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ABSTRACT 

In this paper we present a state-of-the
art report on mathematical and numerical 
steady state semiconductor device modeling. 
As underlying device model we use the bas
ic semiconductor device equations, which 
consist of Poisson's equation, the current 
relations and the continuity equations. By 
appropriate scaling we reformulate the de
vice problem as singularly perturbed ellip
tic system with the characteristic Debye 
length A as perturbation parameter. Asymp
totic analysis for A+O+ is used to analyse 
the structure of solutions. We employ the 
information obtained by the perturbation 
analysis to develop appropriate numerical 
simulation techniques and present simula
tion results for a MOS-transistor. 

1. THE MATHEMATICAL MODEL 

The system of partial differential equa
tions, which describes potential distribu
tion and current flow in an arbitrary semi
conductor device, is - in the steady state 
case - given by (see (8),(11)): 

(1.1) E~W = -q(p-n+C(x)) 

( 1 • 2) 

( 1 • 3) 

div Jn qR 

div J -qR 
p 

(1.4) Jn= q(Dngradn - µnngrad~) 

(1.5) J = -q(D gradp + µ pgradwl 
p p p 

Q denotes the semiconductor geometry. w de
notes the electrostatic potential, -grad W 
the electric field, n the electron concen
tration, p the hole concentration, J0 the 
electron current density and Jp the hole 
current density. E is the semiconductor 
permittivity constant, q the elementary 
charge , C the doping profile, D ,D the 
electron and hole diffusion coef f i8ieRts 
resp; R the recombination-generation rate. 
Usually Einstein's relations are assumed 
to hold for the mobilities µ ,µ : 

n p 
(1.6) D =µUT, D =µUT, n n p p 

where U denotes the thermal voltage. 
Poissonts equation (1.1) and the current 

continuity equations (1.2) ,(1.3) are direct:
ly derived from Maxwell's equations and the 
current relations (1.4), (1.5) are obtained 
from Boltzmann's transport equation by 
using various simplifying and partly -inre
alistic assumptions (see (8), (9)). 
The physical parameters R,µ ,µ ,c have to 
be modeled .with extreme caPe ~hen accurate 
simulatiun results are desired. An assess
ment of commonly used models can be found 
in ( 8) • 
In general, the physical boundary of a de
vice splits into insulating segments , 
Ohmic contacts, Schottky contacts and - for 
a MOS-device - a semiconductor oxide inter
face. 
Physically appropriate boundary conditions 
can be found in (8). 
By inserting the current relations (1.4), 
(1.5) into the continuity equations (1.2) 
and (1.3) resp. and by using Einstein's re
lations (1.6) we obtain 

(1.7) div(µn(UTgradn - ngradwl) = R 

(1.8) div(µp(UTgradp + pgrad~)) = R 

Poisson's equation and (1.7), (1.8) are sca
lar elliptic equations~ Therefore the sta
tionary semiconductor device problem con
stitutes a nonlinearly coupled elliptic 
system subject to boundary conditions. 

2. SINGULAR PERTURBATION ANALYSIS 

An important step towards the structural 
analysis of a mathematical model is an ap
propriate scaling,which introduces dimen
sionless quantities and isolates the rele
vant dimensionless parameter on which the 
model depends. 
We define C as a characteristic doping con
centration, l as a characteristic length 
and µ as a characteristic mobility of the 
device under consideration and introduce 
the scaled quantities: 

( 2. 1) 
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n _n P -E ,1, _j:_ x _x c _c 
s-C, s-C' 'l's-U ' s-I, s-C' 

T 
_µn -~ 

µn - µ , µp - µ 
s s 



The scaled semiconductor device equations 
are obtained by expressing w,n and p in 
terms of v_,n_ and p resp., observing 

1 "' ;;, s 1 
divx = ldivx , gradx = lgradx , 

s s 

and by multiplying the current 

rela~ions and the continuity equations by 
' -'-

g;:'.uTc· They read after dropping the sub-

script s: 

{2.2} n-p-C(x) 

(2.3) div Jn R 

{2 .4) div JP -R xsrL 

(2.5} Jn= µn(gradn - ngradw) 

{2.6) JP = -µp(gradp + pgrad~) 

~ no~ stands for the scaled semiconductor 
donain, J ,J0 and R for the scaled current 
densitiesnanc recombination-generation 
rate resp. 
~ is a characteristic normed Debye length 
of the device: 

, 2 UTE: 
A --

12q~ 
(2. 7) 

