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A Novel Finite-Element Approach to Device 
Modeling 

JORG MACHEK AND SIEGFRIED SELBERHERR, MEMBER, IEEE 

Abstract -A finite-element device-simulation program is presented. An 
adaptive  grid-refinement  procedure is used to minimize  the number  of 
nodes. ‘Two different kinds of elements are generated  (triangles and 
rectangles) thus  enabling  the use of  an irregular  mesh. Different shape 
functions have been developed for the  three  variables;  they  are  linear/ 
bilinear  for  the electric potential and linearbilinear in  Bernoulli-like 
functionls  for  the  quasi-Fermi  potentials.  Numerical examples are  pre- 
sented. 

S 
I. INTRODUCTION 

INCE ITS conception in the 1940’s, the finite-element 
method has become a powerful tool for solving virtu- 

ally any system of partial differential equations. Its  roots 
are  to be  found in the field of structural engineering, where 
analogies were developed between actual discrete elements 
and the continuum. Much of the terminology stems from 
these days ( eg ,  shape functions, stiffness matrix, etc.). 
Only in recent years has the impact of this method on the 
analysis of semiconductor devices been felt. 

The characteristics of a semiconductor device are mod- 
eled by three coupled nonlinear partial differential equa- 
tions. They consist of the Poisson equation and the 
equations of hole and electron current continuity. There 
exist very effective and general packages which  solve the 
semiconductor equations using the finite element approach 
[8], [l:], [2]. In the present analysis, the three equations are 
tackled using a finite-element method in  its residual formu- 
lation [7], [12], 1161. Therefore the weighted residual in- 
tegral;$ over the whole domain are set to zero. The 
unknowns 4, cpn, cpp, have to  be approximated in every 
subdomain (element) by a linear combination of basis 
functions. 

A critical step in the application of the finite-element 
method is the design of the mesh and, therefore, the 
selection of proper elements [4], [8], [9]. To allow variable 
grid spacings, an adaptive mesh-refinement process has 
been developed which generates two different kinds of 
elements (triangles and rectangles). This allows a mesh 
generation/refinement where broad grid spacings can al- 
ternate with regions where a fine mesh is imperative without 
creating an excessive number of nodes. This will be con- 
sidered in detail in Section 11. 

Since the shape functions are designed to approximate 
the solution in  the diverse elements, they too play an 
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important role in the flexibility and accuracy of the final 
simulation. If they are constructed to  anticipate the correct 
solution, convergence will be accelerated [ 2 ] .  Shape func- 
tions which are linear in  a triangular element cause oscilla- 
tions of the solution [l],  [3] and are, therefore, not feasible. 
This led to the development of a novel kind of shape 
functions for the exponentials of the quasi-Fermi levels 
which describe an exponential distribution of the carrier 
densities exactly. They are linear/bilinear for the electric 
potential  and linear/bilinear in Bernoulli-like functions for 
the exponentials of the quasi-Fermi levels. This will be the 
topic of Section 111. 

In Section IV the finite-element analysis of the semicon- 
ductor equations and their numerical implementation is 
dealt with. It shows that the Poisson equation and the 
continuity equations are calculated differently. The con- 
sistent treatment of ordinary rectangular elements and the 
5-node transition element is demonstrated. 

As a descriptive bench mark for these finite-element 
studies, a bipolar structure was used. 

11. THE  MESH 
In the past, much attention has been focused on the use 

of triangular elements for the discretization of the simu- 
lation domain. The geometric drawbacks this procedure 
imposes are obvious. A general mapping from  a triangular 
parent mesh to  a complex geometry can be found, but local 
refinement of the grid is rather difficult and loosening of 
the grid spacing is almost impossible. This line of thought, 
coupled with physical insight and investigations of the 
local discretization error, made it evident that the global 
solution area has to be made up of subregions which 
require a fine resolution and, alternately, regions where a 
broad grid spacing is sufficient. 

