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The grid is generated  automatically  according to the specified device 
geometry. It is adapted  automatically  during the solution process by 
equidistributing  a  weight function which describes the local discretization 
error. A modified Newton method is ,used for solving  the  discretized 
nonlinear system. To achieve  high flexibility the physical  parameters  can 
be defined by  user-supplied models. This approach  requires  numerical 
calculation  of  parts  of  the coefficients of  the Jacobian. Supplementary 
algorithms speed up convergence and  inhibit the commonly  known Newton 
overshoot. The advantages  and  computer  resource  savings  of the new 
method  are  described  by  the  simulation  of  a 100-V diode. We also present 
results for  thyristor  and GaAs MESFET simulations. 

T 
I.  INTRODUCTION 

WO-DIMENSIONAL finite-difference simulation of 
complex semiconductor structures, in view of an 

acceptable amount of computer resources to be used, 
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requires an  approach  that improves the classical methods. 
Regions where a coarse grid suffices to resolve the solution 
of the elliptic system of semiconductor equations generally 
alternate with domains where a fine mesh  is necessary. We 
developed a generalization of the classical rectangular-grid 
finite-difference method, which we call the concept of 
“finite boxes,’’ to overcome the drawbacks of the former. 

In our simulation program the initial grid is generated 
automatically according to the specified  device geometry, 
and  it i.s adapted iteratively during the solution process by 
equidistribution of the local discretization error of Poisson’s 
equation. This approach is applicable to nonrectangular 
devices and highly complex structures, like multilayer or 
multiple p-n junction devices. Details of the discretization 
procedure are outlined in Section 11. 

In Section I11 the modified Newton method used for 
solving the discrete nonlinear system is explained. Supple- 
mentary algorithms which speed up convergence and  pro- 
hibit Newton overshoot are implemented. Emphasis is put 
on the calculation of the entries of the Jacobian. Since the 
code should not be restricted to  a particular kind of 
semiconductor, it is necessary to change physical parame- 
ters  in  an easy  way without alteration of the code. The 
constants  that characterize the semiconductor (like the 
permitivity z )  are  part of the input deck. The doping 
profile, the generation/recombination term, as well as the 
carrier mobilities, are defined as external. functions. De- 
fault models are offered, but the user  may replace them 
with his own formulas. This flexibility induces a diversified 
approach for the calculation of the Jacobian matrix. Parts 
of the entries are calculated by evaluating analytically 
defined formulas. The remaining terms which depend on 
external functions are generated by numerical differentia- 
tion.  The resulting advantages and disadvantages will be 
explained in Section 111. 

The derived linear system of equations is solved  by 
Gaussian elimination. To  pinimize fill-in, we developed a 
reorder.ing based on the “minimum degree” algorithm of 
the grid points which form the “finite boxes” structure. 

In the final section we present typical meshes for three 
types of devices, namely a high-voltage diode, a thyristor, 
and  a GaAs MESFET. The whole iteration process of the 
diode is explained with respect to advantages and savings 
of the new concept. The equidistribution of the value of the 
error functional is shown. We compare the influence of 
various ways of modelling the physical parameters of the 
devices. 

11. DISCRETIZATION 

A .  The  Finite  Boxes Concept 
In the classical concept of finite differences, an elliptic 

PDE system is discretized on a rectangular grid throughout 
the device. The grid spacings depend on the estimate of the 
truncati.on error of the discretization scheme along the 
whole grid lines. Therefore the simulation of complex 
structures with rapidly varying solutions employs a large 
number of grid points such that reasonable storage require- 

Fig. 1. Classical  5-point  discretization 

Fig. 2. Finite  boxes  discretization. 

ments are often exceeded. A program system suitable for 
an arbitrary device,  which  is based on the classical finite 
difference approach, is not executable on most computer 
systems. 