?or a typical Silicon device jat room tem
perature) of length 1 ~ 5x1 o- cm and 
charac~eristic doping concentration 
{; ~1o 11 cm-3 we calculate ;i.2 -=10-7. In 
practice A is a small constant. It appears 
as multiplier of the Laplacian of the po
tential in Poisson's equation and is there
£cre expected to influence directly the 
variation of solutions. In the mathemati
cal terminology a problem, in which a small 
para..~eter multiplies a derivative of high
est order, is called a singular perturba
tion problem (see (1), (2)). The appropriate 
mathematical tool for the analysis of the 
structure of solutions of singular pertur
bation problems is asymptotic analysis for 
the singular perturbation parameter A+O+. 
At the first glance it looks intriguing to 
set A=O in (2.2) and to accept the so ob
tained zero-space-charge-approximation as 
'neighbouring problem'. Since, in doing so, 
we lose one degree of freedom in imposing 
boundary conditions, WP. have to drop the 
conditions imposed for w and retain the 
conditions f6r the carrier concentrations 
n ar.d p. 
The performance of a semiconductor device 
is nainly determined by the number and lo
cation of pn-junctions, which are surfaces, 
at which the doping profile changes sign 
(bo~ndaries between n and p-domains) . Usu
ally the doping profile varies rapidly 
across junctions (see (10)), and therefore 
we assQ~e for simplicity that junctions are 
anr:.:pt, i.e. the doping profile has jump
discontinuities across device junctions. 
Since the solutions of the zero-space
charge-approxima tion (also called reduced 

problem in the context of singular pertur
bation theory) satisfy 

(2.8) 0 = n-p-C in Q 

we conclude that either the 'reduced' elec
tron concentration n or the reduced hole 
concentration p or both quantities are dis
continuous at abrupt junctions. However, 
the solutions of the 'full' singularly per
turbed device problem are continuous in a 
and therefore they cannot be approximated 
uniformly in Q by the reduced solutions for 
small A. By employing the methods of singu
lar perturbation theory it can be shown · 
that the ~educed solutions only approximate 
the 'full' solutions outside thin 'layer' 
strips of width O(>.llnAI) about junctions, 
semiconductor oxide interfaces and Schottky 
contacts and that the potential and the 
carrier concentrations vary fast (exponen
tially) within the layer strips: 

lw-~I :;; 
c2r 

c 1exp{--A-), 

( 2. 9) ln-nl :;; 
c2r 

c 1exp(--A-), 

IP-Pl 
c 2r 

:;; c exp(--), 
1 A 

where r(x) denotes the normal distance of 
xsa td the critical surface (~,n,p denote 
the reduced solutions). The potential ana 
the carrier concentrations are moderately 
varying functions away from junctions, 
Schottky contacts and semiconductor-oxide 
interfaces. They only vary fast close to 
these critical surfaces. 
A detailed mathematical analysis can be 
found in the references (4), (5) and (6). 

3. NUMERICAL SIMULATION 

OF SEMICONDUCTOR DEVICES 

For the numerical solution of the semicon
ductor device problem the scaled current re
la tions (2.5),(2.6) are inserted into the 
scaled continuity equations (2.3),(2.4) 
resp. and the so obtained elliptic system 
is approximated by a discrete system of non
linear equations originating from an appro
priate finite difference or finite element 
method (see (8)). A mayor problem is the 
construction of appropriate meshes on which 
the discretisation is performed. Usually, 
this is done by equidistributing the local 
discretisation error (see (3)), which cor
responds to balancing large derivatives 
of solutions by small meshsizes. Obviously, 
the solution structure obtained by the sin
gular perturbation analysis yields large 
meshsizes in outer regions (away from layer 
strips) and small meshsizes within layer 
strips. Asymptotic a-priori grids can be 
constructed using the asymptotic behaviour 
of solutions {see (3)) and the convergence 
properties of discretisation methods can be 
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assessed. 
In order to illustrate the theory we pre
sent numerical results for a MOS-transis
tor. The simulation was performed with the 
code MINIMOS (7), which uses a specialized 
exponentially fitted finite difference me
thod (Scharfetter-Gummel method). 
The steeply graded doping profile of the n
channel MOS-transistor is depicted in Fi
gure 1. The channel length is 1.5 µm, the 
channel width 1 µm and the junction depth 
is approximately 0.3 µm. The applied gate
source voltage was chosen to be 2V, the 
drain-source voltage SV and the source
bulk voltage is OV. The computed drain 
current is 1.6Sx10-SA and the bulk cur
rent -2.74x10-6A~ The device operates in 
the saturation regime close to breakaown 
since the bulk current is - due to impact 
ionisation - already about one sixth of 
the drain current. 
In Figure 2 we show a level-curve plot of 
the potential. The electron and the hole 
concentrations are shown in the Figures 3 
and 4. The layer strips about the two pn
junctions and at the semiconductor oxide 
interface - as explained by the singular 
perturbation analysis - are clearly visi
ble. n,p and ~ vary moderately away from 
these critical surfaces. The impact ionisa
tion rate is depicted in Figure 5. 

L = 1.5 MICRON 
W = 1 MICRON 
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IB = -2.74E-6 R 
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Figure 1 
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HOLE CONCENTRATION 
Figure 4 
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