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ABS'mJ!Cr: A method for: the two-di.merlsicmal <Xl!Pltaticn Of 
metalll.zaticin .c juo::ticin capacitances in mul.t.iccrd.ci:or 
syst:mm is pr-tad. 'Jbe d:large distril:utioo en the 
oamx:txr surfa:la .C in the ap-=e charge regions is <Xllplted 
with.a wupit:ec pr:ogrm. ~ the finita element method with 
tri.m1gul.ar elmnents. 'D:ll! Wtial grid is. &Jtxmatically 
refimd. D.Jrin; the re~ pr:tlOllSS no angle -1ler than 
a pres::ribed lower boulld is generated. A pastpLocesscu: 
wupit:its the ooe!fic::imt:s of capacitance from the ~ 
values. 'D:ll! pmoqrcm bollDdles a variety of VIm: st:ra::tures. 
f\Wrlfic mai!rical. ex.all{:ll.es are pcesented to show aa>llc:atiais 
of the CXlllCl!Pt· 

1.) Introdu::tion 

1.1) Organisaticn of the Paper 

Chapter !.) explains the motivation behi.00 the present 
paper. Oiapter 2.) gives a brief survey of relevant 
literature k.N;IWn by the aut,bors. "nie capacitance compltation 
as out.lired in this paper is a b.o stage procedure. 'Ihe 
preliminary step, t:Pe o::>mpJtation of surface am space 
charges, is described in c:hapt;.er 4.). 'lhe final step, the 
capacitance OJ11¥Utation, is explained in chapter 3.). 
Exar!l?les in chapter 5.) close the presentation. 

1.2) In:::reasing !Jrtiortance of Capacitances in VI.SI 

'nie scaling theory of ~ tra,nsistors is the key to VI.SI 
chip manufa::turing. However, the progressive shrinking of the 
device dimensicns creates a n.mt>er of problems for circuit 
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desigrers. As outlined below a careful consideration of wire 
layout, circuit delays and crosstalk problems is necessary to 
ensure a soocessful chip layout. 

Fig .l-l Interconnection line geanetry 

First we investigate how the capacitance of an 
interconnectioo line is affected if a scaling factor l/K, 
K > l, is at:Plied to a design to reduce the vertical and 
horizontal dimensions. A$$une the rectangular wire of 
Fig.1-l. A wire Of width w, height Band length L is located 
above a comu::tin;i grourd plane. Between the wire and the 
plane is an insulator of thickness B and relative dielectric 
ccnstant Cr. t is the specific resistance of the line 
material. By neglecting fringing effects the line capacitance 
(l.la) aro the line resistance (l.lb) beccme 

usirg the scalirg relations (l.2a-<3) 

H' ·~ 
L' .. L/X 
T' • T/K 
W' • W/K 

the scaled capacitance (l.3) becx:mes 

(l.la) 

(l.lb) 

(l.2a) 
(l.21:>) 
(l.2c) 
(l.2d) 

C' • 'o'rW'L'/H' • C/K. (l.3) 

A similar consideration of the line resistance reveals 

R' • R·K. (l.4) 

We see from (l.3), (l.4) that the FC ti,me constant of the line 
is rot i.nproved by scalirg. So far our analysis has been 



based on the assl.ll{ltion that designers will take the sarre 
circuit functicn and ret:uild it en a smaller level. In 
pra::tice they a.re more likely to place more COll\JOnents on the 
chip while maintaining it's area. With respect to the wiring 
that means the wire length is rot scaled oown provided that 
the chip architecture remains the same. 

original Layout Scaled Layout Ks2 

CJ 0 ... 0 Q 0 0 0 O··-~ 

ti El Er EJ EJ··· EJ 

0 [] -.. 0 ... 
. . . . . . 

Fig.1-2 

Fig .1-2 illustrates that the length of a line (i.e. a data 
t:us) is conserved. Taking this into account (1.3) aro (l.4) 
have to be mcdified aro read now 

C' • C (1.5) 

R' ., R•K2. (1. 6) 

'l1'le time =tant is row scaled up by K2 posing tight layout 
constraints if passive (parasitic) elements a.re rot permitted 
to seriously degrade cirCJit performance. 'lbe maintainance of 
a suitable roise margin forces control of coupling 
capacitances between pa.raliel and sometimes even crossing 
lines. Power requirements depend, in pa.rt, on the airount of 
capacitance at a gate outp..lt. For th:>se reasons the precise 
knowledge Of , device aOO interconnect capacitances at the 
design phase bf a chip is essential. For a nxire detailed 
analysis of vt.SI layout problems the interested reader is 
referred to /2,7,10,5/. 