To overcome these difficulties, we developed a new 
concept for the discretization of the fundamental semicon- 
ductor equations which  may be interpreted as a consequent 
generalization of the “ terminating-line’’ approach  intro- 
duced by Adler [l]. The usual rectangular pattern of grid 
points is dropped.  The mesh is built up by rectangular 
cells, the so-called “finite boxes.” In the case of nonrectan- 
gular-shaped devices, triangles are attached  to the cells 
along the outer boundaries (see Subsection 11-D). A rectan- 
gular box usually links the 4 corner grid points. A fifth 
point can be inserted at  one edge to allow the connection 
of boxes of different sizes. In this way the dimension of the 
boxes may  vary  over decades throughout the simulation 
area in accordance to the solution of the PDE system and 
the truncation error estimates. We demonstrate our ap- 
proach by the discretization of the two-dim.ensiona1 Laplace 
operator.  Its classical discretization [2] (Fig. 1) leads to the 
5-point formula (1). 

1 

2 
- ‘ J  (h,h,_l +”) k jk j - l  

with a local truncation error of at least O(h + k )  with 
h = max hi  and k = max k, assuming that the third deriva- 
tives of U are  bounded. 

Fig. 2 shows a finite box consisting of 5 grid points. The 
discretization of A q ,  has to include the function values at 
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points i + l j  + 1 and i + l j  - 1 since point i + l j  is missing. 
Simple linear interpolation of the missing function value in 
(1) gives 

+ 

2 
k j (   k j  + k j P l )  

The discretization (2 )  will increase the local truncaion 
error  proportional  to Uyy and is therefore not applic,ible 
for nonvanishing second derivatives. To obtain  a difference 
equation of the same order of consistency as (l), the .'irst 
derivatives have to  be used for interpolation giving (3) 

2 k j  
+ U l + l j - l  h j ( h i  + h i - l ) ( k j  + k j - l )  

2kj-1 
- 

h j ( h j + h j - l ) ( k j + k j - l )  1 
+ q.-lj 

h i P l ( h i  + h , J  

2 k j  
- 

h i ( h ,  + h j P l ) ( k j  + k j - , )  1 
i - qj +'). (3) 

2 
h ,_ , (h i  + h i J  kjkj-1 

This algorithm is certainly applicable in any direction. The 
PDE system can be discretized for the finite-boxes sttuc- 
ture using (1) and (3). Poisson's equation can easilq be 
obtained by replacing U with the electrical potential. In the 
case of terminating lines, the electric field  is interpolated in 
(3). For the continuity equations, we use the well-known 
Scharfetter-Gummel discretization [3] presuming constant 
current densities between grid points. If one neighbcr is 
misssing, we interpolate the related current densities. Since 

they are directly related to the first derivatives of the 
quasifermipotential, this method is consistent', with that 
described previously. 

B. Regularity Conditions 
The occurrence of a terminating line (Fig. 2) depends on 

the magnitude of the derivatives of the solution of the 
partial differential equation (PDE) system. Although the 
discretization error of (3) is of the same order as that of (l), 
an additional term is added. For terminating lines in 
positive or negative x direction, this term reads 

The corresponding term in positive or negative y direc- 
tion is 

U represents the electrical potential  and the quasi-fermi 
potentials, respectively.  Only if this additional  error is 
reasonably small may one permit a line to terminate without 
a significant loss of accuracy of the solution. Therefore 
terminating lines only occur in regions of slow variation of 
the solution. 

To bound the local discretization error, it is  also rea- 
sonable to limit the length to width ratio h i / k j  of the 
boxes using a moderate constant c 

l / c  G h i / k j  6 c. ( 5 )  

c = 10 is  used  successfully in numerical experiences. There- 
fore the ratio of all distances between a grid point and  its 
neighbors does not exceed 100. 

A second condition concerns the structure of the "finite 
boxes."  As mentioned before, the discretization scheme for 
a terminating line is based on interpolation between the 4 
points i j  + 1, i + l j  + 1, i j  - 1, and i + l j  - 1. The entries of 
the points i j  + 1 (6a) and i j  -1 (6b), respectively,  may 
vanish or change sign if (7). 

