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ABSTRACT

In this paper we present a state-of-the-
art report on mathematical and numerical
steady state semiconductor device modeling.
As underlying device model we use the bas-
ic semiconductor device equations, which
consist of Poisson’s equation, the current
relations and the continuity equations. By
appropriate scaling we reformulate the de-
vice problem as singularly perturbed ellip-
tic system with the characteristic Debye
length A as perturbation parameter. Asymp-
totic analysis for A+0+ is used to analyse
the structure of solutions. We employ the
information obtained by the perturbation
analysis to develop appropriate numerical
simulation techniques and present simula-
tion results for a MOS-~transistor.

1. THE MATHEMATICAL MODEL

The system of partial differential equa-
tions, which describes potential distribu-
tion and current flow in an arbitrary semi-
conductor device, is - in the steady state
case - given by (see (8),(11}):

(1.1) €Ay = —-g(p-n+C(x))
(1.2) div J_ = gR

n 3
(1.3) div Jp = —-gR xefcR
(1.4) Jn = q(Dngradn - unngradw)
1.5 J = -gq(D dp + rad
(1.5) P ql pdradp + 1pg ¥)

2 denotes the semiconductor geometry. Y de-
notes the electrostatic potential, =—grad V¥
the electric field, n the electron.concen-
tration, p the hole concentration, J, the
electron current density and J, the %ole
current density. € is the semiconductor
permittivity constant, g the elementary
charge , C the doping profile, D_,D he
electron and hole diffusion coeff1c1egts
resp; R the recombination-generation rate.
Usually Einstein’s relations are assumed
to hold for the mobilities un,up:

(1.6) D_ = u Uy, Dp = uPUT,
where U, denotes the thermal voltage.
PoissonTs equation (1.1} and the current
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continuity equations (1.2}, (1.3) are direct
ly derived from Maxwell’s equations and the
current relations (1.4),(1.5) are obtained
from Boltzmann’s transport equation by
using various simplifying and partly anre-
alistic assumptions (see (8),(9)).

The physical parameters R,u ,C have to
be modeled .with extreme care 8hen accurate
simulation results are desired. An assess-
ment of commonly used models can be found
in (8).

In general, the physical boundary of a de-
vice splits into insulating segments ,
Ohmic contacts, Schottky contacts and - ror
a MOS-device - a semiconductor oxide inter-
face.

Physically appropriate boundary conditions
can be found in (8).

By inserting the current relations (1.4),
(1.5) into the continuity equations (1.2)
and (1.3) resp. and by using Einstein’s re-
lations (1.6) we obtain

(1.7) div(un(UTgradn - ngrady)) = R

(1.8) div(up(UTgradp + pgradv)) = R
Poisson’s equation and (1.7),(1.8) are sca-

lar elliptic equations. Therefore the sta-
tionary semiconductor device problem con-
stitutes a nonlinearly coupled elliptic
system subject to boundary conditions.

2. SINGULAR PERTURBATION ANALYSIS

An important step towards the structural
analysis of a mathematical model is an ap-
propriate scaling,which introduces dimen-
sionless quantities and isolates the rele-
vant dimensionless parameter on which the
model depends.

We define € as a characteristic doping con-
centration, '1 as a characteristic length
and | as a characteristic mobility of the
device under consideration and introduce
the scaled quantities:
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The scaled semiconductor device equations
are cbtained by expressing y,n and p in
terms of *s'“~ and p, resp., observing

=1

=1
gradx = lgradX ’
s s

éiv_ = 1div
b4 1 x '’

L= ;%i and by multiplying the current
x 1% *s

relacions and the continuity equations by

script s:

They read after dropping the sub-

(2.2} AZAQ = n-p-C(x)

{2.3) div J, =R

(2.4} div Jp = -R e,
(2.5} Jn = un(gradn - ngrady)

{2.6) Jp = -up(gradp + pgrady)