2) Existing work 

'.the following is a brief survey over existing literature 
known t:v the authors and by ro means intended to be 
exhaustive. A mathematical framew:>rk for the following 
problem is needed: For a given condu:::tor gec:metry ard a given 
regioo of interest (sillL\laticn regicnl ci::mµite the cofficients 
of capacitance for all condu:::tors in the region. If the· 
dielectric surrounding the conductors is ronlinear (i.e. 
semiconductor) , then the conductor potentials rrust also be 



Y•""' For the linear case (i.e. silicondioxide as 
dielce::nc) bias p:Jint information is in:elevant. 'I'wQ ways 
leading to a solution are widespread: 1) Problem fornulation 
in integral equation (IEF) or 2) Problem formulation in 
partial differential equation (PDEF) form. 

The first ai::Proach is favored in /1, 8, 9, 17, 11, 12, 13/. 
The diffia.ilty of the IEF is the need for an analytical 
expression of Green's fun::tion for a particular si.nn.11.ation 
region. It is usually hard to obtain and 110Stly rontains 
infinite suns which may lead to slow convergence. E\lrthermore 
a singularity of type l/x, x->O is always present. 'l11is may 
be tackled by using weighted quadrature fo~ as applied in 
/ll, 13/ to the IEF. Analytical integration of Green• s 
furction is shown in /l,17/. The IEF is good suited to the 
problem if Green's furction is eaey to calculate and the 
spacing bet:ioeen condu::tors is very large C011pared to the 
conductm dimensicns. Using the Ill' the electric field 
bet:ioeen the wires is not needed. (It is i.Irplicitly present in 
Green's fun:::tion.) Only the field on the conductor surface is 
of interest. This poses an advantage if sim.ll.ation regions 
are large or even infinite. 

PDEF requires the solution of Poisson's equation for 
ronlirear dielectrics and Laplace• s equation for linear 
dielectrics. Usually this is done by discretization of the 
siitUlatim regim with finite element or finite differeoce 
methcx:ls. Tutorial papers bn the subject are /4,lB/. COmp..iter 
inplementation of roEF, generally speaking, is rore labJrious 
than IEF. The payoff is its eaey adaption to various kioos of 
siitUlatim geometries. Ideas to overcooie the sensitivity of 
discretization methcx:ls to electric field singularities at 
condoctor vertices are presented in /6/. /14 ,15/ contain an 
investigation of progressive grids for discretization. 

3. I Corrp.ltatim of Coefficients of Capacitance 

,The 3-condu::tor system of Fig.3-1 shall serve as an exanple 
for the following disrussion. For the time being let us 
assune that all condoctors are surrounded by a linear 
dielectric. The generalization to ronlinear media follows in 
paragra[ti 3.2). First of all .e define Ci; as the coupling 
capacitance bet;.een conductor i and conauctor j, cii as the 
self capacitance of condoctor i, Oi and IP!. as the charge and 
potential of condu::tor i, respectively. The number of 
conductors is k. The set of equations (3.1) shows the 
relationship bet:ioeen the variables. 
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Fig. 3-1 '111ree-Conductor System 
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'l1le unkrowns are the coefficients Cij. Please rote, that 
solving (3.lb) is different frcm solving a system of linear 
equatioos Ax= b. 'l1le nunt>er of unknowns is k(k+l)/2 but only 
k-1 linear .·iroependent equations exist. 'l1le charge 
distril::otioo 6 • <01, 02, ••• , Okl depends on the conductor 
potentials and is assuned to be kno.m. Oiapter 4. ) of the 
paper outlir.es l'x>w to get the charges. 'l11e conductor 
potentials are not necessary in the linear case because the 
capacitance depends i;urely en the geometry of conductors and 
dielectric interfaces. '111erefore, we are all01o1ed to sint>ly 
assune some sets of conductor potentials in order to conpute a 
charge distril::oticn O until erough linear indeperoent 
equaticns are available to match the number of unkoowns. 

