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Abstract: The basic mathematical results on the elliptic boundary 
value problem which corresponds to the equations involved in the 
numerical simulation of semiconductor devices are reviewed. 
Particularly, smoothness and structure of the solutions of the 
fundamental semiconductor equations are discussed. The singular 
perturbation approach to the numerical solution of the semiconductor 
equations is presented. The implications of the results obtained with 
the singular perturbation approach on the application of Finite 
Difference methods and Finite Element methods are discussed. Criteria 
for an optimal mesh generation strategy are given. An example shows 
the power of these concepts combined with modern numerical methods in 
comparison to classical approaches. 

1. INTRODUCTION 

The characteristic feature of early modeling was the separation 
of the interiour of the device into different regions, the treatment 
of which could be simplified by various assumptions like special 
doping profiles, complete depletion and quasineutrality. These 
separately treated regions were simply connected to produce the 
overall solution. If analytic results are intended, any other 
approach is prohibitive. Fully numerical modeling b~sed on partial 
differential equations /36/ which describe all different regions of 
semiconductor devices in one unified manner was first suggested by 
Gummel /18/ for the one dimensional bipol .r transistor. This approach 
was further developed and applied to pn-junction theory by De Mari 
·/9/, /10/ and to IMPATT diodes by Scharfetter and Gummel /32/. A two 
dimensional numerical analysis of a semiconductor device was carried 
out the first time by Kennedy and O'Brien /22/ who investigated the 
junction field effect transistor. Since then two dimensional modeling 
has been applied to fairly all important semiconductor devices. There 
are so many papers of excellent repute that it would be unfair to cite 
only a few. The time dependence has been investigated by e.g. /24/, 
/30/ and models for three space dimensions have been announced by e.g. 
/7/, /39/. 
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2. THE FUNDAMENTAL SEMICONDUCTOR EQUATIONS 

The most familiar model of carrier transport in a semiconductor 
device has been proposed by Van Roosbroeck /36/. It consists of 
Poisson's equation (2.1), the current continuity equations for 
electrons (2.2) and holes (2.3) and the current relations for 
electrons (2.4) and holes (2.5) 

div t grad qi= -q·( p - n + c ) (2 .1) 

div Jn -q·R (2.2) 

div JP q·R (2.3) 

J -q·( Pn·n·grad qi - D n·grad n (2.4) n 

j -q· ( JI ·p·grad qi+ D p·grad p (2.5) p p 

However, i;t is of prime importance to note that the equations 
(2.4) and (2.S) do not characterize effects which are caused by 
degenerate semiconductors. /25/, /35/, /37/ discuss some 
modifications of the current relations, which partially take into 
account the consequences introduced by degenerate semiconductors (e.g. 
invalidity of Boltzmann's statistics, bandgap narrowing). Just as 
further examples (2.4) and (2.5) do not describe velocity overshoot 
phenomena /17/, /34/; and certainly no effects which are due to 
ballistic transport /16/, the existence of which is still questionable 
/19/, are included. 

3. ANALYTICAL INVESTIGATIONS ABOUT THE SEMICONDUCTOR EQUATIONS 

In this chapter we present some of the existing analytical 
results for the fundamental semiconductor equations. Particularly, we 
are interested in the possible boundary conditions, dependent 
variables and an appropriate scaling approach. We shall discuss the 
structure of solutions to the semiconductor equations, because these 
results are of importance in both the theoretical and practical 
context, since - as we shall see in the next chapter - the knowledge 
of the structure and smoothness properties of solutions is indeed 
essential for the development of a numerical solution method. 

3.1 Domain and Boundary Conditions 

Most of the existing programs which solve the semiconductor 
equations are restricted to a rectangular device geometry. This is 
not essential as far as the analysis of the equations is concerned. 
In this chapter we shall assur .. e that the equations (2.1)-(2.5) are 
eosed in a domain D of Rn (n=l,2,3) with a piecewise smooth boundary 
iD. Equations (2.1)-(2.5) are subject to a mixed set of Dirichlet and 
Neumann boundary conditions. That means 8D consists of three parts 
8D=8DlV8D2U8D3· 8Dl denotes the part of the boundary where the device 
is surrounded by insulating material. There one assumes the boundary 
conditions: 

(3.1) 
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Here ti denotes the unit normal vector on 80 which exists 
anywhere except at a finite number of points (arbitrarily defined 
corners of the simulation geometry). 80 denotes the part o~ the 
boundary corresponding to the ohmic c6ntacts. There 'I', n and p are 
prescribed. The boundary conditions can be derived from the applied 
bias !i;> and the assumptions of thermal equilibrium and vanishing space 
charge. 

