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Abstract: A new approach for the 
formulation of equations with application to 
circuit simulation, which is implemented in 
the circuit simulation program JANAP, is 
presented. The advantages of our method over 
the classical nodal and sparse tableau 
approaches are demonstrated. 

Introduction 

Since the early 1970's circuit simulation 
has evolved to a significant design aid for 
integrated circuit engineering. The present 
situation, however, reveals the need of more 
efficient simulation tools in terms of 
computer resources. So-called "Third­
Generation" techniques offer possibilities to 
improve the efficiency of circuit simulation 
programs from the purely algorithmic point of 
view. Another important point is the 
availability of an efficient and flexible 
method to describe device and macro models. 

The main goals 
simulation program JANAP 
Analysis Program) are: 

of our new circuit 
(Just Another Network 

- to not impose restrictions on the 
description of the circuit elements 

- to allow switches and boolean controlled 
elements [l] as basic circuit elements 

- a flexible modeling technique of semi­
conductor devices and macro models. 

- to use state-of-the-art numerical 
methods. 

Formulation of the network equatio~~ 

Switches as basic circuit elements create 
some problems with capacitor-only nodes. This 
situation cannot be detected by static 
analysis of the network description. Another 
problem is charge conservation [2], which is 
of particular importance for the simulation of 
dynamic RAM's, switched capacitor filters, and 
similar MOS circuits. 

The authors of [2] and [4] suggest to 
include the stored branch charge and flux as 
state variables in the system of equations. 
We include therefore all branch charges and 
i:lu1u:»o in the system of equations to solve the 
charge conservation problem. Variables which 
are not required will be eliminated by general 
symbolic reduction as shown in the next 
chapter. 

Further investigation into the problem 
with capacitor-only nodes leads to the general 
problem to describe a "capacity star" as is 
shown in Fig. 1. In addition to Kirchhoff's 
current and voltage laws the equation 
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Figure 1: Capacity Star 

must hold for the capacity star in the DC 
case. An easy formulation of this topology 
rule requires the "transportation" of this 
equation to the central node l of the capacity 
star by means of two utility branch values 
which are called herein "virtual charge" and 
"virtual flux". 

Now we can describe each basic circuit 
element with six branch values connected by up 
to five branch equations. The branch values 
are: 

current through branch 
v voltage at branch 
q stored charge within branch 
~ stored flux within magnetic field of 

branch 
r virtual charge to "transport" charges 
s virtual flux to "transport" flux 

For an electric network with branches 
d0scribed with the above values the following 
Tellegen theorems [5] hold: 

UT • i = 0 
T 

u (q+r) 0 

(~s) T i 0 

(~s)T (q+r) = 0 

The characteristic equations of the basic 
circuit elements implemented in JANAP are 
summarized in Table 1. 

The syntax of the JANAP input language 
allows to give nonlinear expressions in the 
description of the basic circuit elements 
which can depend on other branches. 



Table l: Basic Circuit Elements 

Element i v q • r s 

I Current source I 0 0 0 

v Voltage source v 0 0 0 

R Resistor R • i 0 0 

G Conductor G•v 0 0 

c Capacitor 
dq C•v 0 0 dt 

L Coil d. 0 L•i 0 dt 
s Switch open 0 0 0 0 

Switch closed 0 0 0 0 

M Coupling +ki j ·•i 
u Universal f f f f f f 

The "Universal Element" allows the 
specification of up to five nonlinear 
expressions for the branch values. With such 
an element one can describe in a very 
comfortable manner real voltage and current 
sources and also exotic elements like 
norators, nullators and memristors. This 
results in a reduction of the total number of 
elements of a circuit and therefore in a 
reduction of the total rank of the network 
equations. For instance, a diode model can be 
changed from three classical elements (Fig. 2) 
to one classical and one universal element 
(Fig. 3). This results in a reduction from 15 
to 9 equations for the equivalent description. 

vR=iR·Rs 
qR=0 
'fR=0 

Vo 
i 0 =Is· (exp(~-)-1) 

n•VT 
qo=0 
~=0 

r 0 =0 

Is vc vc 
qc=vc· llt--•exp (---) +Cjo • (1- ir -mi 

n•VT n·VT 

dqc 
ic=-----;:rt 

'Pc=0 
rc=0 
i 0 +ic-iR=0 

qo+ro+qc+rc-qR-rR=0 
v0 -vc=0 
~+s0-'Pc-sc=0 

Figure 2: Diode model (classical elements) 

Internally JANAP converts all classical 
circuit elements to a corresponding universal 
element. 

The inclusion of charge and flux and its 
corresponding utility variables results in a 
superset of Kirchhoff's equations. We have 
the following topology equations: 

A· i 0 

B•v 0 

A·q + A• r: 0 

B·IP + B•s 0 

A is the cutset, B the loop matrix. 
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vR=iR·Rs 
qR=0 
'fR=0 

Is vo vo 
qo=vo • llt--• exp(---) +Cjo • ( 1- -¢P -mi 

n•VT n·VT 
vo dqc 

i 0 =Is· (exp(--)-1)+~-
n•VT dt 

~=0 

r 0 =0 
io-iR=0 
qo+ro-qR-rR=0 

Figure 3: Diode model with universal element 

The resulting system of equations of this 
so-called "Complete Tableau Approach" (CTA) is 
shown in Fig. 4. 

Solution of the network equations 

The system of equations owing to the CTA 
consists of six unknowns for each branch. Due 
to the simple structure of the defining 
equations a great number of theses values 
(most of the branch charges and fluxes) is 
known a priori and can be evaluated in the 
setup phase. This results in a reduction of 
the rank of the system of equations by about 
40% for typical applications. There are many 
similiar situations, which can be easily 
solved by symbolic reduction of the system of 
equations. 

After the system of equations has been 
reduced by the above mentioned method the 
Jacobian matrix is computed symbolically, as 
far as possible. Deriviates, which ,.,drinoi: bt~ 

determined symbolically must be computed with 
numeric differentiation, however this does not 
occur very frequently. Each element of the 
Jacobian matrix can be classified as follows: 

0 
constant 
equation 
numeric computation required 

After this step the worst case sparsity 
pattern of the Jacobian matrix is known. 
Parts of the factorization of the Jacobian 
matrix can already be done in the setup phase. 

It should be noted that it is not 
possible to compute all branch values (e.g. 
the virtual values in purely resistive 
networks). Studies of circuits containing 
switches show another problem. An open switch 
can result in a deconnection of two parts of 
the circ1dt. Than we have two independent 
ciruits. This results in an extranous 
redundant node-equation. Therefore the system 
of equations is overdetermined but not contra­
dictionary. Contradictions can occur in 
situations like short cutting a voltage 
source. These problems have to be tackle~ 
with a modified sparse matrix code (e.g. [6], 
[ 7] ) 

The final system of equations is solved 
with an adaptively damped Newton scheme. 
Transient simulation is accomplished by fully 
implicit backward difference formulae with 



automatic time step and order control [3]. 
According to [2] the inclusion of charge and 
flux results in better performance during the 
transient solution. Latency is automatically 
accounted for with zero order integration and 
bypassing of Jacobian matrix evaluations. 
Informations about the elements which are 
contained within one subcircuit are used to 
determine the latent blocks. 

Conclusion 

The formulation of the network equations 
used by JANAP has been presented, which offers 
a great flexibility in the description of 
circuits. 
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Figure 4: System of equations for CTA 
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