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Abstract - A strategy for fully adaptive spatial and transient 
grids is presented and applied to typical and critical examples of 
process and device simulation. The distribution of grid points and the 
choice of time steps is performed without any user interaction. 
Transient and spatial domains of interest are detected automatically 
and are carefully resolved. The additional amount of code and CPU-time 
required for the adaptive grid is by far compensated by the optimal 
distribution of grid points and optimal choice of the time steps. 

1.Introduction 

The improvements in VI.SI technology 

models for process and device simulation. 

models necessitates simulators which can 

require more sophisticated 

The development of new 

handle the structure of 

complicated models and provide the numerical background for the 

evaluation of the models. This paper shows how simulators should be 

equipped to fulfil the high demands necessary for up-to-date process

and device simulators. 

In Section 2 we present some of the numerical background of our 

grid strategies. A critical example of a coupled boron arsenic 

diffusion is presented in Section 3. A transient device simulation of 

a simple diode will be discussed in Section 4. These examples show 

that the grid strategies cover a wide range of applications from fast 

processes of about some micro seconds in device simulation to processes 

of up to several hours in .process simulation. 

2.How to create a grid 

The automatic grid adaption has to face the problems of where to 

refine the grid, how to refine the grid and how to interpolate the 

va~ious quantities at inserted grid points. 

It is the task of a spatial grid that the discretization error is 

equidistributed, i.e. that the partial derivatives of the quantities 

with respect to space are carefully resolved. Continuity equations and 

current (flux) relations contain spatial operators therefore the 

independent variables (e.g. electrons, electr. potential) and the 

dependent variables usually composed by first derivatives (e.g. 

currents, electr. field) require a fine resolution. We use the finite 

difference method for the discretization which is accurate if the 

320 



distribution of the quantites can be described locally by a polynomal 

of 2-nd order. If this is the case the values of the quantities at 

four adjacent grid points can be described by the polynomal. This will 

certainly not be the case in typical simulations but we use the 

deviations from an optimal polynomal of 2-nd order, obtained by a least 

squares fit, as a measure for the discretization error. We prefer 

using the deviations from the optimal polynomal to computing the third 

derivative of the quantities numerically since our method is not 

sensitive to slightly varying values as they may occur during a 

simulation. 

Having defined the position of the intended grid refinement we 

have to actually modify the grid in the vicinity. The simplest method 

splits an interval into two equal ones not considering the grid spacing 

in the vicinity. Here the ratio between two adjacent grid distances 

can be far larger than two and the discretization error decreases only 

linearly with the local grid width. Using a quasiuniform mesh the 

spatial discretization error decreases with the square of the local 

mesh spacing as it is shown in /1/. A mesh is a quasiuniform mesh if 

the maximum ratio of two adjacent grid spacings minus unity is small 

compared to unity. We prefer a grid refinement according to the 

"sectio aurea" to obtain a quasiuniform mesh. The differences between 

the two grid strategies and the "sectio a.urea" can be explained by the 

simple example in Fig.l. (The vertical bars indicate existing grid 

points. The length of the bars indicates which grid points have to be 

inserted at the same time to maintain quasiuniformity. The shorter the 

bar, the later the grid point has been inserted.) The equidistant grid 

ACEG is refined bycD and F so that AC:CD=CD:DE and DE:EF=EF:FG. 

The grid refinement factor 

computes to 

sqrt(2.S)+0.5 

be 

which 

l.618 ••. "' 

is smaller 

than two. The simple example in 

Fig.l indicates that in general 

a larger grid domain has to be 

refined in order to maintain a 

quasi uniform mesh. The 

advantage of our grid is the 

super linear reduction of the 

spatial discretization error 

with respect to the local grid 

width. The following figures in 

this paper show that the grid 

refinement factor of 1.618 ... 

quasi uniform mesh 

refinemenl by 'seclio aurea!, 

A Cl 

refinemenl by biseclion 

h1 
max (h) • 1.618 ... 

i-1 

E G 

Fig.1: Comparison between a quasi
uniform mesh (upper mesh) and a 
grid obtained by bisection (lower 
mesh) 
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is sufficient to obtain a short transition from a coarse to a fine 

grid. 