Considerations of interelemental current continuity and 
the intuitive assumption of a linear elect.ric potential 4 led 
directly to  a mainly rectangular subdivision of the simu- 
lation area. To locally refine or coarsen the grid, a  5-node 
transition band  had  to  be defined which, for simplicity’s 
sake, was assumed to be generated by three triangles (Fig. 
1). 

The discretization error of a triangularized mesh  is pro- 
portional to  l/sina where a is the sm,allest angle of the 
triangle. One tries, therefore, as  far as possible to avoid 
obtuse triangles. Another plausible explanation for the 
rejection of such triangles is demonstrated in the finite-ele- 
ment analysis of the FIELDAY program [l], [2 ] ,  [15]. Such 
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Fig. 1. Transition band. 

an element exhibits the unphysical result of a negative jlux 
cross section. 

Owing to the very special shape of the 5-node element, it 
can  be shown that as long as the aspect ratio of the 
rectangular structure is  between 0.5 and 2, no  obtuse 
triangle is formed.  The larger the aspect ratio becomes, the 
more the midside  node is pushed to one of its neighbon;  in 
order to avoid obtuse triangles. The first aim of computa- 
tions involving a mesh construction and/or refinement is 
to find a mesh of smallest  possible number of elements 
(nodes) such  that the error is below a given tolerance. 
Computational costs of a refinement step can be rather 
high, and it certainly increases with the number of nodes. 
One has to find a balance between optimal  accuracy anId a 
given computational cost range [8], [9]. 

An adaptive grid-generation and grid-refinement process 
has been  developed [30]. The initial grid  is established 
using only information on the device  geometry and the 
doping profile. Boundary zones and interior regions  are 
each  marked with different attributes. The “preinitial” grid 
consists of the absolutely essential elements which contain 
nodes  on every boundary  and  in every interior region. Thus 
it is guaranteed  that every subdomain is included in ].he 
simulation. This very first grid is locally  refined in regions 
where the doping gradient is  high,  utilizing the physi8:al 
knowledge that in such areas the local discretization error 
(which depends on the, space charge) [28] is rather lar,;e. 
With this initial grid the discrete nonlinear system  is solced 
to the desired accuracy, and the grid  is updated again using 
the elemental space  charge as indication for grid refine- 
ment. This seemingly heuristic characterization of an opti- 
mal  mesh  is consistent with the local computation of  an 
error estimate after Babuska [4]. It is inherent in a pw- 
teriori error estimates that the global  convergence condi- 
tion can  only be guaranteed after at least one additional 
computation with the refined grid. 

After every  grid update a regularization procedure is 
called. The only restriction is that refinement has to be 
locally confined to one  direction-the transition band is; to 
be a 5-node  macroelement. 

The  boundary is approximated  by a piecewise linear 
function which  implies that at a slanted boundary purely 
triangular elements exist  (Fig. 2). 

Fig. 3 shows the simulation grid of a diode with a cunrcd 
p-n junction. The local refinement near the anticipated p-n 
junction is noticeable. This is the simulation grid for a 
rather low bias (1 V), and  no appreciable space-charge 
layer has yet  developed. The fine grid  is, therefore, c o : ~  
fined to the metallurgical junction. 

Fig. 2. Slanted boundary. 

- 1 

Fig. 3. Simulation grid of diode with  curved p-n  junction. [=1m pm, 
c = 2 0 p m , U A = O V , U c = 1 V .  

111. THE SHAPE FUNCTIONS 
A central task in the numerical solution of the semicon- 

ductor equations is the preservation of current continuity 
parallel to element edges and the pr6conditioning of the 
system in a way that the exponential variation of carrier 
densities will  be represented exactly  by the discrete system. 

A .  Rectangle 
It is well known that an ordinary differential equation of 

second order with an exponential nonlinearity or with 
solutions exhibiting exponential layer behavior  can  be dis- 
cretized using exponential fitting [24],  [25]. The logical 
generalization to  an elliptic system in two dimensions with 
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Fig. 4. Unit square. 

a  simihr nonlinearity seems to be the concise solution of 
the  boundary-value  problem over one  element (Fig. 4). 

