematical analysis /37/ is at least 
as cumbersome as to accurately analyze some semiconductor device, 
because the physics of the technological processes which 
determine the doping concentration still lacks basic 
understanding. The need of modeling in this area is drastically 
increasing in view of VLSI devices. One-dimensional process 
modeling is fairly well established nowadays, but two-dimensional 
simulation is just appearing /37/, /112/. Some glimpses of 
modeling doping profiles with handy analytical expressions are 
given in e.g. /97/. One assumption which is usually made with 
satisfactory success (at room temperature) is the total 
ionization of all dopants (2.6). 

C = N - N = N+ - NA (2.6) 
D A D 

As long as the Fermi level is separated several thermal 
voltages from the impurity level, this assumption holds quite 
nicely. For modern bipolar transistors, however, it certainly 
becomes questionable for the emitter region (degenerate 
material). 

The electron density n and the hole density p are commonly 
assumed to obey Boltzmann's statistics (2.7). 

n = ( 2. 7) 

This assumption principally neglects degeneracy; but 
moderate degeneracy can be included /40/ by introducing an 
effective, doping dependent intrinsic number (2.8). 

Assumptions and Discussion of Pa~ameters 
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( 2. 8) 

= n. (T) ·e52.7· (ln(N/l0 17 )+~(ln(N/l017 )) 2 
+0.5)/T 

l 

n. (T) = 3.88·1016 .rrl. 5 ·e-7000/'r 
l 

The temperature dependence of the intrinsic number is based 
on the influence of the effective carrier masses and the bandgap. 
More elaborate formulae for these effects which might be 
imperative for low temperature applications can be found in /47/. 
The formula for bandgap narrowing in (2.8) was first su7gested by 
Slotboom /99/. For a doping concentration of l.3·101 cm-3 the 
intrinsic number has already increased by twenty percent. 

The mobility of electrons Pn and holes PP is in principle a 
rank two tensor function of many arguments. One ends up with a 
so called "mobility" after averaging and combining various 
physical mechanisms which are still not analyzed thouroghly 
enough to be modeled satisfactorily /57/. 

Another assumption which is unfortunately not at all free of 
doubts is the validity of the Einstein-Nernst relations (2.9). 

( 2. 9) 

Some guidelines on how to extend these relations for 
degenerate material are given in e.g. /6/. It is important to 
remember that the current relations (2.4) and (2.5) do not 
differentiate between lattice temperature and electron 
temperature. Therefore, if one has to deal with hot electrons in 
a precise manner, the current relations have to be updated; in 
particular the mathematical structure of the diffusion current 
term has to be refined. 

The last parameter which remains to be dealt with for a 
qualitative characterization is the net generation/recombination 
rate (G-R) in (2.2) and (2.3). This quantity has to describe a 
number of physical processes which are responsible for 
generation/recombination of electron-hole pairs. These processes 
and their interactions are also not analyzed to a satisfactory 
level so that one has to use heuristic expressions for a model 
which is at least plausible in the underlying physics. Some 
suggestions for these formulae will be given in section 2.4. 

2.3 Additional Assumptions for MOS-Models 

The fundamental semiconductor equations describe the 
internal behavior of any semiconductor device. However, for 
certain devices these equations may be simplified without 
significant loss of accuracy. As the MOSFET is a minority 
carrier device, the current is given mainly by the continuity 
equation of one carrier type. If avalanche is neglected, only 
little carrier generation occurs in the MOSFET. 

Additional Assumptions for MOS-Models 



·- 7 -

Therefore, the eqs. (2.2)-(2.3) may be rewritten as 

. ..... 
div J = O 

n 
..... 
J = 0 p 

for the n-channel device and 
..I. 

div J = O 
p 

..I. 

J == 0 
n 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

for the p-channel device. However, it should be kept in mind 
that these assumptions are valid only if the avalanche effect is 
negligible (see chapter 6). 

The channel width of a MOSFET is usually (of ten) much larger 
than the depletion widths. As a consequence the partial 
derivatives in that direction can be neglected and the 
semiconductor equations reduce to two dimensions. The neglection 
of the derivative of the potential in source-drain direction is a 
proper assumption only for long-channel devices. The so called 
"gradual-channel approximation" was the basis of a lot of one
d irnensional models. These models fail to predict accurately the 
behavior of modern miniaturized devices. 

If the avalanche effect should be included, the assumptions 
(2.10)-(2.13) are no longer valid and both continuity equations 
have to be solved with inhomogeneity terms. As a consequence, 
the ionization-generated majority carriers (holes for an 
n-channel MOSFET) flow to the substrate as they are repelled from 
the source and drain junctions. There are several options to 
account for the voltage drop which is induced by the substrate 
current: (a) a truly three-dimensional analysis; (b) extension of 
the simulation over the entire bulk area; (c) extension of the 
two-dimensional simulation over the depletion region and using an 
(effective) bulk resistor (Fig. 2.1). If one wants to avoid 
excessive computing time associated with (a), option (c) is to be 
preferred because it allows inclusion of current spread into the 
third dimension and, also, consumes less computing time than (b). 
In that way the voltage drop across the parasitic bulk resistor 
simulates a more positive bulk bias and, if large enough, is able 
to forward-bias the parasitic bipolar npn transistor (according 
to source, bulk, and drain). This causes a larger drain current 
and facilitates the breakdown which then will occur at smaller 
drain voltages /91/. 

Additional Assumptions for MOS-Models 
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I ' 

, /Simulation area',, -- ,: ___________ ~ 

d 

Deep Bulk 

Fig. 2.1: Current flow in deep bulk 

In the following we should like to suggest an easy method to 
estimate the value of the bulk resistor. It is assumed that the 
current spreads at an angle of 45 degrees /10/ into both direc
tions perpendicular to its flow (x- and z- direction in Fig. 
2.1). This assumption is arbitrary but not implausible, and, 
furthermore, if we neglect any diffusion current, we obtain the 
following expression for the electric field in the deep 
substrate. 

