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ABSTRACT 

A method for the two-dimensional computation of 
metallization and junction capacitances in multiconductor 
systems is presented. The charge distribution on the 
conductor surface and in the space charge regions is 
computed with a computer program using the finite element 
method with triangular elements. The initial grid is 
automatically refined. During the refinement process no 
angle smaller than a prescribed lower bound is generated. A 
postprocessor computes the coefficients of capacitance from 
the potential distribution. The program handles a variety 
of VLSI structures. Specific numerical examples are 
presented to show applications of the concept. 

1.) Introduction 

The scaling theory of MOS transistors is the key to VLSI 
chip manufacturing. However, the progressive shrinking of 
the device dimensions creates a number of problems for 
circuit designers. A careful consideration of capacitance 
related phenomena like circuit delays and crosstalk signals 
is necessary to ensure a successful chip layout. Due to the 
lack of space we can only ref er the interested reader to 
/1,2/ for a detailed analysis of VLSI layout problems. 

The capacitance computation as outlined in this paper is 
a two stage procedure. The final step, the computation of 
coefficients of capacitance from conductor charges, is 
described in chapter 2). The preliminary step of charge 
computation is explained in chapter 3). Examples in 
chapter 4) close the presentation. 

June 21-22, 1984 V-MIC Conf. 
CH 1999-2/84/0000-0209$01.00 C 1984 IEEE 



210. 

2) Computation of Coefficients of Capacitance 

The 3-conductor system of Fig.2-1 shall serve as an 
example for the following discussion. For the moment let us 
assume that all conductors are surrounded by a linear 
dielectric. The generalization to nonlinear media follows 
in paragraph 3.2). We define Cij as the coupling 
capacitance between conductor i and conductor j, Cii as the 
self capacitance of conductor i, Ci and •i as the charge and 
potential of conductor i, respectively. The number of 
conductors is k. The set of equations (2.1) shows the 
relationship between the variables. 
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Fig.2-1 Three-Conductor System 

The unknowns are the coefficients Cij· Please note that 
solving (2.lb) is different from solving a system of linear 
equations Ax = b. For a certain bias point the number of 
unknowns is k(k+l)/2 but only k-1 linear independent 
equations exist. The conductor potentials are not necessary 
in the linear case because the capacitance depends purely on 
the geometry of conductors and dielectric interfaces. 
Therefore, we are allowed to simply assume some sets of 
conductor potentials in order to compute a charge 



distribution Q until enough linear independent equations are 
available to match the number of unknowns. The 
determination of the charges is outlined in chapter 3). 

2.1) Generalization for Nonlinear Dielectrics 

The capacitance is no longer voltage independent. We are 
not allowed to simply assume a set of conductor voltages for 
the charge computation. Assert that the conductors are 
biased with the prescribed potentials ~, •2, •3· We employ 
the principle of linearization on the operating·point of the 
circuit. The conductor potentials are replaced by the 
conductor bias plus the deliberately assumed potential 
offsets. Besides that, the method of the previous paragraph 
remain unchanged. The magnitude of the offset must be large 
enough to get a significant change in the charge and at the 
same time small enough to allow application of the 
linearization principle. A good 'rule of thumb' is to 
choose~·= 1% ••• 5% of the conductor bias. 

3.) Computation of Surface and Space Charges 

Again we consider first the presence of linear 
dielectrics only. To solve (2.1) for the Cij we have to 
calculate the surface charges on the conductors. We solve 
the Laplace equation (3.1) in the two-dimensional simulation 
region which represents a cross cut of the interesting 
conductor geometry. 

div grad • = 0. (3.1) 

The solution of (3.1) is the potential distribution •(x,y). 
By differentiation we get the electric field E. Integrating 
the normal component of the electrical displacement C·E over 
the conductor surfaces yields the charges. 

Reflecting upon junction capacitances we have to solve 
Poisson's equation (3.2) instead of (3.1). 

div (grad•= -q(niexp(($p-•)/VT -

- n[exp(('P-$n)/VT +CT) (3.2) 

q is the electron charge, n1 the intrinsic number, VT the 
thermal voltage, C the dielectric constant, ~, 4'-, the 
quasifermipotential of the electrons and boles, 
respectively, and CT the concentration of active dopants. 
Since, the junction capacitance we are interested in exists 
only in reverse biased junctions, an accurate model of the 
reversed biased pn-junction alone is sufficient for our 
purposes. We modify the right hand side of (3.2) by the us 
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of a depletion ap11roximation (3.3a,b). Minority carriers 
are neglected. ~ and ~ are set to the constant anode and 
cathode potential of the Junction, respectively. 