... = ~ + "tuilt-in' = 2 n·p ni ' 
The last two cond i tL.ms in ( 3. 2) 

n = (~ c2+4•n. 2 + C)/2 i 

= (~ c2+4·n. 2 - C)/2 p i 

Modeling MOS devices one has 
insulator-semiconductor interfaces. 
boundary which corresponds to such 
interface conditions: 

Jn·tl = JP·nl = o 

csem ·8'1'/8nl1 = tins ·8'1'/8nl1. 
sem ins 

n - p - c = 0 (3. 2) 

can be rewritten as: 

(3.3) 

also to account for controlled 
80 denotes the part of the 
an3 interface. There we have the 

( 3. 4) 

Again tl denotes the normal vector on 80. C and c. denote 
the permittivity constants for the semiconductor ~fi1¥ the i~~sulator 
respectively. i'1'/8nl1 and 8'1'/8nl1. denote the onesided limits of 

sem ins 
the derivatives perpendicular to the interface approaching the 
interface. Within the insulator the Laplace equation: div grad 'I'= 0 
holds. 

3.2 Dependent Variables 

For analytical purposes it 
than n and p to describe the 
variables which are frequently 
which relate to the set ('1',n,p) 

n = p 

p 

is often useful to use other variables 
system (2.1)-(2.5). Two other sets of 
employed are ('l',•n'•~l and ('1',u,v) 
by: ::" 

(3. 5) 

(3. 6) 

(3.5) can be physically interpreted as the application of 
Boltzmann statistics. However (3.5) also can be regarded as a purely 
mathematical change of variables so that the question of the validity 
of the Boltzmann statistics does not need to be considered. The use 
of ('1',.n,'Pnl a priori excludes negative carrier densities n and p, 
which may te present as undesired nonphysical solutions of (2.1)-(2.5) 
if we use ('1',n,p) or ('1',u,v) as dependent variables. As we will see 
later in this chapter the advantage of the set ('1',u,v) is that the 
continuity equations (2.2), (2.3) and current relations (2.4), (2.5) 
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become self-adjoint. However, owing to the enormous range of the 
values cf u and v, the sets (ql,n,p) or (ql,!pn,'Pnl have to be prefered 
for ~ctual computations. We personally favour the set (ql,n,p). 

3.3 Scalir!:I. 

Since the dependent variables in the system (2.1)-(2.5) are of 
different order of magnitude and show a strongly different behaviour 
in regions with swall and large space charge the first step towards a 
structural analysis of (Z.1)-(2.5) has to be an appropriate scaling. 
A standard way of scaling (2.1)-(2.5) has been given by De Mari /9/. 
There qi is scaled by the thermal voltage Ut, n and p are scaled by n. 
(similar to Mock /29/) and the independent variables are scaled sucn 
that all multiplying constants in Poisson's equation become unity. 
Although physically reasonable this approach has the disadvantage that 

, n and p in general are still several orders of magnitude larger than 
qi. A scaling which reduces qi, n and p to the same order of magnitude 
has been given by Vasiliev'a and Butuzov /38/. This approach makes 
the system (2.1)-(2.5) accessible to an asymptotic analysis which is 
given together with applications in /26/, /27/ and /28/. There n and 
p are scaled byl,, the maximum absolute value of the net doping C and the 
independent variables are scaled by the characteristic length of the 
device. More precisely the following scaling factors are employed. 

quantity symbol value 

x 1 max(x-y), 
........... 

in D x,y .., Ut k·T/q (3.7) 

n,p Clf maxJCJ 

After scaling the equations become: 

).2°div grad qi= n - p - c (3.8) 

div grad n - n·grad .., ) -R 

div grad p + p•grad .., ) -R 

Here, for simplicity only, Pn and Pp have been assumed to be 
constant. It should be noted that the following analysis also holds 
if the usual smooth dependence of Pn and Pp on n, p and grad qi 
e.g./33/ is assumed. Since the indepenaent variable x has been 
scaled, equations (3.8) are now posed on a domain2 Ds with maximal 
diameter equal to one. The small constant l multiplying the 
Laplacian in (3.8) is the minimal Debye length of the device: 

(3.9) 

1 and Clf are defined in (3.7). Thus for high doping (Clf>>l) l2 
will be small. For instance for a silicon device with characteristic 
length 25prn and Clf=lo20cm-3 we compute for l2 at approximate room 
temperature T=300K: l2=4.lo-10 

R denotes the scaled generation/recombination rate, which is in 
general a (not necessarily mildly) nonlinear function of n,p and 
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grad't'. Thus ~ifferent models of R may influence analysis results 
q~ite drastically. This is obviously to be expected as in many 
o~erating conditions the device behaviour depends strongly on the net 
ger.eration/recombination R. 