2 now stands for the scaled semiconductor
domain, J_,J5 and R for the scaled current
densities and recombination-generation
rate resp.
# is a characteristic normed Debye length
of the device:
2 _ gt

lzqﬁ
For a typical Silicon device {at room tem-
perature) of length 1 = 5x107° cm and
charac;?ristic doping concentration
T ~10'/cm™3 we calculate A2 =107, In
practice A is a small constant. It appears
as multiplier of the Laplacian of the po-
tential in Poisson’s equation and is there-
fcre expected to influence directly the
variation of solutions. In the mathemati-
cal terminology a problem, in which a small
paraneter multiplies a derivative of high-
est order, is called a singular perturba-
tion problem (see (1), (2)). The appropriate
mathematical tool for the analysis of the
structure of solutions of singular pertur-
bation problems is asymptotic analysis for
the singular perturbation parameter A->0+.
At the first glance it looks intriguing to
set A=0 1in (2.2) and to accept the so ob-
tained zaro-space-charge—approximation as
‘neighbouring problem’. Since, in doing so,
we lose one degree of freedom in imposing
bourdary conditions, we have to drop the
conditions imposed for ¥ and retain the
concitions for the carrier concentrations
n and p.
The performance of a semiconductor device
is mainly determined by the number and lo-
cation of pn-junctions, which are surfaces,
at which the doping profile changes sign
(roundaries between n and p-domains). Usu-
ally the doping profile varies rapidly
across junctions (see (10}), and therefore
we assume for simplicity that junctions are
aprupt, i.e. the doping profile has jump-
discontinuities across device junctions.
Since tne soluticns of the zero-space-
charge-approximation (also called reduced

(2.7)

problem in the context of singular pertur-
bation theory) satisfy

(2.8)

we conclude that either the ’'reduced’ elec-
tron concentration n or the reduced hole
concentration p or both quantities are dis-
continuous at abrupt junctions. However,
the solutions of the "full’ singularly per-
turbed device problem are continuous in
and therefore they cannot be approximated
uniformly in € by the reduced solutions for
small A. By employing the methods of singu-
lar perturbation theory it can be shown
that the reduced solutions only approximate
the ’'full’ solutions outside thin 'layer’
strips of width 0(A|lnX|) about junctions,
semiconductor oxide interfaces and Schottky
contacts and that the potential and the
carrier concentrations vary fast (exponen-
tially) within the layer strips:

0 = n-p-C in 9

C2r
C1exp(-—7-),
c,ex (—ng)

19¥PITRT
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lp-pl s Ciexp(-—)

A

[v-v]

(2.9)

A

{n-n|

where r(x) denotes the normal_distance of
xef? to the critical surface (¢,n,p denote
the reduced solutions). The potential ana
the carrier concentrations are moderately
varying functions away from junctions,
Schottky contacts and semiconductor-oxide
interfaces. They only vary fast close to
these critical surfaces.

A detailed mathematical analysis can be
found in the references (4),(5) and (6).

3. NUMERICAL SIMULATION
OF SEMICONDUCTOR DEVICES

For the numerical solution of the semicon-
ductor device problem the scaled current re-
lations (2.5),(2.6) are inserted into the
scaled continuity equations (2.3),(2.4)
resp. and the so obtained elliptic system
is approximated by a discrete system of non
linear equations originating from an appro-
priate finite difference or finite element
method (see (8)). A mayor problem is the
construction of appropriate meshes on which
the discretisation is performed. Usually,
this is done by equidistributing the local
discretisation error (see (3)), which cor-
responds to balancing large derivatives

of solutions by small meshsizes. Obviously,
the solution structure obtained by the sin-
gular perturbation analysis yields large
meshsizes in outer regions (away from layer
strips) and small meshsizes within layer
strips. Asymptotic a-priori grids can be
constructed using the asymptotic behaviour
of solutions (see (3)) and the convergence
properties of discretisation methods can pe
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assessed.

In order to illustrate the theory we pre-~
sent numerical results for a MOS~transis-
tor. The simulation was performed with the 1
code MINIMOS (7), which uses a specialized o~
exponentially fitted finite difference me- )
thod (Scharfetter-Gummel method).

The steeply graded doping profile of the n-
channel MOS~transistor is depicted in Fi-
gure 1. The channel length is 15 um, the
channel width 1 pm and the junction depth
is approximately 0.3 pm. The applied gate-
source voltage was chosen to be 2V, the @
drain-source voltage 5V and the source- _ . ]
bulk voltage is 0V. The computed drain
current is 1.65x10-5A and the bulk cur-
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