Interpolation of independent variables (e.g. n, p and • in device 

modeling) is not very critical if the grid provides a fine resolution. 

The use of the linear or exponential fitting reveals sufficiently good 

interpolation. The control of dependent variables (e.g. fluxes, 

currents) is far more difficult. Rigorous modifications in the spatial 

grid may lead to perturbations, especially when these secondary 

quantities are complicated functions of the primary ones. 

For the transient integration we use backward difference formulae 

(=BDF) up to 6-th order as proposed by /2/. For the application in 

process and device simula.tions some modifications have been necessary. 

The large dynamic range of the variables (e.g. electrons may change 
20 -3) ' from 1 to 10 cm permits only a control of the relative error. We 

compute the relative error with respect to the local value of the 

variable if it does not change its sign and is larger than zero (e.g. 

concentrations) or with respect to the absolute maximum value of the 

quantity in the whole spatial domain (e.g. potential). We compute the 

error of the transient integration of every variable at each grid point 

to control the step width and order with respect to the largest error. 

The order of integration may be constant or change up or down by one. 

The order which permits the largest time step is chosen for the 

integration of the next time step. The maximum increase between two 

adjacent time steps is limited by an artificial factor of 3.3, the 

reduction is unlimited. 

3.Example 1: Coupled Boron Arsenic Diffusion 

Example 1 shows the simulation of a 

coupled diffusion of boron and arsenic at 

ll00°c for 120 minutes. The initial 

distribution has been obtained by the 

simulation of two ion implantations the 

data of which are found in Fig.2. In this 

figure we see four snapshots of the 

distribution of the boron and arsenic 

concentrations during the diffusion at 

lsec, 900sec, 3600sec and 7200sec. 

beginning boron and arsenic 

In the 

diffuse 

independently, at about 900sec the p-n 

junction is formed and a strong interaction 

between the spreading profiles takes place. 

At the top of Fig.2 we see 
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the spatial grids used for the simulations at the indicated times. The 

grid points are accumulated near the p-n junction and at domains where 

the impurities show a large change in their concentrations. As the 

distribution of boron and arsenic changes the grid follows and enables 

an optimal discretization for the simulation. 

Fig.3 shows all the grid transformations during the simulation 

within the first 2 microns of the simulation domain (which was 20 

microns in this example). Existing grid points are indicated by 

continuous lines, beginning or ending lines indicate changes in the 

spatial grid. The figure includes three domains of increased density 

of grid points. The most impressive one indicates the rapidly 

spreading steep arsenic profile which necessitates a fine resolution in 

space and time. The other domains indicate the spreading of the boron 

profiles towards the bulk and towards the surface. The grid indicates 

that the boron diffuses slower towards the surface than towards the 

bulk which can be explained by the modeling of the diffusivity of 

boron. The total number of 

different grid points which has 

been used during the simulation 

has been 1524 points. The 

average number was 161 grid 

points the maximum number of 

grid points at a certain time 

was about 185. The simulation 

domain has been 20jhn, the ratio 

between the largest and the 

smallest grid width has been 

mor.e than 5000. Using a rigid 

non equidistant grid would have 

taken about ten times more 

computation time than using an 

adaptive grid. 
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4.Example 2: Switchin~ a n+p Diode from -4.SV to +0.SV. 

of 

dose 

The profile of the n+p diode has been obtained by the simulation 

an 

of 

ion implantation 

io16cm- 2 into a 

of phosphorus with an energy of lOOkeV and a 

6.7·1014cm- 3 boron-doped wafer of 200P 

thickness. The implanted phosphorus has been annealed for 20 min at 

ll00°c. The final doping profile can be seen in Fig.4 and Fig.6. 