~ = IB = 
dy IC.A K.(L+2y) (W+2y) 

(2.14) 

with K. standing for the conductivity of the substrate and A the 
area of the current flow. L and W are channel length and channel 
width, respectively. Integrating this equation along y from the 
end of the simulation area d to the bulk contact we obtain 

ls ~i dy s 
1 L+2d W+2d 

RBulk = IB = -21<.,-,--(-W---L) ( ln(L+2d ) ln(W+2d ) 
s s 

For L=W this equation simplifies to 

d-d s 
RBulk = K(L+2d) (L+2d ) 

s 

(2.15) 

(2.16) 

This calculation is fairly crude compared to the elaborate 
solution of the basic equations. However, any more precise cal
culation would be very complicated and the present method is 
sufficient to investigate the influence of the parasitic bulk 
resistance at least qualitatively. 
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2.4 Models of Physical Parameters 

a) Formulae for Mobility Modeling 

The mobility of carriers is, as already mentioned, an 
eminently complex quantity. Additionally it is an important 
parameter, because all errors in the mobility lead to a 
proportional error of the current through the multiplicative 
dependence. This is certainly one of the primary results any 
model should yield reliably. The formulae which will be given 
below describe phenomenologically the mobility in silicon; the 
subscripts n and p denote electrons and holes, respectively. 

To model mobility at least plausibly, several scattering 
mechanisms have to be taken into account, the basis of which is 
lattice scattering. This effect can be described by a simple 
power law /57/, /94/ in dependence of temperature (2.17). 

PL (rr) = A•'l'-g ( cm2 /Vs) (2.17) 

A = 7.12•10 8 A = 1.35•10 8 
n 2.3 gp 2.2 gn = = p 

The pure lattice mobility is reduced through the scattering 
processes at ionized impurities. (2.18) is a well established 
formula which models temperature dependent ionized impurity 
scattering /17/ and electron-hole scattering /40/. The latter is 
extremely important in low doped regions where high injection 
takes place. 

PLI(N,T) = JIL(T) ·a+ vmin" (1 - a) 

1 

(cm2 /Vs) 

a = 
1 + (T/300)b· (N/No)c 

N = 0.67• (N
0

+ +NA-) + 0.33• (n + p) 

vminn == 55.24 

bn = -3.8 

c = 0.73 
n 

Non= l.072·lo
17 

u . = 49 7 'm1np · 
bp = -3.7 

cp = 0.7 

NOp = 1.606•10
17 

( 2. 18) 

Similar expressions which have been partly deduced from 
measurement and/or theory have been presented in /5/, /29/, /33/, 
/65/, /93/. 

To properly simulate the mobility in MOS transistors, one 
has to deal with surface roughness and field dependent surface 
scattering. /22/, /88/, /105/ presented interesting measured 
results on inversion layer mobility; /111/, /110/ gave some 
excellent ideas on how to treat theoretically these and other 
scattering mechanisms; /124/ suggested a heuristic formula for 
field dependent surface scattering which is applicable for 
two-dimensional simulations, but whose adequacy is questioned in 
/111/. However, we have developed (2.19) which models 
phenomenologically with best fit to measurement surface roughness 
as well as field dependent surface scattering /96/. 

Models of Physical Parameters 
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PLIS(y,Ep,Et,N,T) = PLI(N,T). 
y+y 

r 2 
(cm /Vs) 

y+b·y 
y = Yo I ( 1 + E /E 0 ) r r p P 
b = 2+Et/EtO 
E = max(O (E ·J +E ·J )/(J 2+J 2)1/2) p , x x y y x y 

Et= max(O, (E ·J -E ·J) ·J /(J 2
+J 

2 )) 
-7 x y y x x x y -7 

Yon = 5·1~ Yop = 4·10 
E = 10" E = 8·10 3 

pOn 5 pOp 5 
Eton = 1.8·10 EtOp = 3.8·10 

(2.19) 

In regions with a high electric field component parallel to 
current flow, drift velocity saturation has to be taken into 
account. (2.20) combines, also phenomenologically, this physical 
effect and the lattice-impurity-surface mobility using a 
Mathiessen-type rule with a weakly temperature dependent 
saturation velocity /16/, /57/, /58/. 

vsn 
@ = -2 

n 

b) Formulae for Modeling Generation/Recombination 

(2.20) 

To simulate satisfactorily transfer phenomena of majority carrier 
current and minority carrier current in just a simple diode, it 
is an absolute necessity to model carrier recombination and 
generation as carefully as possible. (2.21) represents the well 
known Shockley-Read-Hall term for modeling thermal 
generation/recombination. The carrier lifetimes can be simulated 
as being doping dependent /25/, /75/. 

2 n. 
1 

- p·n 
( G - R )th= 

ln(p+p1 )+lp(n+n1 ) 

ln = 3.95·10-5/(l+N/7.1•10
15

) lp 

3 (l/cm s) (2. 21) 

Surface generation/recombination /53/ can be treated in a 
fairly similar manner by (2.22). 

( G - R ) s = 
3 (l/cm s) 

J(y) Dirac-Delta function, y=O denotes an interface 

s ::::: 100 
n 

Models of Physical Parameters 
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Impact ionization can be modeled by an exponentially field 
dependent generation term /20/, /21/. The constants in (2.23) 
are essentially taken from /116/. 

G 
JJnl 

•A ( 
~n 1Jnl 

) + :::: n·exp -a q _,. _,. 

E·J 

+ j:Jpl 
...l.n 

•A ·exp ( - Bp1Jd 
(l/cm3s) (2.23) q p _,. -' 

E•J p 

A = 7·10 5 A == 1.588·10 6 
n 

1.23·10 6 p 
2.036·10 6 

B = B = n p 

It should be noted that this form of simulating avalanche is 
relatively crude compared to more exact considerations, but the 
underlying physical principles are so complex that a trade-off in 
accuracy and complexity leads to that type of formula. The 
ionization probabilities dn p for silicon as a function of the 
electric field have been' measured by various authors: Mc Kay 
/73/, /74/, Miller /76/, Chynoweth /20/, /21/, Lee /63/, Moll 
/81/, /82/, Ogawa /84/, Van Overstraeten /116/, Grant /48/, Dalal 
/26/. Their results are summarized in Fig. 2.2 for electrons and 
in Fig. 2.3 for holes. Additionally, the measured results are 
compared to theoretical results of Baraff /9/ (material constants 
from Sze /106/, /107/). Also drawn in Fig. 2.2 and Fig. 2.3 are 
theoretical limits published by Okuto /85/, /86/, which imply 
that all the energy the carriers can obtain from the electric 
field is used to generate additional carriers. Furthermore, the 
energy loss per single ionization has been taken to be l.6eV for 
electrons and l.8eV for holes (see also /54/). A more concise 
treatment of the ionization probabilities has been undertaken 
theoretically by /4/, /19/, /64/, /98/, /108/, /109/, /111/, 
/114/, /123/ and experimentally by /89/, /102/. 