For nunerical reasons we use k sets of potentials and setup 
k2 system eqllil.tioos. Clearly rot all of these k2 equations 
are linearly iroependent. A COll{l.lter algorittrn can be. 
errployed to select trose equations that result in the best 
possible condition number of the system coefficient matrix if 
more than the necessary k(k+l)/2 equations are available. 



3 .1 I Three-Conductor Exarrple 

We assume a set of conductor p:>tentials 51 = (-Pt;'O, 0, 0) 
and <X>!!p..lte the conductor charges iQ1, iQz, iQ3. The prefix 
in:lex refers to the set S1. The following six relations hold 
true 

(3.2a) 
(3.2b) 
(3.2c) 
(3.2d) 
(3.2e) 
(3.2f) 

By sumnation of all contributions to the coodoctor surface 
charge one arrives at (3.3a-c) 

(3.3a) 
(3.3b) 
(3.3c) 

The procedure is repeated usin:i S2 = <1fll, ~. 0) which yields 
expressions (3.4a-f) 

(3.4a) 
(3.4b) 
(3.4c) 
(3.4d) 
(3.4e) 
(3.4f) 

Elquations (3.Sa-c) give the surface charges on each coodoctor. 

(3.Sa) 
(3.Sb) 
(3.Sc) 

Azuther repetiticn of the cycle with S3 = (1f>J., ~. ':Jl yields 
two similar sets of equations not explicitly noted. Combining 
(3.3), (3.5) ard the the result of the third cycle to matrix 
form yields an over-determined system of nine linear equations 
( 3. 6) 

Ax= b (3.6) 

with A the rectan'31:!lar coefficient ma tr ix, x the vector of 
unkro..n capacitances x = (Cu, C12• ••. ,C33) and b the vector 
of the charges b • (1Q1, lQz, ···• ]03). 

System 3. 6 is transformed via QR-<le=rrpJsition into 
equatim (3.11). QR-<lecooposition is a generalization of the 
well-kno.m Gaussian elimination /3/, section 11. (3.6) is 
solved in the sense that the Lrnorm of the residuum vector 



r = rue - b is minimized. The linear least squares n:ethod, 
used for curve fitting, is a familiar application of 
QR-<lecorrpositiai in tw:J dirrensions. 

We start by substituting the singular value decorrposition 
(3.7) of matrix A into (3.6). U and V are orthogonal matrices 
as irrlicated by (3.8). The resulting equation (3.9) is 
multiplied from tre left by rfl and the vector y defined in 
(3.10) is introduced. Finally, equation (3.11) is arrived at 
and solved. 

A= wJT (3. 7) 

rfl " u-1 (3.Sa) 
vr "'v-1 (3. Sb) 

UQVTx " b (3. 9) 

y "'vTx (3.10) 

Qf = UTb * "b (3.11) 

'!he ratio of the largest element bi of vector b*, i=l, 
k(k+l)/2 to~' jzk+l,k2, provides an a posteriori quality 
irx:licator. This figure describes the nurrber of significant 
digits in the result rot affected by rourrloff and/or 
truncation error. 

3.2) Generalization for N::lnlinear Dielectrics 

'!he capacitance is oo longer voltage indepen::lent. We are 
mt all~ to si~ly assune a set of conductor voltages for 
the charge comp.itation. Assert that the condoctors are biased 
with tbe prescribed potentials 1f>t, lf>z, ~· We ~loy the 
priociple of linearization oo tre operating point of the 
circuit. Instead of the conductor potentials we row assune 
potential offsets S1 = ~1f>t, 0, 0), S2 = ~lf>J., 61f>z, 0) and 
s;i = ~1PJ.. 61f>z, 6~). '!he oonductor potentials for the 
first cycle of the charge CO!!p.ltations, yielding iQ1, 102 an::l 
103, are 1PJ. + 61f>t, 'Pz an::l IPJ, for the second cycle 1f>J. + 61f>J., 
'Pz + 6"z, IPJ, and so on. In the oonlinear case the conductor 
potentials are replaced by the con::loctor bias plus the 
deliberately assumed potential offsets. Besides that, the 
methOO of paragraph 3.l) remains urchanged. '!he magnitude of 
the offset ll"llSt be large eno1.X3h to get a significant change in 
the charge and at the same tirre snail eoough to allw 
awlication of the linear ization principle. A good 'rule of 
th..urb' is to choose 6'9 = 1% ••• 5% of the corductor bias. 