3.( The Singular Perturbation Approach 

(3.8) represents a singularly perturbed elliptic system with 
perturbation parameter l. The advantage of this interpretation is 
that we can now obtain information about the structure of solutions of 
(3.8) by using asymptotic expansions: In the subdomains of os where 
the solutions behave smoothly we expand them into power series of the 
form: 

w(~,l) 
00 

twi Ciel ·li, 

i=O 

- T w-('t',n,p) (3 .10) 

which implies a smooth dependence on l. C - the scaled doping - is 
smooth in these subdomains and exhibits a sharp transition across the 
pn-junctions in the device. For the case of an abrupt junction this 
behaviour is represented by a discontinuity across an n-1 dimensional 
manifold r: (x=x(s), s of Rn-1) in the device. Thus r is a point in 1 
dimension, a curve in 2 dimensions and a surface in 3 dimensions. Of 
course one curve or surface has to be used for each junction. Since 
the procedure is the same for each of the junctions it is demonstrated 
only for one junction. In the case of an exponentially graded doping 
profile C consists of two parts: 

(3 .11) 

where c-and CA are discontinous, c- is piecewise smooth and CA is 
exponentially decaying to zero away from r. In the vicinity of r the 
expansion (3.10) is not valid and has to be supplemented by a "layer" 
term according to the singular perturbation analysis: 

00 

w(x,l) t[wi<~l + wi(s,t/l)J ·li, w=('t',n,p)T 

i=O 

(3 .12) 

Here the following coordinate transformation has been employed: 
For a point in the vicinity of r s denotes the parameter value at the 
nearest point on r and t denotes its distance perpendicular to r. 
Thus the solution of the semiconductor equations exhibits internal 
layers at pn-junctions. 

The w: and wi in (3.12) can now be determined 
structure ot the solution is given by its partition 
part twi·l1 and its rapidly varying part tw~·l1 • 
the reduced equations: 1 

O = n~ - p~ -c-

div (grad n; - n~·grad~) 
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into the smooth 
w; has to satisfy 

(3 .13) 

(3 .14) 

(3 .15) 



For the sake of simplicity but without loss of generality the 
~obilities Pn and ,p have been assumed to be constant. (3.13)-(3.15) 
is subject to the boundary conditions (3.1)-(3.4). Of course the 
condition of vanishing space charge is redundant with (3.13). Since 
c- is discontinous at r and (3.13)-(3.15) represents a second order 
system of two equations four "interface conditions" have to be imposed 
at r. They are of the form: 

n-·e-'1{;1 ....... = n-·e-'1{;1_...... (3.16) 
o x=x- o x=x+ 

p-·e'l{;I_. - p-·e'l{;I........ (3.17) o x=x- o x=x+ 

1- ·rill ......... n0 x=x-

"j- --n11 ........ 
Po x=x-

whe re wl- and 
from eachxside. 

are the zeroth 
electron and hole 

wlx+ denote the onesided limits of w as nl aenotes the unit normal vector on r. 
order terms of the smooth parts of 
current densities. 

(3.18) 

(3.19) 

x tends to r 
J~ and jp-

o 0 
the (scaled) 

(3.13)-(3.15) together with (3.16)-(3.19) and the boundary 
conditions (3.1)-(3.4) define the reduced problem whose solution is an 
O(l) approximation to the full solution away from r. As we will see 
in the next chapter the reduced problem is a useful tool for the 
development and analysis of numerical methods, since it (especially 
the conditions (3.16)-(3.19)) has to be solved implicitly by any 
discretisation method which requires a reasonable number of grid 
points. 

The equations for the rapidly varying parts w~ reduce to ordinary 
differential equations. That means that only deriqatives with respect 
to the "fast" variable t/l occur. Since the rate of decay of w~ 
depends heavily on qi the width of the layer grows with the appliea 
voltage; a fact which is absolutely well known by device physicists, 
but which becomes nicely apparent by the singular perturbation 
approach. 