To analyze high injection conditions, Auger recombination 
has to be included as an antagonism to avalanche generation. 
Already the use of a simple formula like (2.24) in general gives 
satisfactory results /23/, /25/, /38/, /40/. 

2 ( G - R )A = (n. - p·n ) ug i 

c = 2.8·10-31 
n 

(C ·n + C ·p ) 
n p 

c = 9.9·10-32 
p 

(2.24) 

Finally, all generation/recombination phenomena have to be 
combined to one total quantity. The usual way to do so is to 
simply sum up all terms (2.25). However, that means that no 
interaction of the different phenomena does exist. 

(G-R)tot = (G-R)th + (G-R)s + (G-R)Aug +Ga (2.25) 
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Fig. 2.2: Ionization probabilities for electrons 
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Fig. 2.3: Ionization probabilities for holes 
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3. ANALYTICAL INVEST:J;_GATIONS ABOUT THE SEMICONDUC'rOR EQUA'rIONS 

In this chapter we present some of the existing analytical 
results for the fundamental semiconductor equations. 
Particularly, we are interested in the possible boundary 
conditions, dependent variables and an appropriate scaling 
approach. We shall discuss the structure of solutions to the 
semiconductor equations, because these results are of importance 
in both the theoretical and practical context, since as we 
shall see in the next chapter - the knowledge of the structure 
and smoothness properties of solutions is indeed essential for 
the development of a numerical solution method. 

3.1 Domain and Boundary Conditions 

Most of the existing programs which solve the semiconductor 
equations are restricted to a rectangular device geometry. This 
is not essential as far as the analysis of the equations is 
concerned. In this chapter we shall assume that the equations 
(2.1)-(2.5) are posed in a domain D of Rn (n=l,2,3) with a 
piecewise smooth boundary 8D. Equations (2.1)-(2.5) are subject 
to a mixed set of Dirichlet and Neumann boundary conditions. 
That means 8D consists of three parts 8n=8D

1 
8n

2 
8n

3
. 8D 

denotes the part of the boundary where the device is surrounded 
by insulating material. There one assumes the boundary 
conditions: 

(3.1) 

Here ~1 denotes the unit normal vector on 8D which exists 
anywhere except at a finite number of £Oints (arbitrarily defined 
corners of the simulation geometry). UD

2 
denotes the part of the 

boundary corresponding to the ohmic contacts. There 'fl, n and p 
are prescribed. The boundary conditions can be derived from the 
applied bias 'PD and the assumptions of thermal equilibrium and 
vanishing space charge: 

'fl= ~ + w 
D 'built-in' 

2 n·p = n i I 
n-p-C=O ( 3. 2) 

The last two conditions in (3.2) can be rewritten as: 

n = (~ c2
+4·ni

2 
+ C)/2 

p= (~~)/2 

Modeling MOS devices one has also to account 
insulator-semiconductor interfaces. 3n

3 
denotes 

boundary which corresponds to such an in~erface. 
the interface conditions: 

j · rr1 = 'J · ~1 = o n p 

Domain and Boundary Condition 

( 3. 3) 

for controlled 
the part of the 
There we have 

( 3. 4) 
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Again ~l denotes the normal vector on 3n. ( and [. 
denote the permittivity constants for the sernicon~&@tor and tR~ 
insulator re spec ti vely. 3q;;3n'_L J and 3q;;3ifl J . denote the 

sern ins 
onesided limits of the derivatives perpendicular to the interface 
approaching the interface. Within the insulator the Laplace 
equation: div grad q.1 = 0 holds. 

3. 2 Dependent Var.i~bles 

For analytical purposes it is often useful to use other 
variables than n and p to describe the system (2.1)-(2.5). Two 
other sets of variables which are frequently employed are 
(q.1,'f> ,'f> ) and ('f',u,v) which relate to the set (q.1,n,p) by: 

n p 

n = 

n = n . • e 'f'/U t · u , 
1 

p = n . • e -'f'/U t · v 
1 

(3.5) 

( 3. 6) 

(3.5) can be physically interpreted as the application of 
Boltzmann statistics. However (3.5) also can be regarded as a 
purely mathematical change of variables so that the question of 
the validity of the Boltzmann statistics does not need to be 
considered. The use of (q.1,'f>n,'f>p) a priori excludes negative 
carrier densities n and p, which may be present as undesired 
nonphysical solutions of (2.1)-(2.5) if we use (q.J,n,p) or (q.1,u,v) 
as dependent variables. As we will see later in this chapter the 
advantage of the set (q.1,u,v) is that the continuity equations 
(2.2), (2.3) and current relations (2.4), (2.5) become 
self-adjoint. This also has an important impact on the use of 
iterative schemes for the solution of the evolving linear systems 
(cf. chapter 5). However, owing to the enormous range of the 
values of u and v, the sets (qf,n,p) or (q.1,~n,'f>p) have to be 
prefered for actual computations. We personally favour the set 
(q.1, n' p) • 

3.3 Scaling 

Since the dependent variables in the system (2.1)-(2.5) are 
of different order of magnitude and show a strongly different 
behaviour in regions with small and large space charge the first 
step towards a structural analysis of (2.1)-(2.5) has to be an 
appropriate scaling. A standard way of scaling (2.1)-(2.5) has 
been given by De Mari /27/. There q.1 is scaled by the thermal 
voltage Ut, n and pare scaled by n. (similar to Mock /77/) and 
the independent variables are s6aled such that all multipying 
constants in Poisson's equation become unity. Although 
physically reasonable this approach has the disadvantage that n 
and p in general are still several orders of magnitude larger 
than q.1. A scaling which reduces q.J, n and p to the same order of 
magnitude has been given by Vasiliev'a and Butuzov /121/. This 
approach makes the system (2.1)-(2.5) accessible to an asymptotic 