4.) ConpJtation of S•;rface and Space Charges 

Let us, again, firstly consider the presence of linear 
dielectrics only. To entiloy the method of paragraph 3.1) we 
have to calculate the surface charges on the conductors. We 
solve the Laplace equation (4.1) in the two-dimensional 
simulation region which represents a cross cut of the 
interesting conductor geometry. 

div grad 'P,. O. (4.1) 

'lb! solution of (4.1) is the potential distribution 'P(x,y). 
By differentiation we get the electric field E. Integrating 
the normal conp:nent of the electrical disp~t C•E over 
the conductor surfaces yields the charges. , 

Feflecting upon jun::tion capacitances we have to solve 
Poisson's equation (4.2) instead of (4.1). 

div Cgrad 'P • -q(niexp((C\""'fll!VT -

- niexp((~l/VT + c.r> (4.2) 

q is the electron charge, ni the intrinsic nl.llllber, ~ the 
thermal voltage, C the dielectric constant, dfi, 'tt> the 
quasifermipotential of the electrons and holes, respectively, 
aro Cr the cxinc:entration of active dopants. Siooe, the 
jun::tion capacitance we are interested in exists only in 
reverse biased jun::tions, an ar:x::urate no:iel of the reversed 
biased pn-jun::tion alone is sufficient for our purposes. We 
tl'Odify the right hard side of (4.2) by the use of a depletion 
ag;iroximation (4.3a,b). Minority carriers are neglected. dJi 
aro ~ are set to the constant anode and cathode potential of 
the jun::tion, respectively. 

!\rode region: 

div Cgrad lj> = -q(niexp C1PAl ·exp (-¥/VT) + c;i 
Cathode region: 

(4.3a) 

div Cgrad lj> = q(n1exp(-¥K) ·exp(WVT) + c;> (4.3b) 

After (4.3) has been solved it's right hand side, which 
physically cnrrespords to the space charge density, is 
integrated for the anode and cathode region separately. Due 
·to the charge neutrality theorem the same amount of charge 
llJJst be located in the anode and cathode, respectively. 'nle 
satisfaction of charge reutrality can be used to reject 
inacairate solutions. 

Surface and space charges cnnpJted in the described manner are 
entered into equation (3.3) aro (3.5). 



4.1) Solving the Partial Differential F.quation 

The finite element method is used to solve (4.1) or (4.3). 
A corrp.Jter program has been developed that uses triangular 
elements with biquadratic shape fun::tions. The program can be 
irl3pted to a wide variety of sillUl.ation georretr ies due to the 
easy harx'lling of complicated b:>undaries with finite elements. 
The user spe::ifies an initial grid coa.rse enough to describe 
the simulation region. The doping profile am the bias of the 
circuit COll\'lete the inp.Jt data. The initial grid is 
aut:anatically refine::l in the course of c:x:>mpJtation. ltie 
selectioo of a well suited triangulation is essential for 
convergence ard solution accuracy. 

The i.npxtance of sufficient small numerical errors in the 
potential becnnes clear by the follo.iing reflection. 
Physically the carrier concentration in the device is 
determine::l by the doping profile. The carrier density is high 
in the space charge regic:n, rut is several orders of magnitude 
lcwer in the distant diffusion zones. Because of the 
depletic:n ai:proximatioo (4.3a,b) only majority carriers are 
considered. Global charge neutrality requires that an anount 
of spa:::e charge in the anode is COll{lensated by a charge of the 
same anount, but with different sign in the cathode. An 
error, for elCallple, of v.r (2SmV at room tenperature) falsifies 
the carrier concentratic:n by a factor of 2. 7ni; which is about 
4•1010 cn-3 for silicon. Therefore, the spac:e charge in the 
diffUsioo regic:ns may be severely in error. Since the charge 
balance is lost, a 25mV error in the potential makes the 
result useless. Hence, potential errors of V-rfl.O or lower 
nust be achieved. 