4. NUMERICAL SOLUTION OF THE SEMICONDUCTOR EQUATIONS 

In this chapter we discuss some of the problems occuring in the 
numerical solution of the semiconductor equations and the analysis of 
existing numerical methods. From the viewpoint of numerical analysis 
there are essentially three major topics to be considered. The first 
one is the type of discretisation to be used. There exist programs 
for both Finite Element and Finite Difference discretisations of the 
syst~m (2.1)-(2.5). As outlined in the previous chapter the solution 
exhibits a smooth behaviour in some subregions of the domain whereas 
in others it varies rapidly. Thus a nonuniform mesh is mandatory and 
adaptive mesh refinement is desirable. So the second topic is the 
question how to set up the mesh refinement algorithm i.e. which 
quantities have to be used to control the mesh. Each type of 
discretisation will lead to a large sparse system of nonlinear 
equations and so the solution of this system is the third topic. 
However, this topic is not dealt with herein; extensive treatment can 
be found in the literature e.g. /3/, /11/, /18/, /33/. 
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For the sake of simplicity in nomenclature we shall only consider 
the two-dimensional case in this chapter. However, all results given 
in the following can be generalized to three dimensions in a 
straightforward manner. So, the equations are posed in a domain D of 
R2 and i = (x,y)T denotes the independent variable. 

4.1 Discretisation Schemes 

Using Finite Elements or Finite Differences one has to take into 
account that Poisson's equation (2.1) is of a different type than the 
continuity equations. Poisson's equation in the scaling of 
Markowich /26/ using the variables ('1',u,v) 

l 2 • div gr ad 'I' = e 'I'. u - e -'I'. v - C ( 4 • l) 

is a singularly perturbed elliptic problem whose right hand side has a 
positive derivative with respect to 'I'· Thus it is of a standard form 
(as discussed in e.g. /14/) except for the discontinuous or 
exponentially graded term C. Equations of that type are generally 
well behaved and it suffices to apply a usual discretisation scheme. 
In the case of Finite Differences using the index convention given in 
Fig. l equation (4.1) is discretized by: 

l 2 • (div gr ad qi) i j = n i j - pi j - C (xi' y j) ( 4. 2) 

x 
Ei+l/2,j <•·+1 .-.... )/h. l ,J l,J l 

(div grad qi). . l,J 
x 

2· (Ei+l/2,j 

+ 2 • <El,j+1;2 

x 
- E. 1/2 .)/(h.+h. 1) + 

i- , J l i-

- E~ . 1/2)/(k.+k. l) l,J- J J-

hj 

Fig.l The index convention used 

(4. 3) 

(4. 4) 

If one of the neighbouring gridpoints (x. 1 ,y.), (x._1 ,y.), 
(xi,yi+ll, (xi,yj-L) does not exist - as possifi!e irt a terffiinating 
line approach ;l/, 72/ or in the Finite Boxes approach /15/ (4.4) 
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has to be modified. In the case of Finite Elements classical shape 
functions can be used (i.e. linear shape functions for triangular 
elements, bilinear shape functions for rectangular elements) . 

It turns out that the discretisation 
is more crucial than the discretisation 
usual error analysis of discretisation 
estimate of the form: 

of the continuity equations 
of Poissons's equation. The 
methods provides an error 

(4. 5) 

wh denotes the numerical approximation to w(x,y)=('f',n,p)T. H 
denotes the maximal gridspacing. The constant c will in general 
depend on the higher order derivatives of w. The singular 
perturbation analysis /27/ shows that derivatives of qt', nA and pA in 
(3.12) are of magnitude O(l-3) - O(l-4) locally near the junction (A 
is defined in (3.9)). /27/ shows also that, even if a nonuniform mesh 
is used, the amount of gridpoints required to equidistribute the error 
term in (4.5) can be proportional to l-2 which is of cour~e 
prohibitive. Therefore a discretisation scheme is needed where the 
constant c in (4.5) does not depend on the higher derivatives of the 
rapidly varying terms qt', nA and pA. For the case of Finite 
Differences such a scheme was given by Scharfetter and Gummel /32/. 
They approximate: 

Jn = grad n - n•grad 'fl 

div J = 3Jx/8x + 8JY;3y n n n R 

by: 