2 - 2kj-l  

2 - 2% 

( 6 4  

(6b) 

k j ( k j + k j _ , )   h i ( h i + h i - l ) ( k j + k j - l )  

k j - , ( k j  + k j - l )  h , ( h ,  + h j - l ) ( k j  + kip,) 

h i ( h i  + < k jk j - , .  (7) 

This may prevent the linearized system of equations to 
converge.  Positive  sign of (6a) and (6b) is guaranteed if (8) 
holds. 

hi > k j  + k j - l .  (8) 

For similar reasons we allow only one line to terminate 
in a box. Therefore the mesh structure in Fig. 3 with a box 
containing 6  points is illegal. The neighbor i + l j  + 1 of the 
point i j  is  missing and point i j  + 1 has no neighbor i + lj. 
The current densities and the electric field along the lines 
j + 2 and j - 1 must get interpolated for both equations i j  
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“i+lj-l 

Fig. 3. Illegal  mesh  structure. 

and ij + l .  This leads to multiple entries of the points 
i +lj-t 2 and i t-lj-1 in the system of equations and 
impairs the numerical stability of the solution methods 
drastically. 

C. Finite Boxes Versus Classical Mesh 
Applying formula (3) together with the regularity condi- 

tions previously outlined, one can construct a grid point 
allocation like that  demonstrated in Fig. 12 for the discreti- 
zation of the PDE system. Since this structure is intrinsi- 
cally different from a classical grid, it is better looked upon 
as  a collection of the so called “finite boxes.” Compared to 
the former, an  additional overhead organization of these 
boxes is necessary. Since no uniform ordering is possible, 
we use a  graph representation. To recognize the connection 
between two grid points uniquely, the points  are stored in a 
“neighbor list.” For each point the list contains 4 pointers 
to the storage addresses of its neighbors. An ordinary mesh 
point has 4 neighbors, a terminating line point only 3. 
Therefore the value zero in the direction of the missing link 
marks this situation. Together with the coordinate informa- 
tion, this representation of the boxes makes it possible to 
locate all grid points necessary for the discretization of the 
PDE operator (c.f. (3) and Fig. 2). 

Using this “finite-boxes’’ strategy, the grid can be refined 
and coarsened locally. We adapt the mesh spacings to the 
variatlion of the solution such that  a given global error 
tolerance is achieved [4]. As demonstrated by Figs. 4 and 5, 
the number of grid points is drastically reduced compared 
to classical finite differences since the “finite boxes” 
strategy allows to allocate only few grid points in regions 
of weak variation of the solution and to place many points 
in regions of fast variation (e.g., layer regions occurring at 
p-n  junctions and Schottky contacts). 

Fig. 4 shows a grid generated by the “finite boxes” 
approach  for  a power thyristor on the blocking characteris- 
tic with about 900 points. In Fig. 5 all terminating lines are 
extend!ed through the whole device giving a rectangular 
grid (necessary for the classical finite-difference discretiza- 
tion). The  number of grid points is increased to  about 
1700. For this case, our  approach requires less than 55 
percen.t of the grid points compared to the classical method. 
Generally, the saving depends on the specified geometry, 
the applied voltages, and the resulting current flux; it can 
exceed1 60 percent. 

2.22 
G 

Fig. 4. Finite  boxes  grid. 

D. Grid Development Process and Local Mesh Refinement 

The mesh must be adapted automatically during the 
solution process in order to achieve a suitable final accu- 
racy of the solution. We start with an initial grid  which  is 
constructed with respect to the specified  device geometry 
and the doping profile and which matches the regularity 
conditions for the “finite boxes.” The edges of the  device 
are defined by polygons. Each line is identified by a unique 
number  and its specified boundary condition. If this condi- 
tion changes along a line (e.g., contact to noncontact area), 
the edge must be split into two parts with different proper- 
ties and characteristics, respectively. The rectangle which 
circumscribes the device geometry is divided by a cross 
parallel to the coordinate axis. The  parts of the cross 
located inside the specified  device form the first grid lines. 
We  check if they represent a regular grid. This will hold 
only for a convex  device domain. Otherwise the already- 
generated boxes  will be divided, and another check  is 
performed. This procedure continues until each line has at 
least one intersection with another grid  line.  All  specified 
edges must be represented in that grid. There are two 
possible connections of a  boundary  point  to  interior boxes: 
1) edges with a prescribed normal vector into the device 
parallel to  a coordinate axis have only one neighbor, and 
2) all the other edges must be linked to two points. Using 
this method all necessary information about the device 
geometry is stored in the initial graph. Afterwards, the 
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m A 

0.00 0.W 0.89 1.33  1.78 
G X - A X  I S x10 cm 

c 2  

Fig. 5. Classical regular grid. 