The current continuity equation  without  recombination 
gives (all quantities suitably normalized  and all 'calcula- 
tions carried out  on the unit square) 

div( J,) = 0 0 )  
where 

Jn = exp(J/)grad(l) (2) 

with 

S="XP(-V*). 
Substituting (2) into (1)  yields 

(O=div(J,)=grad(exp(#))grad([) 

+exP(#)div(grad(l)) 

=exp(4)[grad(#)grad([)+div(grad(S))I (3) 

or, fully expanded 

This differential equation  can be solved for [ assuming  a 
known electric potential $ and  known  boundary values for 
1. It has so far  only  been possible to find an analytical 
solution under the additional assumption of a constant 
field, i.e., linearity of # in x and y .  Although this is not 
totally consistent with bilinear shape functions for 4, the 
resulting solution is still worth close consideration. It comes 
about by separation of the variables 

5 -  Z ( x ) H ( y ) .  

This leads to  two independent ordinary differential 
equations of second order. 

with the solution for X = 0. 

3 

H = K ,  + K2exp 

Calculating the product  and using the boundary values 
to evaluate the constants yields 

for exp (cp,), where 

with 

With the appropriate scaling factors, this derivation holds 
for any rectangle. This implies that physically plausible 
shape functions can only be derived from  a solution of the 
Dirichlet problem. It proved that formulation of shape 
functions in closed form were  only possible if a constant 
field was assumed in each rectangle. 

With these basis functions, one  can derive  expressions in 
the unit square for the electron concentration 

and for the electron current density 
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and similarly for the hole concentration 

A x ,  Y )  = PI% + P F 2  + P3a3 + P4a4 
and for the hole current density 

where B ( a )  is the Bernoulli function 

B (  a)  = cr/(exp ( a )  - 1 ) .  (22) 
It is interesting that in these  derived quantities the basis 

functions of the electron Fermi levels determine the hole 
distribution and vice versa. Another though not surpriring 
property whch can  be deduced for the current relatiol is 
that  for  a high electric field the current degenerates into  a 
pure field current 

and,  in the case of no field, the current only consists of 
diffusion current 

Jny  = ( l -  u 2 ) ( n 2  - n l ) f u 2 ( n 3  - .1> I(. 24) 

for - >> 0 qnd - = 0. aJ, aJ, 
ax aY 

B. Transition Band 
This macroelement is partitioned  into three triangles. In 

each of these triangles we take the current density to  be 
constant.  Thus  the component of the current density paral- 
lel to the edge which connects vertices i a n d j  becomes 

J i j =  [ ' ~ B ~ J , , - J , ~ ) - ~ ~ B ( J , ~ - J , , ) ] / ' , ,  ('5) 
where l i j  is the length of that edge [l],  [2].  

current expressions are no longer additive 
Because of the nonlinearity of the Bernoulli function, the 

J j  # 4 . k  f Jk,. (.26) 

Since the main point of interest is continuity of the 
current component parallel to the edges, one has to give 
preference to the components in the x and y direction. This 
is indeed simple for triangles I and 111. For rectangular 
elements it is also obviously trivial. Difficulties arise in 
nonrectangular triangles. Although any arbitrary triangle 
can  be linearly transformed into  a rectangular triangle, the 
currents would no longer transform correctly. There exist a 
number of possibilities to calculate the y component of the 
current in triangle 11. The most promising appeared to us 
to  be the superposition of J14 and J I 3 .  

Note  that this treatment of the transition band is con- 
sistent with rectangular elements with bilinear basis fun:- 
tions as well as with triangular elements with linear shape 

functions for the electric potential 4 as used on slanted 
boundaries. The elements are numbered counterclockwise. 