- (n .. +n.+l ·l/2· ('f'·+l .-'fl . . )/h. l,J 1 ,J 1 ,J l,J 1 

- (n .. +n .. 1 )/2·('1'· ·+1 -'I'· ·)/k· 1,J l,J+ l,J l,J J 

f ( s) = s ·co th ( s) 

2 ·(J~i+l/2,j - J~i-1/2,j)/(hi+hi-l) + 

+ 2 ·(J~i,j+l/2 - Jxi,j-1/2)/(kj+kj-l) = Ri,j 

(4. 6) 

(4. 7) 

(4. 8) 

(4. 9) 

The continuity equation for holes is discretized analogously. 
Scharfetter and Gummel gave a physical reasoning for the derivation of 
their scheme. Markewich et al. /27/ proved that in one dimension the 
Scharfetter-Gummel scheme is uniformly convergent. That means that 
the error constant c in (4.5) does not depend on the derivatives of 
'V', nA and pA in (3.12) and therefore not on l. For two dimensions 
/27/ shows that the choice f(s) = s·coth(s) is necessary for uniform 
convergence. Exponentially fitted schemes like the Scharfetter-Gummel 
scheme have been analyzed by Kellog /21/, /20/ and Doolan /12/ (for 
different classes of problems) . The reason for the uniform 
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convergence of these schemes is that inside the pn-junction layers the 
interface conditions (3.16)-(3.19) are satisfied automatically if 
lgrad'f'I is large and the gridspacing is not O(~). 

The results for Finite Difference schemes suggest that a simikar 
approach (like the exponentially fitted schemes) should be used in the 
case of Finite Elements. This fact has been intuitively observed by 
Engel /13/ for the one-dimensional case. A modeling group at IBM has 
tried to make use of the Scharfetter-Gummel scheme for Finite Elements 
in two and three space dimensions /5/, /4/, /8/. However, we have the 
impression that their approach needs still quite a bit of analysis, 
although it has been used effectively by other modelists too e.g. 
/31/. Macheck /23/ has tried to develop a more rigorous 
discretisation for Finite Elements using exponentially fitted shape 
functions. He uses classical bilinear shape functions for qi and 

4'1(x,y) 

4'2 (x,y) 

d3(x,y) 

Ge 4 (x,y) 

for u, and 

P1 (x,yl 

P2 (x,yl 

p3(x,y) ,4 (x,y) 

[l - 'Pi (x,y)] • [l - •2 (x,y) l 
•1 (x,y) • [l - ~ (x,y)] 

~(x,y) • ~(x,y) 

[l - •1 (x,y)] · ~ (x,y) 

[l - «r1 (x,y) l · [l - '12 (x,y) l 
«r1(x,y) ·[l - «r2(x,y)] 

•1(x,y) . «r2(x,y) 

[ 1 - •1 ( X r Y) ] • '12 (XI Y) 

for v, where 

'PJ.(x,y) f(x,~) 

0'1 (x,y) f (x,-1-!) 

4P2(x,y) 

CT2(x,y) 

f(y,~) 

f(y,- ~) 

with: f(x,a) = (exp(ax)-1)/(exp(a)-l) 

(4 .10) 

(4 .11) 

(4 .12) 

(4.13) 

The advantage of these shape functions is that they accomodate 
nicely the layer behaviour of the solution. They degenerate into the 
ordinary bilinear shape functions when the electric potential is 
constant. In order to be able to switch from coarse to fine grid 
spacing in different subdomains transition elements have to be used 
/23/. However, no theoretical investigations have been carried out so 
far to analyse the uniform convergence properties of this method. 