2.22 

regularity conditions for the,  “finite boxes” outlined in 
Section 11-B are checked for each terminating line. In tf.is 
way a  “preinitial” grid  is constructed. 

Our concept of “finite boxes” is also capable of  procenis- 
ing nonrectangular device geometries when boundaries  are 
approximated by polygons. By attaching triangles to the 
rectangular boxes as shown in Fig. 6, bevelled  edges can be 
discretized. The  boundary conditions for the derivatives 
perpendicular to the bevelled edge involving  two neighbors 
i + l j  and i j  + 1 are given  by 

A(x, Y ) . U +  B ( x ,  y ) * -  = c ( x ,  Y )  
au 
an 

where a is defined by the angle  between  the perpendicular 
to the edge and the positive x-coordinate axis. Equation (I>) 

is a Dirichlet condition if A = 1 and B = 0 and a Neuman n 
condition if A = 0 and B = 1. 

The outlined strategy allows  us to define and simulate 
even rather small structures within a large device. To g:t 
the initial grid, the previously defined “preinitial grid” f ~ s  
to be refined corresponding to the specified doping profile 
and the interior interfaces (e.g.,  Si-SiO,). The criterion for 
this is the ratio of the active impurity concentration at tu‘o 
neighboring points. This ratio must not exceed a prescribscd 
value r if the net concentration is higher than the intrinsic 
density n,. We  have  used  successfully a value of r = lo3. 

Fig. 6. Bevelled boundary 

Investigations show that the absolute value of the impurity 
concentration need not be taken into account. Near 
Schottky contacts and Si-SiO, interfaces small grid spac- 
ings are necessary. So the described ratio is set to a 
constant, value greater than r for automatic refinement. To 
stop insertion of grid points the distance between two 
neighbors is limited to lop6 cm (valid only  for the initial 
grid). 

The initial guess of the solution is derived from the 
charge-neutral approximation. In [5] it is proven that this 
gives a reasonable approximation of the solution, even if 
the mesh  is too coarse for the desired final accuracy. An 
experimental “proof” is  given in Section IV-A. After solu- 
tion of the system of equations (c.f. Section 111), the local 
discretization error is calculated at each point. An optimal 
discretization can be obtained by equidistribution of this 
error [4]. The value of the error functional (referenced as 
weight function) determines whether new grid points have 
to be inserted or old points can be deleted without loss of 
accuracy. If it exceeds a given tolerance at a mesh point, 
we refine the grid locally by dividing the four boxes around 
that point (or three in the case of a terminating line). The 
mesh points with weight-function values far less than that 
limit are deleted if the following conditions hold: 1) the 
deletion of a point must not split the graph (e&, the mesh) 
into two separated subgraphs; and 2) each remaining inter- 
ior point must be linked to at least three other points 
(inner corners are prohibited). Regarding these conditions, 
only a reasonably small number of mesh points can be 
removed at every refinement. The function values at the 
new  grid points are interpolated using the PDE’s. Then the 
total system is solved again. The error estimates are 
recalculated and checked. This procedure terminates if no 
more grid points have to be inserted. A typical series of 
automatically generated and adapted grids are shown in 
Section IV. 

111. SOLUTION OF THE DISCRETIZED SYSTEM 
The linear system of equations obtained by the “finite 

boxes” discretization is solved simultaneously. Although 
decoupled methods are easier to implement and require 
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less overhead, they converge  very  slowly (at most linear). 
Their application is only of interest as far as computer 
storage saving is concerned. 

At first we present the simultaneous solution algorithm. 
Since this approach has the disadvantage that all three 
equations are solved simultaneously-and therefore the 
storage requirements are fairly large-we also suggest a 
Block-Newton-SOR method outlined afterwards. 