Scaling 
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analysis which is given together with applications in /69/, /70/ 
and /71/. There n and p are scaled by the maximum absolute value 
of the net doping C and the independent variables are scaled by 
the characteristic length of the device. More precisely the 
following scaling factors are employed. 

quantity symbol value 
-"' .A -h ""' ·""' in x 1 max(x-y), x,y D 

'II Ut k·T/q ( 3. 7) 

n,p 0: maxi Cl 

After scaling the equations become: 

A2 ·div grad 'fl= n - p - C (3.8) 

div grad n - n·grad qi ) = -R 

div ( grad p + p·grad 'fl ) = -R 

Here, for simplicity only, Pn and P have been assumed to be 
constant. It should be noted that the ¥ollowing analysis also 
holds if the usual smooth dependence of Pn and Pp on n, p and 
grad qi e.g./97/ is assumed. Since the independent variable x has 
been scaled, equations (3.8) are now posed on a dom2in Ds with 
maximal diameter equal to one. The small constant A multiplying 
the Laplacian in (3.8) is the minimal Debye length of the device: 

( 3. 9) 

1 and «are defined in (3.7). Thus for high doping (d>>l) 
l2 will be small. For instance for a silicon device with 
characteristic length 25Pm and «=1020cm-3 we compute for A2 at 
approximate room temperature T=300K: A2=4.lo-10 

R denotes the scaled generation/recombination rate, which is 
in general a (not necessarily mildly) nonlinear function of n,p 
and gradqi. Thus different models of R may influence analysis 
results quite drastically. This is obviously to be expected as 
in many operating conditions the device behaviour depends 
strongly on the net generation/recombination R. 

3.4 The Singular Perturbation Approach 

(3.8) represents a singularly perturbed elliptic system with 
perturbation parameter A. The advantage of this interpretation 
is that we can now obtain information about the structure of 
solutions of (3.8) by using asymptotic expansions: In the 
subdornains of Ds where the solutions behave smoothly we expand 
them into power series of the form: 

The Singular Perturbation Approach 
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T 
w= ('f',n,p) (3.10) 

which implies a smooth dependence on A. C - the scaled doping 
is smooth in these subdomains and exhibits a sharp transition 
across the pn-junctions in the device. For the case of an abrupt 
junction this behaviour is reEresented by a discontinuity across 
an n-1 dimensional manifold(": (~=~(s), s of Rn-1) in the device. 
Thus r is a point in 1 dimension, a curve in 2 dimensions and a 
surface in 3 dimensions. Of course one curve or surface has to 
be used for each junction. Since the procedure is the same for 
each of the junctions it is demonstrated only for one junction. 
In the case of an exponentially graded doping profile C consists 
of two parts: 

c = c~ + c" ( 3. 11) 

where C~and c" are discontinous, C~ is piecewise smooth and C" is 
exponentially decaying to zero away from r. In the vicinity of r 
the expansion (3.10) is not valid and has to be supplemented by a 
"layer" term according to the singular perturbation analysis: 

(X) 

w(x,A) = rlwi(~) + wi(s,t/A)J ·Ai, 

i=O 

T w= ('fl, n, p) (3.12) 

Here the following coordinate transformation has been 
employed: For a point in the vicinity of r s denotes the 
parameter value at the nearest point on r and t denotes its 
distance perpendicular to r. Thus the solution of the 
semiconductor equations exhibits internal layers at pn-junctions. 

The w7 and w~ in (3.12) can now be determined separately and 
the struciure of ~the solution is given by its partition into the 
smooth part tw7·A1 and its rapidly varying part rw~·A1 • w; has 
to satisfy the 1 reduced equations: 1 

0 = n ~ - p; -c~ (3.13) 
0 

div (grad n ~ n;·grad~) = -R~ (3.14) 
0 

div (grad p; + p;·grad~) ::: -Ir (3.15) 

For the sake of simplicity but without loss of generality 
the mobilities Pn and Pp have been assumed to be constant. 
(3.13)-(3.15) is subject to the boundary conditions (3.1)-(3.4). 
Of course the condition of vanishing space charge is redundant 
with (3.13). Since C~ is discontinous at r and (3.13)-(3.15) 
represents a second order system of two equations four "interface 
conditions" have to be imposed at r. They are of the form: 

n~·e-'1'014 ~ = n~·e-~I o x=x- o o ~ ~ 
x=x+ (3.16) 

The Singular Perturbation Approach 
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(3.17) 

= j~ 
n ·nll ..\ .... 0 x==x+ (3.18) 

(3.19) 

where wl~_ and wl~+ denote the onesided limits of was x tends~to r from e~ch side.x nl denotes the unit normal vector on r. J~ 
~ no 

and J~ are the zeroth order terms of the smooth parts of the 
Po 

(scaled) electron and hole current densities . 
.... 
J~ = grad nc; - n0·grad ~ no 

(3.20) 
... 
J~ = grad Po + p0·grad ~ Po 

(3.13)-(3.15) together with (3.16)-(3.19) and the boundary 
conditions (3.1)-(3.4) define the reduced problem whose solution 
is an O(A) approximation to the full solution away from r. As we 
will see in the next chapter the reduced problem is a useful tool 
for the development and analysis of numerical methods, since it 
(especially the conditions (3.16)-(3.19)) has to be solved 
implicitly by any discretisation method which requires a 
reasonable number of grid points. 

The equations for the rapidly varying parts w~ reduce to 
ordinary differential equations. That means ~hat only 
derivatives with respect to the "fast" variable t/l occur. Since 
the rate of decay of w~ depends heavily on 'fl the width of the 
layer grows with the appli§a voltage; a fact which is absolutely 
well known by device physicists, but which becomes nicely 
apparent by the singular perturbation approach. 