Ar:other i.npxtant point to be considered is the refinerrent 
of the mesh. As shewn, e.g., in /16/ the discretization error 
depends on the snallest angle in the triangulatic:n. To 
decrease this error it is not sufficient to sillt'lY ircrease 
the mmtler of ~ements (triangie"s). At the same time one must 
assure that tti element angles are all greater than a lower 
bound '· ()ir grid senerator fulfills this reqireirent. 
Practical values for d are 150 ••. 250. JNrtherrore, the 
ma;1nitude of that single ,Parameter J controls the 'character' 
of the grid. A small d result;s in a very progressive, 
ecorcmic grid. A more uniform, slo.ily varying grid is 
achieved with a large J. We would like to recall the fact 
that an overly progressive grid can lead to a bad con:lition 
nurrt>er of the stiffness matrix ard therefore should be 
avoided. 
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5.) Results 

S.l) Linear Capacitances 

'l1le sinul.aticn geometry is stx:>wn in Fi9. 5-1. 'l1le influence 
of the spacing S and the condu::tor-<Jround plane distance H on 
the capacitances Cs an:! Cc are investigaW. H takes values 
from 0.1 to 1.2 ' m and S is in the range from 0.2 to 2.4 JI m. 

ST 
s ./ w 

Fi9.5-l W • 2.0 1 m T • 1.0 1 m 

8W 

The results are shown in the pseudo-JD plots in Fiq.5-2 and 
Fig.5-3. 'lbe distances H and S are the irdependent variables. 
Fig.5-2 stows the sl.bstrate capacitance Cs and Fiq.5-3 shows 
the c::x>q'lirq capacitance Cc· Alt;hou;h the S variation shows 
the main influence en Cc• one observes a ron-neqli9ible 
irx:rease of Cc while irx:reasi!'¥1 H. 'l1le fringiB; field is 
shielded well by the ground plane when H is low. If the 
transmissicn lines are withdra1o11 from the ground plane a mre 
widespread frirr;i!'¥1 field is present. 'lbus, Cc stows an 
irx:rease in spite of the constant S. 

A coll'parison betloeen the runericaily c;:atp.1ted capacitances 
an:! the classical parallel plate formul.A is shown in Fi9.5-4 
and Fig.5-5. 'l.1le dependent variaPle i,s Cs/Cso in Fiq.5-4 and 
Cc/Cco in Fig.5-5, respectively. 

(5.la) 
(5.lb) 

The use of (5.1) is inadequate for an accurate circuit layout. 
'lbe cxinp.lted capacitance values are typically 30\ ••• 100\ 
larger than (5.1) predicts. 
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5.2) Juocticn Capacitance 

The second exantile is based en the structure shown in 
Fig .5-6 (rot to scale) • The length unit is ~. The 
polysilicon wire is isolated frcm the substrate arr::l the 
alumiB.1111 !:¥ a layer of silicondioxide. The substrate, which 
is IHDpOO with ~-1016 cn-3, contains an implanted n-region. 
The analytic &::>ping profile model frcm /19/ is used with the 
followirg assU!li>tions: A oose of lol"5 (phosphorus) is 
implanted through a 350nm thick protective oxide layer with an 
energy of 40keV. After the implant a 1200s annealirg at 
1000 ~ is performe:J. The resultil'¥3 profile is shown in 
Fig.5-7. A sill{llified first analysis of the structure usually 
treats the oxide/slbstrate interface as a conductil'¥3 plane. 
The wires are assl.Jlled to be ideal conductors also. The 
capacitance is calculated to be 8. 79pF/on. 

Simulati1"¥3 the full structure is much more costly. Three 
conduct.ors will row be considered: the polysilicon wire, the 
p-region of the substrate am a 'oorrpourr:l' wire consistirg of 
the aluminium o::ntact plus the n-reg ioo. Fig. 5-8 ar¥3 Fig. 5-9 
show the potential distriwticn for two bias points. The gate 
potential is "N, the bllk potential is -lV. The s>uroe 
potential is lV in Fig.5-8 am 2V in Fig.5-9. The jun:::tion 
capacitance was evaluated to CjuC!Js•lV)•38.8pF/on ard 
Cju (Usz2V) •32. 8pF/cm. 

5.) Corx::lusion 

We have outlined the ilq?ortanoe of cw:::curate capacitance 
computation for the p.JrpoSe of VJ:.SI design. A method for the 
calculation of linear ard ronlinear capccitances has been 
presented. 

We presented a depletion a{:Proximation suitable for 
acc\lrate CXlll'lp'.ftation of semiconductor jun:::tion capacitances. 
The coupling capacitance of a transmissioo line pair vs. line 
an:l line to grourr:l spacing was shown in a pseuO::> 30-plot. The 
junction capacitance of a VJ:.SI-Structure has been conpited. 
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