A. Simultaneous  Newton  Algorithm 

Newton method with A as iteration matrix 
The discretized nonlinear system is solved by a modified 

F ( x )  = 0 (10) 
x k + l =  x k  - A * F k .  (11) 

As commonly known, the classical Newton method with 
A = ( F ' ( X k ) ) - l  tends to overshoot especially if the itera- 
tion is started with a bad initial guess. Therefore we use an 
iteration matrix as suggested by Meyer  [6] and Bank and 
Rose [7]. 

A =  (XI+ F' ) - ' .  (12) 

The value of the parameter X is directly proportional to 
11 F(xk)ll.  If the calculated solution xk+ does not decrease 
the norm of the system of equations (lo), X has to be 
increaseld. So the matrix A is updated,  and a new solution 
is computed. This procedure terminates if 

/ IF (Xk+1)112  < ~ ~ F ( x k ) ~ ~ 2 '  (13) 

If condition (13) is not satisfied for a particular X,  it is 
necessary to recalculate the Jacobian. In order  not  to waste 
the last Newton step, we calculate a parameter S proposed 
by Deuflhardt [8] such that 

IIF(xk+s(xk+1-xk))l12<(IF(xk)(~2, o < s 6 1 *  

(14) 

This leads to a minimization of the number of Gaussian 
eliminations which are  rather time consuming. By calculat- 
ing S in a way that 

llFkl12 - llFk+1112 

becomes a maximum, faster convergence can be achieved. 

B. Block - Newton - SOR 
The main disadvantage of the simultaneous Newton 

algorithm is the large amount of computer resources for 
the factorization of the iteration matrix. Therefore an 
alternative to  that has been investigated. We implemented 
a Block-Newton-SOR  (successive overrelaxation) method. 
Under the assumption that the Jacobian is definite, one 
can use a classical block-iteration scheme (iteration index 

m) (15) for the solution of the kth Newton step of system 
(10)  with F =   ( F l ,  F2,  F3)T. 

aFl aFl 
( Q  an ap 

i o  O 
0 

m 

w k  

Sn 

SP 

where Fl is  the  Poisson equation, F2 is the continuity 
equation for electrons, and F3 is the continuity equation for 
holes. 

Since the coefficient matrix of (15)  is block lower-trian- 
gular, we decouple the elimination process into three linear 
systems (16)-(18),  which  have to be solved sequentially. 

The cut Taylor series on the right-hand side of (16)-(18) 
are resubstituted and a relaxation parameter o is intro- 
duced giving  (19)-(21). 

a F/ 
a+ -. = - w.Fl (  + k ,  n k  + Snkm,   pk  + S p k m )  (19) 
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The parameter w accelerates the rate of convergence. It  is 
calculated by [9] 

+ 
w =  

L 

l + G  

where g is the spectral radius of the iteration matrix (o -- 1) 
given  by 

e = lim @k 
k+cc  

((23) 

An estimate for g is obtained if two consecutive @k valaes 
do not differ by more than  a given tolerance c. Starting 
with an initial value wo =1, w is updated for faster com’er- 
gence  whenever a sufficiently good estimate for g is 3b- 
tained [lo]. 

2 
%e, = 

1 + / z G L F 1 ) 2 / ( e 4 1 d )  
. (24) 

The increments 84,  an,  and Sp are only accepted if (25). 

Ilek”l12 < I l q k l 1 2 ,  i=1,2,3.  ( 2 5 )  

If (25) cannot  be satisfied, we use the damping a1gori:hm 

The sequence of the equations depends on the specified 
device.  Poisson’s equation Fl is  always  solved first. The 
equation  for the majority carriers preceeds the equatior for 
the minority carriers. For devices  with no unique majorities 
(e.g., diodes), the continuity equations are solved alter- 
nately. Let k be the iteration count. Then for even h we 
solve the sequence a), for odd k sequence b). 

(14). 