4. NUMERICAL SOLU'l1 ION OF THE SEMICONDUCTOR EQUA'rIONS 

In this chapter we discuss some of the problems occuring in 
the numerical solution of the semiconductor equations and the 
analysis of existing numerical methods. From the viewpoint of 
numerical analysis there are essentially three major topics to be 
considered. The first one is the type of discretisation to be 
used. There exist programs for both Finite Element and Finite 
Difference discretisations of the system (2.1)-(2.5). As 
outlined in the previous chapter the solution exhibits a smooth 
behaviour in some subregions of the domain whereas in others it 
varies rapidly. Thus a nonuniform mesh is mandatory and adaptive 
mesh refinement is desirable. So the second topic is the 
question how to set up the mesh refinement algorithm i.e. which 
quantities have to be used to control the mesh. Each type of 
discretisation will lead to a large sparse system of nonlinear 
equations and so the solution of this system is the third topic. 

Numerical Solution of the Semiconductor Equations 
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For the sake of simplicity in nomenclature we shall only 
consider the two-dimensional case in this chapter. However, all 
results given in the following can be generalized to three 
dimensions in a straightforward manner. So, the equations are 
posed in a domain D of ~2 and~ = (x,y)T denotes the independent 
variable. 

4.1 Discretisation Schemes 

Using Finite Elements or Finite Differences one has to take 
into account that Poisson's equation (2.1) is of a different type 
than the continuity equations. Poisson's equation in the 
scaling of Markowich /69/ using the variables ('f',u,v) 

( 4 .1) 

is a singularly perturbed elliptic problem whose right hand side 
has a positive derivative with respect to 'fl. Thus it is of a 
standard form (as discussed in e.g. /42/) except for the 
discontinous or exponentially graded term C. Equations of that 
type are generally well behaved and it suffices to apply a usual 
discretisation scheme. In the case of Finite Differences using 
the index convention given in Fig. 4.1 equation (4.1) is 
discretized by: 

A2 · (div gradh~ .. = n .. - p .. - C(x. ,y ·) 
lJ lJ lJ 1 J 

x 
Ei+l/2,j = (\fl. +l . -\fl. . ) /h. 1 ,J l,J 1 

E~ . +1/2 = (\fl. '+1-'fl· . ) /k . l,J 1,J 1,J J 

(div grad ~ . . 
1 'J 

x x 
= 2 • (Ei+l/2,j - Ei-1/2,j)/(hi+hi-l) + 

+ 2 · (El,j+l/2 - El,j-1/2)/(kj+kj-l) 

y 
J 

kj 

k 1 J-

h I 1 h 

x. 
I 

Fig. 4.1: The index convention used 
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If one of the neighbouring gridpoints (x.+ 1 ,y.), (x._1 ,y.), 
(x.,y.+

1
), (x.,y.

1
) does not exist - 1 as possibl~ inJa 

teEmirlating lin~ ~pproach /1/, /2/ or in the Finite Boxes 
approach /44/ - (4.4) has to be modified. In the case of Finite 
Elements classical shape functions can be used (i.e. linear shape 
functions for triangular elements, bilinear shape functions for 
rectangular elements) . 

It turns out that the discretisation of the continuity 
equations is more crucial than the discretisation of Poissons's 
equation. The usual error analysis of discretisation methods 
provides an error estimate of the form: 

( 4. 5) 

T 
wh denotes the numerical approximation to w(x,y)=(qJ,n,p) . 

H denotes the maximal gridspacing. The constant c will in 
general depend on the higher order derivatives of w. The 
singular perturbation analysis /70/ shows that derivatives of 'ff', 
nA and pA in (J.12) are of magnitude O(A-3) - O(l-4) locally near 
the junction (A is defined in (3.9)). /70/ shows also that, even 
if a nonuniform mesh is used, the amount of gridpoints required 
to equidistribute the error term in (4.5) can be proportional to 
A-2 which is of course prohibitive. Therefore a discretisation 
scheme is needed where the constant c in (4.5) does not depend on 
the higher derivatives of the rapidly varying terms 'ff', nA and 
pA. For the case of Finite Differences such a scheme was given 
by Scharfetter and Gummel /93/. They approximate: 

J = grad n - n·grad qi 
n 

by: 

"f ( (qi. +l . -'fl. . ) /2) • ( n. +l . -n. . ) /h. -l ,J 1,J l ,] 1,J l 

- ( n. . +n. +l . ) /2 · (qi. +l . -qi. . ) /h. l,J 1 ,] 1 ,] 1,J 1 

J y = 
ni,j+l/2 "f ( (qi. · +1 -'fl. . ) /2) · ( n. . +l-n. . ) /k . -l,J l,J 1,J 1,J J 

- ( n. . +n. . +l) /2 · (qi. . +1 -'fl. . ) /k . l,J l,J l,J l,J J 

"f(s) = s·coth(s) 

x 2 " (Jni+l/2,j 
x 

- Jn. 1/2 .)/(h.+h. 1) + 1- 'J 1 1-

+ 2 • (J~i' j+l/2 - Jyn· . l/2 ) /(k .+k. l) == R .. l,J- J J- l,J 

( 4. 6) 

( 4. 7) 

( 4. 8) 

(4.9) 

The continuity equation for holes is discretized 
analogously. Scharfetter and Gummel gave a physical reasoning 
for the derivation of their scheme. Markowich et al. /70/ proved 

Discretisation Schemes 
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that in one dimension the Scharfetter-Gummel scheme is uniformly 
convergent. That means that the error constant c in (4.5) does 
not depend on the derivatives of qr', nA and pA in (3.12) and 
therefore not on l. For two dimensions /70/ shows that the 
choice r(s) = s·coth(s) is necessary for uniform convergence. 
Exponentially fitted schemes like the Scharfetter-Gummel scheme 
have been analyzed by Kellog /61/, /60/ and Doolan /32/ (for 
different classes of problems) . The reason for the uniform 
convergence of these schemes is that inside the pn-junction 
layers the interface conditions (3.16)-(3.19) are satisfied 
automatically if lgrad~I is large and the gridspacing is not 
o (A) • 