We have applied our spatial and transient grid strategies to the 

simulation of switching a diode from -4.SV reverse bias to +0.SV 

forward bias within 1 psec. Fig.4 shows ten snapshots of the hole 
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concentration during 

switching process in 

n-domain and in the vicinity 

the 

the 

of 

the p-n junction. The_ 1015 

~ 

distribution of the holes varies..§ 

which is a during the switching 

also reflected in 
i= 10" 

the grid g 
z 

adaption. In the beginning the~ 
Q 

-4.SV reverse biased diode u 10, 

necessitates a fine resolution 

at the boundaries of the space 

charge layer ( i.e. at 3Pm and 10• 

at Sjhn) the +O.SV forward biased 

diode necessitates a fine 

resolution at the coni!acts. 

These demands are reflected in 10 

Fig.5 which shows the grid 

modifications during the 

switching in the n+-domain and 

near the p-n junction. Two e 6 

domains of fine resolution can ..3-

iE 
be seen which move towards each a. 

~ 4 

other. They indicate the 

boundaries of the space charge 
2. 

layer. (The boundary towards 

the p-domain moves fa.st er than 

~-
. \ 

n·p - DIODE swtlchtng 
from -4.SV lo •0.5V wtlhln 1 µs. 
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Fig.4 
DEPTH lµml 

the boundary towards the 10·' 10 .. 10-s 

n +-domain). Finally, this 
TIME lsocl 

accumulation disappears. Fig.5 

Thereafter, grid points are inserted at the n-contact where they become 

required to resolve the large gradient of the holes in a forward biased 

diode. The grid points between 0 and 3Pm are necessary to resolve the 

gradient of the electrons. Fig.6 shows fourteen snapshots of the 

electron concentration during the switching of the diode. We observe 

the decreasing of the space charge layer and the injection of electrons 

into the low doped p-domain. After about l.2psec the electrons reach 

the p-contact. Fig.7 shows the grid modifications in the whole 

simulation domain. The injection of electrons and their spreading is 

detected and for the short period from 0.9 to 1.2 Psec grid points are 

inserted into the p-domain to resolve this spreading accurately. After 

the electrons have reached the p-contact a fine resolution at this 

contact is necessary to resolve the large gradient. Thereafter, the 
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electron distribution in the 

p-domain becomes constant and 

the grid points are therefore 

evicted. At the top of Fig. 5 1015 

and Fig. 7 the transient grid is ~ 
indicated by the vertical bars. a 

~ 1019 

The time step width becomes ~ 
z 

shorter between o.sps and l.2ps ~ 

and increases afterwards. The 8 106 
transient grid shows extremely 

small time steps shortly before 

ljls and about l. 2Psec. At these 10• 

times the injected holes and, 

delayed, the electrons arrive at 

the contacts. The fast 

increasing concentrations at the 

boundaries necessitate fine 

transient resoLution. After the 

transient processes disappear 

(about 2Psec) there is no reason • 

n·p - DIODE swilch1n9 --- electrons 
from -4.SV lo •0.SV wtlhln 1 µs. --· - phosphorus 

-------- boron 

Fig.6 
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0.95µs, 0.9751-1s, 1.µs, 1.0Sµs, 1.11-1s, 1.2µs, 
1.3µs, 2.µs, 3.µa, 1.ms (steady !5lele) 
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for maintaining a fine transient; 100 +----------.;;;-·c..----------t-
grid. The time step control ~ -::.-. 

gets aware of this fact and 

speeds up the integration until 

lmsec is reached. The total 

number of different grid points 

during the simulation has been 

436 the average number 116. 

0 

1e-' 

Fig.7 

11r 
TIME [socl 

The ratio between the largest and the smallest spatial grid width has 

been about 44000 (l) caused by the large simulation domain (200.Jlm). 

5 .Summary 
The paper presents an approach for the implementation of adaptive 

spatial and transient grids for process and device simulation. The 
strategy takes advantage of theoretical findings such as the use of a 
quasiuniform spatial mesh or the use of backward difference formulae 
for the transient integration. We have shown that the amount of 
additional code and simulation time is highly compensated by the gain 
of CPU-time and decreased memory. 
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