4 Fl b) Fl 

F2 (electrons) F3 (holes) 
E3 (holes) F, (electrons) 

C. The Calculation of the Entries of the Jacobian 
There  are in principle two possibilities to calculatc: the 

elements of the Jacobian. At first they can be  calcdated 
analytically which  allows the implementation of forlnlulas 
straight forward without additional overhead. Neverthe- 
less, there are issues  which may give preference to the 
second method, namely the numerical calculation or’ the 
entries. If one has implemented the formulas analytically, it 
is npossible  to investigate structurally different models for 
p’3vsical parameters because this changes the code of the 
plogram. Various algorithms for the numerical approxima- 
tion of derivatives have been tested. We chose an  automati- 
cally generated step-width control method similar tc that 
given  by Curtis  and Reid 1111. The value of the funcl ional 
including the parameter models varies over many detades. 
Therefore simple evaluation using constant  step widt!l  will 
produce inaccurate results. Since the numerical calcu‘,ation 
is more complex and computer time consuming, we have 
tried to take advantage of both methods as  follows. 

The application should not be restricted to special as- 
sumptions on physical parameters. Therefore the doping 
profile as  well as the recombination/generation term and 
the carrier mobilities are defined as external functions 
which are user-supplied and can even consist of numerical 
data.  To process these models correctly we split the coeffi- 
cients of the Jacobian for the two continuity equations. 
One  part is calculated analytically, the other containing the 
derivatives of the physical parameters numerically using 
the algorithm described earlier. The discretized and lin- 
earized Poisson’s equation  contains no derivatives of exter- 
nally defined functions, so the corresponding entries of the 
Jacobian  are calculated analytically. 

The calculation of the Jacobi matrix FL is,rather time 
consuming because of the numerical evaluation of external 
functions. Therefore we perform a  rank one update of the 
Jacobian [12] whenever the convergence rate is sufficiently 
large (26). 

In addition,  it is possible to bypass some equations of 
the system if the following condition holds for the grid 
point i :  

IF(x,)jl<E.maxI.F(X,)lh 

Ix i+l  - xi1 < camax I X , + ~  - xkl 

j c  neighb ( i ) . (27) 

This decreases the rank of the system, and therefore 
increases the speed of calculation. 

The linear systems (11) and (19)-(21) are solved using a 
sparse Gaussian elimination algorithm. The special struc- 
ture of the equations (11) allows  block elimination (for 
each point the three equations are combined), which speeds 
up the LU factorization. 

The big problem when  using Gaussian elimination is the 
fill-in of the upper triangular matrix U during forward 
elimination. Minimization of this fill-in can reduce the 
demand for virtual storage and the number of operations 
drastically. For  that purpose a reordering of the grid points 
is  necessary. We chose the “minimum-degree” ordering 
similar to  that published by George and Liu [13]. Their 
algorithm however can only be applied on structurally 
symmetric matrices. The classical finite-difference discreti- 
zation generates such a matrix. In the “finite boxes” ap- 
proach the discretization scheme of regular grid points is 
identical to the previously mentioned 5-point formula. At 
terminating lines, however, 6  points  are used. This leads to 
a structurally nonsymmetric matrix. The total storage re- 
quirement of the algorithm [13] is known before execution 
because of the representation of the matrix by an undi- 
rected graph. This advantage is lost when applying it  to  a 
structurally nonsymmetric matrix. A new strategy has been 
developed for this purpose using directed graphs [14]. We 
adapted the neighbor list concept (cf. Section 11-C) for the 
bidirectional graph representation. The number of entries 
is variable and equals the current degree of the particular 
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Fig. 8. Electron distribution of the  diode. 

node. Contrary  to [13], there is no unique upper  boundary 
value for the degree of a node, and the maximum storage 
requirements cannot be predicted. Therefore we have to 
switch to out-of-core storage. 

IV. RESULTS 

In this section we discuss some applications of the 
“finite boxes” method. The processing of high voltages is 
shown by the simulation of a reverse biased diode. This 
also gives an illustrative example of the automatic grid 
adaption.  The results are compared to classical methods 
displaying the  actual  rate of savings in computer time. 
Secondly, we present solutions of the semiconductor equa- 
tions for a thyristor operating in the forward mode. The 
typical properties of such devices are high current densities, 
Our investigations concentrate  not only on silicon but also 
on GaAs devices. The simulation results of a recessed-gate 
GaAs MESFET conclude this section. 