The results for Finite Difference schemes suggest that a 
similiar approach (like the exponentially fitted schemes) should 
be used in the case of Finite Elements. This fact has been 
intuitively observed by Engel /39/ for the one-dimensional case. 
A modeling group at IBM has tried to make use of the Scharfetter
Gummel scheme for Finite Elements in two and three space 
dimensions /14/, /13/, /24/. However, we have the impression 
that their approach needs still quite a bit of analysis, although 
it has been used effectively by other modelists too e.g. /87/. 
Macheck /66/ has tried to develop a more rigorous discretisation 
for Finite Elements using exponentially fitted shape functions. 
He uses classical bilinear shape functions for ~ and 

0:1(x,y) = [l - '1>1 (x,y)] · [l - •2 (x,y)] (4.10) 

0:2(x,y) = '1(x,y) · [l - •2(x,y)] 

0:3(x,y) = 'P1(x,y) . •2(x,y) 

0:4(x,y) ::: [l - 'P1(x,y)]· •2(x,y) 

for u, and 

P1 (x,y) = [l - 0'1 ( x, y) ] . [ 1 - "2 ( x, y) ] (4.11) 

P2(x,y) = a 1 (x,y) · [ 1 - a2 ( x, y) ] 

p3(x,y) = a 1 (x,y) . fl2(x,y) 

p4 (x,y) = [l a1 (x,y)]. a 2 (x,y) 

for v, where 

•1(x,y) == f (x,~) (4.12) 

'P2(x,y) = f (y ,~) 

a 1 (x,y) = f (x,- a'P, ax 
a 2 (x,y) = f (y,- ~) 
with: f (x,a) = (exp(ax)-1)/(exp(a)-l) (4.13) 

Discretisation Schemes 
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The advantage of these shape functions is that they 
accomodate nicely the layer behaviour of the solution. They 
degenerate into the ordinary bilinear shape functions when the 
electric potential is constant. In order to be able to switch 
from coarse to fine grid spacing in different subdomains 
transition elements have to be used /66/. However, no 
theoretical investigations have been carried out so far to 
analyse the uniform convergence properties of this method. 

4.2 Grid Construction 

Since subregions of strong variation of 'f.1, n and p alternate 
with regions where these quantities behave smoothly (i.e. their 
gradients are small) different meshsizes are mandatory in these 
subregions. Thus the discretisation scheme should be able to 
switch locally from a coarser to a finer grid. However, the 
question arises which criteria should be used to generate the 
mesh. If the user of a simulation program has to define his 
elements or nodes a priori as input parameters, this could 
perhaps be done by experience /15/. If - as it is the case for 
modern user oriented programs - an adaptive mesh selection is 
desired mathematically formulated criteria are a "sine qua non". 
Generally such criteria should satisfy two conditions. Firstly 
they should not cause the program to construct more 
gridpoints/elements than necessary to achieve a certain accuracy. 
Secondly they should guarantee that a prescribed relative 
accuracy J is really achieved once they are satisfied. A usual 
way to design adaptive mesh refinement procedures is to 
equidistribute the local truncation error of the discretisation 
scheme. In the case of Finite Differences this error is 
proportional to the meshsize and the third and fourth derivatives 
of 'f.1, n and p. Markowich /70/ however showed that it is 
practically not possible to equidistribute this quantity. In the 
case of a simple MOS-transistor O(J-2A-2) gridpoints would be 
required. On the other hand the singular perturbation analysis 
shows that the solution of the difference scheme approximates the 
solution of the reduced problem (3.13)-(3.15) even if this 
criterion is not satisfied inside the layer regions (inversion 
layer and space charge regions). Therefore the quantity to be 
equidistributed is the discretisation error of Poisson's equation 
(i.e. the partial derivatives of the space charge times the 
meshsizes). This equidistribution can be relaxed inside the 
pn-junction layers by e.g. simply limiting the number of 
gridpoints there. 

4.3 Linearisation Schemes 

Each discretisation scheme (Finite Differences or Finite 
Elements) will lead to a large sparse system of nonlinear 
equations to be solved. The theory of iterative methods to solve 
these equations is to a large extent independent of the used 
discretisation and so it is convenient to view the whole problem 
as solving a nonlinear system of equations iteratively by solving 
linear systems. The existing numerical methods can essentially 
be divided into two classes: The first approach, a block 
nonlinear iteration algorithm, is due to Gummel /52/ and uses the 
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fact that the current relations are linear in the variables u and 
v (as defined in (3.6)). In these variables the equations become 
(again we use the scaling of /66/): 

l 2 ·aiv grad 'P == e'P·u - e -'P. v - c (4.14) 

_,, _,, 
e 'i'. gr ad div J ::::: R, J :::: u (4.15) n n 

""' _,, 
-e -'i'. gr ad div J :::: -R, JP ::::: v (4.16) p 

Gummels approach 
computed by solving: 

works as follows: Given (an ) k •• k + 1 . ,.., u , v 'If' ls 

'\ 2 •• k + 1 
A •div grad 'f' = 

~+l k ~+l k 
e ·u - e ·v - C (4.17) 

subject to the appropriate boundary conditions. Then uk+l 
and vk+l are computed from: 

~+l 
(4.18) 

div 
.1k+l ~+l k k ..\.k+l k+l J = R (gr ad , u , v ) , J = e ·grad u n n 

~+l 
(4.19) 

~k+l ~+l k k -~k+l k+l div J = -R(grad ,u ,v ) , J :::: -e- ·grad v p p 

together with the boundary conditions for u and v. (4.18) 
and (4.19) are two decoupled linear equations for uk+l and vk+l. 
Poissons's equation (4.17) is nonlinear in this setting and 
therefore it has to be solved iteratively itself in each step by 
a Newton like method. Since Newton's method is an inner 
iteration within the overall iteration process (4.17)-(4.19) it 
may not be necessary to let this inner iteration "fully converge" 
/49/. 

The advantage of Gummels's method is obvious. (4.17)-(4.19) 
can be solved sequentially which decreases the required amount of 
storage and computing time drastically for each step. However, 
bad convergence properties can be observed in the case of high 
currents. This is explained by viewing (4.17)-(4.19) as 
iterating the map M: (uk,vk)+(uk+l,vk+l) where the evaluation of M 
involves the solution of (4.17). Then the norm of the 
linearisation of M (as an operator acting in the appropriate 
spaces) at the fixpoint M(u*,v*)=(u*,v*) is proportional to the 
current densities /72/. 