Fig. 5 shows the rectangular shape functions in the unit 
square for the degenerate case. One can clearly  see the 
bilinear behavior on  that isoline plot, since for every cut 
parallel to the coordinate axes, the lines of equal level are 
equidistant. In Fig. 6 a moderate field parallel to they axis 
has been applied. The functions have been compressed in 
the direction of the field, emphasizing the points with 
higher potential  and almost suppressing the points with 
lower potential. The functions are still linear perpendicular 
to the field since the isolines are equidistant in x direction. 
This trend exhibits a behavior very similar to the 
" upwind"-weighting functions for flow problems men- 
tioned in [7]. In Fig. 7 a field diagonal to the square has 
been applied, and again one notices the compression of the 
isolines in the direction of the field. Remarkable is the fact 
that in the case of the diagonal field, the node with  the 
highest potential is  very prominent whereas the one with 
the lowest potential is almost neglected. At the nodes with 
the highest potentials, the shape functions tend to become 
very steep and decrease rapidly, but  at the nodes with 
lower potential the functions are  rather flat, giving these 
nodes a greater weight in the approximation of the solu- 
tion. 

IV. THE SOLUTION 
In this section we describe the finite-element analysis of 

the semiconductor equations and their computer imple- 
mentation. The  intention is to solve a system of three 
quasi-harmonic differential equations 1261 

div(Pigrad(ui))= F ' ,  i=1,2 ,3   (27)  

where P is a constant  (the dielectric permittivity) for the 
Poisson equation and, essentially, the 'majority carrier dis- 
tributions for the two continuity equations (i.e., electron 
density for the electron current and hole density for the 
hole current equation). F is the space charge ( n  - p - No 
+ N A )  for the Poisson equation  and the recombination- 
generation term for the continuity equations. The variable 
u is the electric potential J ,  for the Poisson equation and 
the quasi-Fermi levels (pn, (pp for the electron and hole 
current continuity equation, respectively. 

Since the equations (27) are of a type of partial differen- 
tial equations which do not necessarily derive from a 
variational principle (because of the convective terms in  the 
continuity equations), a weighted residual method is being 
used. 

A .  The Poisson Equation 
The electric potential J ,  is approximated in terms of basis 

functions b,. 
N 

4 = C 4,';. (28) 
j = l  

where N is the degree of freedom ( N  = 3 for a triangle with 
linear basis functions; N = 4 for  a rectangle with bilinear 
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Fig. 5 .  Shape functions in rectangle for no field. 

basis functions). The bj are the standard bilinear/linear of the Poisson equation, are equal to the basis functions 
shape functions which can be found  in any finite-element (then the procedure is called a Gdlerkin formulation  of the 
textbook 171, [121, [131, [161, [ B I .  The generalized coordi- problem). The first integral vanishes on all boundaries 
nates ( = value of the unknown function  at the nodes) $j  where n'grad($) = 0 (natural  Neumann boundary) and 
are determined by the weighted residual conditions where w, = bj = 0 (forced on all Dirichlet boundaries). 

We split the domain O into L finite elements whose 
O=//div(cgrad($))w,dO-//Fw,dO union is O itself. The bi are different polynomials in each 

fore, we can express  (11) as a summation over all elements, 
which  allows us to treat one element at a time. 

0 0 element and  are continuous in adjacent elements. There- 

= tw(wiPgrad($) ) i 'ddO 

- / /Pgrad( 4 )  grad ( wi) dO - / / F w j  dQ (29) L 
P w ';= /=1 [ /Ll(cgrad($)grad(bi)dO'+/ /  w' F w j d O 1 ] = O .  

where the w, are  the weighting functions which,  in the case (30) 
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Fig. 6. Shape functions in r xtangle for field parallel to the y-axis. 

Using the approximation for 1c/ and substituting in (:!9) the integration of the second term is carried out numeri- 
yields  cally  with a double trapezoidal rule. 