Fig. 10. Modulus of the electric field of the  diode. 

A .  Diode 
Fig. 7 shows the geometry and the location of the p-n 

junction of a high-voltage diode. The corkcentration of the 
donors is described by a Gaussian profile with a maximum 
of 1019 cm-3 and a projected range of 4 pm; the acceptor 
concentration is homogenous N, = 1014 c ~ n - ~ .  A voltage of 
100 V is applied at the cathode. Just that voltage drop  and 
the charge neutral  approach  are  used,for the initial guess. 
We do not increment the contact potential from a much 
lower  level  as it  has been suggested in the literature, e g ,  
1151, [16], thus saving computer time. Tlhe application of 
mathematically well-founded discretization strategies [3]- 
[5] guarantees global convergence. Figs. 8-10 show the 
calculated electron and hole densities and the electric field 
(logarithmically plotted), respectively.  We start the calcula- 
tion at a 135- point initial mesh (Fig. 11). Nine grid 
updates  are performed. The final grid contains 916 points 
(Fig. 12). The number of grid points GP and Newton steps 
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TABLE I 

GP NN h’F CPT GPC NNC !4Fc CPTC 

1 135 7 32.610 1.6 376 8 45.511 7.1 
2 172 5 11.036 3.8 525 3 10.857  14.7 
3 ZOO 5 3.8149 7.0 941 5 2.782 45.5 
4 252 4 2.6598 10.5 
5 208 4 3.2061 14.3 
6 351 9 2.4362 24.4 
7 138 6 1.7605 36.2 
8 550 6 1.5648 52.3 
9 763 4 .71152 74.6 

10  916 4 .a9530 100.0 

A 
E5 
? 

X-FIXIS ~ 1 O ‘ c r n  

Fig. 13. Initial classical  grid of the  diode. 

NN for calculation and the used CPU time CPT in percent 
of the total  jobtime  at each grid is  given in  Table I. 

The: maximum value of the weight function WF propor- 
tional to the error  functional declines, and the final global 
discretization error does not exceed  0.1 percent of the 
applied voltage. We have performed the same calculation 
on a regular grid without terminating lines to  compare the 
“finite boxes” approach with the classical method. The 
corresponding initial grid (Fig. 13) consists of  376 points. 
The number of Newton steps for the solution at each grid, 
the maximum value of the weight function, and the CPU 
time in percent of the total time for the “finite boxes” 
calculation are shown in  Table I indicated by subscript c. 
After only three updates, 941 points have been generated 
and 45.5 percent of the computation time has been used. 
The  “finite boxes” approach needs only 10-24 percent for 
the same accuracy (maximum value of the weight function). 

B. Thyristor 

The geometry of the simulated power thyristor is out- 
lined in Fig. 14 and the assumed doping profile is shown in 
Fig. 15. The  demonstrated  point of operation is on the ON 
characteristic. Since the cathode as  well  as the gate  contact 
are set to 0 V, an emitter shortcut is simulated this way. 
The  final  grid-point allocation (Fig. 16) gives an idea of the 
saving when using “finite boxes” instead of a classical 

L 200pm 
Lg = 20 pm 
Id 1 2 0 p m  
IC = 6Opm 

d = 4OOpm 

uc= o v  
uG= o v  
u*= 2 v  

’ - -  

I P I 

L 

Fig. 14. Geometry  thyristor. 

Fig. 15. Doping  profile of the thyristor. 

regular mesh. At the applied anode voltage of 2 V, the 
electron and the hole concentration both exceed  by far the 
impurity concentration of the substrate.  The carrier densi- 
ties differ from each other only in  a region near the ohmic 
contacts. Therefore only the electron. concentration is 
plotted (Fig. 17). The current through the device is strongly 
influenced by the models of the physical parameters. The 
generation/recombination model includes a Shockley- 
Read-Hall term as well as the Auger process [17]. The 
model of the carrier mobilities takes into account the 
carrier-carrier and impurity scattering [18], [19]. The result- 
ing electron current density is shown in Fig. 18.  The peak 
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Fig. 17. Electron  distribution of the  thyristor. 
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Fig. 16.  Final  grid of the  thyristor. 

c2 

2 . 2 2  

at the edge of the cathode  can be interpreted as follows. In 
the homogenous n-doped drift region in the center of  ihe 
device, the 'electron current density is constant along m y  
cross section. The electrons cannot reach the gate contxt, 
and therefore the transfer current must pass througk a 
smaller area resulting in  a'peak  at the edge of the. curmnt 
flow. 