The second approach to the solution of the nonlinear 
equations (2.1)-(2.5) is a damped modified Newton method. To 
solve the general equation F(x)=O one computes the sequence <xk> 
by: 

(4.20) 

For the usual Newton method Mk = F' (xk) and tk - 1 holds. 
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Bank and Rose /8/ have given criteria for the choice of the 
damping parameters tk which guarantee global convergence. 
Moreover they investigate how well Jk has to approximate the 
classical Newton step in order to get a certain rate of 
convergence. They obtain that the rate of convergence is p 
(l<p<2) if: 

IMk.jk + F(xk) I = 0( IF(xk) Ip) (4.21) 

holds asymptotically 
suggested Mk = AkI + 
Franz /44/ tested 
additionally chooses 
/30/, /31/. 

for k + oo. Alternatively Bank 
F' (xk) where lk is proportional 
this method with good success. 
damping parameters tk according 

5. SOLUTION OF LINEAR SYSTEMS 

and Rose /7/ 
to IF ( xk) I . 
However, he 

to Deuf lhard 

For any of the linearization procedures which have been 
outlined in the last chapter a large sparse linear equation 
system (5.1) has to be solved repeatedly. 

A•x = b ( 5 .1) 

A has been derived by linearizing discretized PDEs. Hence A 
has only five to nine nonzero entries per row and block (a block 
is formed by the three discretized equations); A is very sparse. 
For the solution of these special types of linear systems of 
equations two classes of methods, can, in principle, be used: 
direct methods which are based on elimination and iterative 
methods. An excellent survey on that subject has been published 
recently by Duff /34/. Classical Gaussian elimination is not 
feasible for our systems of equations because the rank of A in 
(5.1) is very large and A has many coefficients which are zero. 
Therefore, modifications of the classical Gaussian elimination 
algorithm have to be introduced to account for the zero entries. 
There exist quite a few activities on that subject (c.f. /35/) 
and powerful algorithms which treat the nonzero coefficients only 
are available (so called sparse matrix codes). Another serious 
drawback of direct methods lies in the fact that the upper 
triangular matrix which is created by the elimination process has 
to be stored for back substitution. This matrix has usually more 
nonzero entries than the matrix A. Therefore, memory requirement 
of direct methods is substantial. One advantage of the linear 
systems obtained from the discretised semiconductor equations is 
that no pivoting in order to maintain numerical stability is 
needed. In spite of all drawbacks of direct methods, their major 
advantage is high accuracy of the solution. However, we feel 
that for the semiconductor problems iterative algorithms are to 
emphasize. Nevertheless we and many others have observed 
difficulties with respect to the convergence speed of iterative 
methods, so that the direct methods, which require an exactly 
predictable amount of computer resources, will always stay in 
consideration. 

The fundamental idea of relaxation methods (which are the 
best established iterative methods) is the splitting of the 
coefficient matrix A (5.1) into three matrices D, E, F (5.2). 
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A = D - E - F ( 5. 2) 

D denotes the diagonal entries of A; -E denotes a lower 
triangular matrix which consists of all sub-diagonal entries of 
A; and -F denotes an upper triangular matrix which consists of 
all super-diagonal entries of A. 

With an arbitrary non singular matrix B which has the same 
rank as A the linear system (5.1) can be rewritten to (5.3): 

B•x + (A-B) ·x = b 

One obtains an iterative scheme by setting: 

B•xk+l = b - (A-B) ·xk 

(5.4) can be solved for xk+l: 

xk+l = (I-B-l•A) •xk + B-l.b 

The scheme (5.5) will converge if condition (5.6) holds: 

q (I-B-l•A) ( 1 

( 5. 3) 

( 5. 4) 

( 5. 5) 

( 5 • 6) 

(5.6) is a necessary and sufficient condition where q 
denotes the spectral radius /120/. Any relaxation method can be 
derived by differently choosing the matrix B from the splitting 
of A (5.2). The simplest scheme, the point-Jacobi method, uses D 
for B. Matrix D is a diagonal matrix and, therefore, is easily 
invertible. The Gauss-Seidel method uses D-E for B. The matrix 
D-E is a lower triangular matrix. Therefore one has only to 
perform a forward substitution process for its inversion. The 
successive overrelaxation method (SOR) uses a parameter w within 
the range ]0,2[. The iteration matrix Bis defined: 

B = D/W - E ( 5. 7) 

Since B is again a lower triangular matrix, its inversion is 
instantly reduced to a substitution. 

The major advantage of these iterative methods lies in their 
simplicity. They are very easy to program and demand only low 
memory requirement. As already noted, they converge if condition 
(5.6) holds. However, this is generally difficult to prove. A 
sufficient condition for convergence is that A is positive 
definite (5.8) which is the normal case for five-point-star 
discretized PDEs. 

T x •A•x ) 0 for all x~O ( 5. 8) 

It should be noted again here that the current relations and 
continuity equations are not self adjoint if ('f',n,p) are used as 
variables (see (2.10), (2.11)). However, the transformation: 

n = e 'fl. u , p = e -'fl. v ( 5. 9) 
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results in a similarity transformation of the iteration matrix in 
(5.6). Thus the spectral radius of the iteration matrix is not 
influenced and the same convergence properties are obtained as if 
the system had been discretized in its self adjoint form with 
('11,u,v) as variables. 

Some point-iterative schemes can by accelerated quite 
remarkably with the conjugate gradient method or the Chebyshev 
method. An excellent survey on these topics can be found in 
/50/, /51/. 

Various activities can be observed for the development of 
more powerful algorithms with the advantages of iterative 
schemes. One of the best known algorithms which has been 
established in semiconductor device analysis is Stone's strongly 
implicit procedure /104/. Stone's idea was to modify the 
original coefficient matrix A by adding a matrix N (whose norm is 
much smaller than the norm of A) so that a factorization of (A+N) 
involves less computational effort than the standard 
decomposition of A. Assuming this has been done, the development 
of an iterative procedure is then fairly straightforward because 
the equation can be written as: 

(A+N) •x = (A+N) •x + (b-A•x) 

which suggests the iterative procedure: 

(A+N) •xk+l = (A+N) ·xk + (b-A·xk) 

(5.10) 

(5.11) 

When the right hand side is known and if (A+N) can be 
factorized easily, (5.11) gives an efficient method for directly 
solving for xk+l. Furthermore, one would intuitively expect a 
rapid rate of convergence if N is sufficiently small compared to 
A. We will refrain from explaining in detail Stone's suggestion 
of how to choose the perturbation matrix N because this has been 
done thoroughly in many publications e.g. /43/, /100/, /104/. A 
major disadvantage of Stone's method is that it is only 
applicable for linear systems obtained by a classical Finite 
Difference discretisation. It is not applicable for systems 
obtained by the Finite Boxes approach /44/ or the general Finite 
Element approach. 