L N  
B. Current Continuity Equations 

I = 1  j = 1  In the previous section it has been shown that a close 

representation of the quasi-Fermi levels (or even their 
+ / 4 1 F " ' i d Q 1 ]  = O. (3p) exponentials) is not consistent with the solution of the 

Dirichlet problem which has been the starting point of our 
The first integral is computed analytically, consist.ing investigations. The procedure to find a discrete residual 

only of known bilinear functions. As a simple reflection vector is  slightly different to the one employed to discretize 
shows, this integral is bilinearly dependant on the mesh the Poisson equation. In the case of the current-continu- 
size. To simulate a similar behavior for the space char-;e, ity equations the Pgrad( u )  term of the quasi-harmonic 
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equation  can  be interpreted as a current. The  first  (boundary) integral is zero when either the 

The continuity equation in its residual formulation looks on Neumann boundaries, because the current leaves the 
device  only at the contacts), or when w) vanishes,  which we 

r i =  [ j L l d i v ( J n ) y d Q 1 - q ] l  51' RwidQ1 I = O  The numerical integration is  slightly different for a rect- 
force  on  the Dirichlet boundaries (all contacts). 

= [$n.InwiRdad - 11 J,grad( w i )  dQ1 In the rectangle the integration is carried out using the 

Jn = - qpnngrad(qn)) (32) component of Jn normal to the bound.ary vanishes (holds 

like 
L 

1-1 
L angle and for a transition band. 

I - 1  Q trapezoidal rule. This implies that for the  numerical evalua- 

+ , /L lRWidQ1]  =o. (33) tion of the integrals only the values a9 Jn on the element boundaries  are needed. 
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In a transition band, since J, is the constant 

(34) 

Each of these integrals can be calculated analytically, 
and the contribution of the transition element to currmt 
continuity consists of the scalar product of J,, and the sum 
of the integrals over grad (w,). 

This procedure is justified because the local discretica- 
tion error due  to the  linear/bilinear basis functions is in 
the order of the element size [O(h)]. Hence all the integra- 
tions and other numerical procedures do not have to  be of 
a higher order. Since integration with the trapezoidal rule 
has a local discretization error in O(h), its application to 
the elemental integration is consistent [7]. 

C. Linearization 
The resulting residuals (with the linear/bilinear shape 

functions of the electric potential as weighting functions) 
are integrated numerically, and the thus-created system of 
nonlinear algebraical equations 

F ( x ) =  0 (35) 
is solved iteratively using a Newton-like method [6]. 

The Jacobian matrix is approximated by numerical d1f- 
ferentiation. This method is more accurate than [ 5 ]  and his 
been shown to hold even  for pathological cases [27]. S inx  
this calculation is rather time consuming, an element-wise 
bypassing algorithm for the update of the entries in the 
Jacobian matrix has been devised to minimize comput :r 
requirements. Convergence is speeded up by the introdu3- 
tion of an acceleration parameter Ac[O, 11, so that 

X k + l = X k + A ( X k + l - X k )  ( 3 ' 7 )  
with 

The actual matrix inversion is done with a straightfor- 
ward Gaussian elimination for sparse matrices [23]. '1'0 
reduce fill-in, the Gibbs-Poole-Stockmeyer ordering algo- 
rithm  has been used  [19],  [20],  [21], [22] .  

V. AN EXAMPLE 
As an illustrative example, a relatively simple bipohr 

structure was chosen. In Fig. 3 the simulation grid of  t1.e 
diode with a curved p-n junction is shown. It was chosen 
because p-n junctions  are of paramount  importance in 
modern electronic applications and in the understanding of 
other semiconductor devices. It is a simple device whae  
basic theory is well established and closely investigated 

i 

Fig. 8. Potential $ of diode for a  bias of 1 V. 

Fig. 9. Hole concentration p of diode for a  bias of 1 V. 

[28], [31]. It is, therefore, suitable for testing a simulation 
program and for demonstrating novel approaches. In Fig. 8 
the electric potential 4 is plotted for a reverse bias of 1 V. 
The dimensions of the device are 100 pm X 100 pm,  and 
the space charge layer is not very large. One still notices, 
however, the potential  drop  at the junction as one does in 
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Fig.  10. Electron concentration  n of diode for  a  bias  of 1 V. 