Anode region: 

div tgrad • = -q(niexp(.A) ·exp(-./VT) +CT) 

Cathode region: 

(3.3a) 

div tgrad • = q(niexp(-.K) ·exp(./VT) + CT) (3.3b) 

After (3.3) has been solved it's right hand side which 
physically corresponds to the space charge dens~ty is 
integrated for the anode and cathode region separately. Due 
to the charge neutrality theorem the same amount of charge 
must be located in the anode and cathode, respectively. The 
satisfaction of charge neutrality can be ·used to reject 
inaccurate solutions. 

Surface and space charges computed in the described manner 
are entered into equation (2.lb). 

3.1) Solving the Partial Differential Equation 

The finite element method is used to solve (3.1) or 
(3.3). A computer program has been developed that uses 
triangular elements with biquadratic shape functions. The 
program can be adapted to a wide variety of simulation 
geometries due to the easy handling of complicated 
boundaries with finite elements. The user specifies an 
initial grid coarse enough to describe the simulation 
region. The doping profile and the bias of the circuit 
complete the input data. The initial grid is automatically 
refined in the course of computation. 

The selection of a well suited triangulation is essential 
for convergence and solution accuracy. As shown, e.g., in 
/3/ the discretization error depends on the smallest angle 
in the triangulation. To decrease this error it is not 
sufficient to simply increase the number of elements 
(triangles). At the same time one must assure that the 
element angles are all greater than a lower bound J. Our 
grid generator fulfills this reqirement. Practical values 
for J are iso ••• 250® Furthermore, the magnitude of that 
single parameter J controls the 1 character 1 of the grid. A 
small J results in a very progressive, economic grid. A 
more uniform, slowly varying grid is achieved with a large 
J. We would like to recall the fact that an overly 
progressive grid can lead to a bad condition number of the 
stiffness matrix and therefore should be avoided. 



4.) Results 

4.1) Linear Capacitance 

The simulation geometry is shown in Fig.4-1. The 
influence of the spacing S and the conductor-ground plane 
distance H on the capacitances Cs and Cc are investigated. 
H takes values from 0.1 to 1.2 Pm and S is in the range 
from 0.2 to 2.4 Pm. 

A comparison between the numerically computed coupling 
capacitance and the classical parallel plate formula is 
shown in Fig.4-2. The dependent variable ·is Cc/Ceo with 

(4.1) 

The use of (4.1) is inadequate for an accurate circuit 
layout. The computed capacitance values are typically 
50% ••• 100% larger than (4.1) predicts. 

4.2) Junction Capacitance 

The second example is based on the structure shown in 
Fig.4-3 (not to scale). The length unit is Pm. The 
polysilicon wire is isolated from the substrate and the 
aluminum by a layer of silicondioxide. The substrate, which 
is p-doped with NA=1ol6 cm-3, contains an implanted 
n-region. The analytic doping profile model from /4/ is 
used with the following assumptions: A dose of 1015 
(phosphorus) is implanted through a 350nm thick protective 
oxide layer with an energy of 40keV. After the implant a 
1200s annealing at 1000 oc is performed. The resulting 
profile is shown in Fig.4-4. A simplified first analysis of 
the structure usually treats the oxide/substrate interface 
as a conducting plane. The wires are assumed to be ideal 
conductors also. The capacitance is calculated to be 
8.79pF/cm. 

Simulating the full structure is much more costly. Three 
conductors will now be considered: the polysilicon wire, the 
p-region of the substrate and a 'compound' wire consisting 
of the aluminium contact plus the n-region. Fig.4-5 and 
Fig.4-6 show the potential distribution for two bias points. 
The gate potential is 3V, the bulk potential is -lV. The 
source potential is lV in Fig.4-5 and 2V in Fig.4-6. The 
junction capacitance was evaluated to Cju(Ug=lV)=38.8pF/cm 
and Cju(Ug=2V)=32.8pF/cm. 
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5.) Conclusion 

We have outlined the importance of accurate capacitance 
computation for the purpose of VLSI design. A method for 
the calculation of linear and nonlinear capacitances has 
been presented. 

We presented a depletion approximation suitable for 
accurate computation of semiconductor junction capacitances. 
The coupling capacitance of a transmission line pair vs. 
line and line to ground spacing was shown in a pseudo 
3D-plot. The junction capacitance of a VLSI-Structure has 
been computed. 
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