There exist a few algorithms which are similar to Stone's 
method in terms of underlying ideas. The most attractive are the 
method of Dupont et al. /36/, the "alternating direction 
implicit" methods e.g. /11/, /43/, /122/ and the Fourier methods 
/103/, /120/. However, most of these sophisticated algorithms 
lack general applicability. 

No matter which 
with the question of 
criterion. Usually 
relative accuracy t: 

iterative method is used one has to deal 
an appropriate termination (convergence) 
(5.12) is applied with a properly chosen 

(5.12) 
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Since increments still accumulate when (5.12) is already 
satisfied we suggest to use (5.13) instead of (5.12): 

(5.13) 

Cl(G) can be estimated as ~~~lxk+l_xkl/lxk-xk-ll. 

One disadvantage of all strongly implicit methods and also 
the direct methods is that they cannot be implemented efficiently 
on a computer with a pipe-line architecture (vector processor). 
Some comments on that subject have been given in /34/. 

6. AN EXAMPLE 

The main power of a fully numerical model lies in its 
ability to provide the distributions of all physical quantities 
in the interiour of a device. However, one has to bear in mind 
that the only possible check of numerical calculations is an 
elaborate comparison of experimental and theoretical results. 
The particular example in this chapter is intended to highlight 
the didactic potential of the fully numerical model MINIMOS. 

Fig. 5.1 shows the doping profiles of two devices the 
geometrical channel length of which is l.6pm. The oxide 
thickness is 30nm; the junction depth is about .44p and the 
lateral subdiffusion is about .23pm. The profile on the right 
hand side has just an additional channel implantation in order to 
supress the punch through effect. We shall discuss now some of 
the internal physical quantities of these two devices for an 
operating condition with OV at source, gate and substrate; and 7V 
at drain. The picture on the right hand side of the next figures 
(Fig. 5.2, Fig. 5.3 and Fig. 5.4) corresponds to the doping 
profile on the right hand side of Fig. 5.1. 

Fig. 5.2 shows the contour lines of the electrical potential 
for both devices. We nicely can observe a saddle point in the 
picture on the left hand side, which is the typical indication of 
punch through in weak inversion. This phenomenon has been 
reported for many years by all authors working on multy 
dimensional MOS models. The picture on the right hand side 
exhibits a well pronounced barrier between source and the channel 
region, thus indicating a proper subthreshold behaviour. 

Fig. 5.3 shows the electron distribution in a logarithmic 
scale. The punch through channel is fully suppressed by the deep 
channel implant. It also seems wortwhile to note that the 
qualitative behavior of the electron density at the surface is 
identical for both devices. 

In Fig. 5.4 the lateral component of the electron current 
density is given for both devices. The punch through channel is 
even better visible than in the last figure. The tongue-like 
appearance of the lateral component of the electron current 
density in the picture on the right hand side is typical for 
devices functioning properly in the subthreshold region. It 
should be mentioned, although it is trivial, that the scale of 
these pictures differs more than four orders of magnitude. 
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At the chosen bias point (OV at gate, 7V at drain) no 
significant impact ionization takes place in both devices. The 
reason for this fact can be found in the absolute current level 
which is simply too low /90/, /92/. To demonstrate the influence 
of impact ionization we have chosen the bias point with OV at 
source and substrate, lV at gate and 7V at drain. All figures in 
the following (Fig. 5.5-Fig. 5.8) correspond to this operating 
condition. The pictures on the right hand side of these figures 
are the simulation results obtained with ionization coefficients 
set to zero. 

Fig. 5.5 shows the electric potential. Almost no barrier 
exists between source and channel, whereas an acceptable barrier 
is still simulated when neglecting impact ionization. In Fig. 
5.6 the ionization rate is plotted in a quasi logarithmic scale 
(log(lol8+GA)-18). The peak value reads about 2.5·1027 pairs per 
cm3 and second. 

The carrier densities are given in Fig. 5.7 and Fig. 5.8. A 
large increase of the carrier densities due to avalanche 
generation can be seen from these figures. This inrease results 
not only from carrier generation but also from the rigid source
substrate barrier lowering (cf. Fig. 5.5). 
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Fig. 5.1: Device 1 - Doping profile - Device 2 
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Fig. 5.4: Device 1 - Electron current density - Device 2 
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Fig. 5.6: with aval. - Generation rate - without aval. 
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Fig. 5.8: with avalJ - Hole density - without aval. 

7. CONCLUSION 

In this paper we tried to sketch the state of the art in 
modeling semiconductor devices, particularly MOS transistors, 
with numerical methods. The underlying physics has been 
discussed and the importance of increasingly sophisticated 
numerical methods has been briefly outlined. It has become 
evident that only progress in basic semiconductor physics will 
lead to the development of models which are capable of simulating 
device behaviour more reliably and which will match the 
technological advances of the recent device miniaturisation. One 
highly important objective of a model, its ability to predict the 
performance of a new device prior to having built the actual 
device, can only be reached if the physical parameters of the 
basic equations are analyzed even more thoroughly. This possibly 
implies a complete re-evaluation of some commonly accepted 
assumptions and approximations and it also seems to be the only 
way to get rid of the enormous amount of fitting parameters and 
the heuristic formulae which just simulate more or less precisely 
some complex physical phenomena. 

The power of a numerical model to predict device behaviour 
has been demonstrated using our MOS-transistor simulation program 
MINIMOS. However, still much effort in analysis and simulation 
will have to be spent to make device miniaturisation and 
integration keep pace with the speed of recent days. 
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