C. GaAs MESFET 
As an example of a compound semiconductor (GaAs) 

device, we present the simulations of a  GaAs MESFET. tts 
size is much smaller than  that of the two  devices described 
earlier. Fig: 19 outlines the geometry. The Schottky contitct 
(gate) is recessed into the active layer and diminishes t h e  
cross section of the conducting channel. The chosen oper st- 
ing point lies within the saturation region. Voltages of 4 V 
at the drain and -0.8 V  at the gate are applied wlth 
respect to source. Fig. 20 shows the final mesh. The discre- 
tization in the region between the gate and the drs.in 
electrode as well as in the boundary layer between the 
active epilayer and the substrate is  very fine. Now we 
present results for two different models of the electron 
mobility. Using a  constant value for p gives the electron 
concentration of Fig. 21. A space-charge region is built up 
between the gate and  drain,  and the electron concentration 
does not exceed the concentration of dopants anywhere. 
Secondly we have investigated a field-dependent mobility 
model including velocity saturation  and negative differen- 

N E 
2 a 
v)  m 
6 

r "  
VI 

Fig. 18. Modulus of the  electron  current of the  thyristor 
(UAC = 2 v, u,, = 0 v). 

Fig. 18. Modulus of the  electron  current of the  thyristor 
(UAC = 2 v, u,, = 0 v). 

tial mobility [20]. In the conducting channel underneath 
the region of the gate towards the  drain,  a stationary dipole 
is formed by an excess electron density and positive donor 
charge (Fig. 22). The corresponding potential distribution 
(Fig. 23) exhibits a locally increased electric field there. 
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Fig. 19. Geometry  MESFET. 
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Fig. 20. Final grid of the MESFET. 

The tran:sfer current with the field-dependent mobility only 
slightly  exceeds 10 percent of the value resulting from 
constant mobility. A vector plot (Fig. 24) shows the direc- 
tion of the electron flux. 

V. CONCLUSION 
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Fig. 21. Electron  distribution of the MESFET with constant mobility. 
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A  two-dimensional numerical-device simulation system 
has  been presented. We generalized the classical finite-dif- 
ference method  developing the so called “finite boxes” 
approach which  allows an  optimal grid point allocation 
and can be applied to nonrectangular devices.  Some regu- 
larity conditions for the mesh  have  been investigated. Some 
typical “finite boxes” grids have been compared to classi- 
cal regular grids demonstrating  the  advantages of the 
former. The setup of the initial mesh has been explained. 
The autornatic grid refinement is performed  by equidistrib- 
uting the local discretization error. 

The linear system of equations obtained by the “finite 
boxes” discretization is  solved by a modified  Newton 

method. Two algorithms have  been implemented, a simul- 
taneous solution of the coupled equations and  a block 
Newton SOR method. To achieve  high  flexibility, the 
physical parameters  can be defined by user-supplied mod- 
els. This requires numerical calculation of parts of the 
coefficients of the Jacobian. The calculation of the itera- 
tion matrix is rather time  consuming because of the 
numerical evaluation of the external functions. Therefore 
supplementary algorithms have  been implemented. An  effi- 
cient ordering of the grid points based  on the “minimum- 
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Fig. 24. Electron  current  flux of the  MESFET. 

degree” algorithm reduces the memory demand during the 
solution of the linear system of equations. 

We demonstrated our concept on three types of devices, 
namely a high-voltage diode, a power thyristor, and a 
GaAs MESFET. The presented results gave some outlook 
of the great field of applications for the “finite boxes” 
approach. 
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