Fig. 9 where the hole carrier density is drawn. The doping 
profile is Gaussian  in the p-region and constant  in the 
bulk. Not surprisingly the same behavior is found in  the 
plots of carrier densities. 

VI. CONCLUSION 
The semiconductor equations have been solved using a 

finite-element method in its residual formulation. An  adap- 
tive mesh-refinement process has been developed which 
generates two different kinds of elements (triangles and 
rectangles), thus enabling almost arbitrary subdivision and 
expansion of grid spacings. This guarantees that only the 
minimum number of nodes is created. 

Solving the Dirichlet problem for one element under 
certain assumptions led to the development of shape func- 
tions for the exponentials of the quasi-Fermi potentials 
which are bilinear in Bernoulli-like functions. In elements 
where the carrier concentrations vary exponentially, the 
discretization error is zero. These functions degenerate into 
the ordinary bilinear shape functions when the electric 
potential is constant  and  into very steep functions when 
the electric potential is large. The influence of the electric 
field on the shape functions has been illustrated and dis- 
cussed. The outlined derivation of the shape functions only 
holds for rectangular elements. Only a regular rectangular 
mesh would, therefore, exhibit the discussed features. Since 
an optimal mesh is not purely rectangular, conditions for  a 
transition element had to  be formulated. The generaliza- 
tion to the transition rnacroelement is achieved by taking 
the current density in each of the subdividing triangles 
to  be  constant.  The electric potential I) itself has consist- 
ently been approximated with linear/bilinear functions 
throughout the device. 

This concept of variable and $-dependent shape func- 
tions led to a set of highly nonlinear equations. As  weight- 
ing functions, the linear/bilinear basis functions of the 
electric potential were used. The residuum integration was 
carried out numerically, and the resulting nonlinear equa- 
tions were  solved  using a modified Newton method. The 
Jacobian matrix was approximated by numerical differenti- 
ation. An element-wise bypassing method for the calcula- 
tion of the entries in the Jacobian matrix has been used to 
minimize computer requirements and actually enhance 
throughput.  The Newton iterations, necessary for the solu- 
tion of the nonlinear system,  were modified. Specific exam- 
ples have demonstrated the flexibility and accuracy of the 
outlined procedure. 
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Numerical  Solution. of the Semiconductor 
Transport Equations with Current 

Boundary Conditions 
BERTRAND M. GROSSM 4N AND MICHAEL J. HARGROVE 

Abstract -The semiconductor  transport  equations  are  solved  by  a hyblid 
finite-element method  with  current specified as a  boundary condition at 
device contacts. Single carrier  or  bipolar devices of arbitrary  shape, 
operating  under  transient or steady-state conditions, can be simulated w th 
current sources or simple  circuit elements connected to device terminals. 
This paper describes the numerical  technique  and device applications. 

T 
INTRODUCTION 

HE transport of electrons and holes in a semicondcc- 
tor device is simulated by the FIELDAY program [ 11 

with current specified as a  boundary condition at device 
contacts. FIELDAY is an IBM general purpose program 
used  extensively for designing semiconductor devices. The 
program solves the semiconductor transport equations in 
one, two or three dimensions, under transient or steady- 
state conditions, by the finite-element method. Devices Df 
arbitrary  shape  and doping profile with a variety of differ- 
ent material properties can be modeled. The program’s 
ability to solve the transport equations with current as a 
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boundary condition allows for the simulation of a device 
within a circuit environment of current sources, and resis- 
tive and capacitive loads. This paper specifically  focuses on 
the numerical treatment of current as a  boundary condi- 
tion at device contacts. Two  device applications illustrate 
the use of the model. 

FORMULATION 
Equations (1)-(5) describe the flow of electrons and 

holes in a semiconductor [2], [3] 

V ~ ~ = - ( ~ - ~ Z + N , - N , + N , )  - 4  e 

In these equations, the three unknown quantities are the 
space-charge potential (#), and the electron ( n )  and hole 
( p )  densities. No and NA are the ionized donor and accep- 
tor impurity densities. N, is the density of fixed charged 
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