4.2 Grid Construction 

Since subregions of strong variation of qi, n and p alternate with 
regions where these quantities behave smoothly (i.e. their gradients 
are small) different meshsizes are mandatory in these subregions. The 
discretisation scheme should be able to switch locally from a coarser 
to a finer grid. However, the question arises which criteria should 
be used to generate the mesh. If the user of a simulation program has 
to define his elements or nodes a priori as input parameters, this can 
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perhaps be done by experience /6/. If - as it is the case for modern 
user oriented programs an adaptive mesh selection is desired 
mathematically formulated criteri~ are a "sine qua non". Generally 
such criteria should satisfy two conditions. Firstly they should not 
cause the program to construct more gridpoints/elements than necessary 
to achieve a certain accuracy. Secondly they should guarantee that a 
prescribed relative accuracy I is really achieved once they are 
satisfied. A usual way to design adaptive mesh refinement procedures 
is to equidistribute the local truncation error of the discretisation 
scheme. In the case of Finite Differences this error is proportio~al 
to the meshsize and the third and fourth derivatives of Ip, n and p. 
Markowich /27/ however showed that it is practically not possible to 
equidistribute this quantity. In the case of a simple MOS-transistor 
O{J-2).-2) gridpoints would be required. On the other hand the 
singular perturbation analysis shows that the solution of the 
difference scheme approximates the solution of the reduced problem 
{3.13)-(3.15) even if this criterion is not satisfied inside the layer 
regions. Therefore the quantity to be equidistributed is the 
discretisation error of Poisson's equation (i.e. the partial 
derivatives of the space charge times the meshsizes). This 
equidistribution can be relaxed inside the junction layers by e.g. 
simply limiting t~e number of gridpoints there. 

5. A GLIMPSE ON RESULTS 

As an illustrative example a 
relatively simple structure, a two 
dimensional diode, is chosen. 
Fig.2 sqows the doping profile as 
birds-eye-view1ilo~3 A sµbstrate 
with 10 cm acceptor 
concentration and an exponent~al!~ 
graded n-region with 10 cm 
maximum doping is assumed. The 
initial mesh is automatically 
generated from the doping profile 
and the geometry definition. The 
simulation domain (device geometry) 
is a square of 100,Pm times 100,Pm 
size. At the n-region an ohmic 
contact with length 20,Pm is 
assumed. The substrate is fully 
contacted. The initial mesh for a 
Finite Boxes program is shown in 
Fig.3 and for a Finite Element 
program in Fig.4. The point 
allocation is identical for both 
representations. The grid consists 
of 121 points versus 178 when all 
gridlines are extended throughout 
the device. This clearly 
demonstrates the advantage of the 
Finite Boxes approach. In Finite 
Element representation one has to 
deal with 80 rectangular elements 
and 17 transition elements which 
consist of 51 triangles. 
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Fig.3 Finite Boxes initial mesh 

Fig.5 shows the final grid for 
an operating condition of 0.7V 
forward bias in Finite Boxes 
representation. This mesh is 
obtained after several adaption 
processes using the criteria given 
in chapter 4. It consists of 270 
points (versus 480 for the 
classical approach). In Fig.6 the 
electron density distribution is 
drawn. From this plot one nicely 
can deduce the effects of high 
injection. E.g. the substrate is 
flooded with carriers. Fig.7 shows 
the magnitude of the electron 
current density. 2he peak value is 
about 180 A/cm . The sharply 
pronounced peak which exists at the 
transition of the Dirichlet 
boundary condition to the Neumann 
boundary condition corresponds to a 
singularity of the carrier 
densities. Physically interpreted 
this effect is well known as 
contact-corner-current-crowding. 
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Fig.4 Finite Element initial mesh 

Fig.5 Final mesh U=0.7V 



Fig.6 Electron density U=0.7V 

Fig.8 shows the final grid for 
an operating condition of -20V 
(reverse) bias in Finite Element 
representation. This mesh consists 
of 363 points (625 for classical 
Finite Differences) which 
correspond to 277 rectangular 
elements and 41 transition elements 
(123 triangles). The electron 
density for this operating point is 
given in Fig.9. One nicely 
observes the depletion region and 
the typical shape of the drop of 
the electron density in that region 
owing to thermal generation. In 
Fig.10 the magnitude of the 
electron current density is drawn. 
The singularity at the contact 
corner is, although it still 
exists, not so pronounced. Note 
that there are about seven orders 
of magnitude difference in the peak 
value compared to Fig.10. 
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Fig.7 Electron current U=0.7V 

Fig.8 Final mesh U=-20V 



Fig.9 Electron density U=-20V Fig.10 Electron current U=-20V 

6. CONCLUSION 

In this paper we have presented an analysis of the steady state 
semiconductor equations and the impact of this analysis on the design 
of device simulation programs. By appropriate scaling we have 
transformed the semiconductor equations into a singularly perturbed 
elliptic system with nonsmooth data. Information obtained from the 
singular perturbation analysis has been used to investigate stability 
and convergence of discretisation schemes with particular emphasis on 
the adaptive construction of efficient grids. An example has 
demonstrated the power and flexibility a device simulation program can 
achieve when using the information we have presented for program 
design. 
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