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ABSTRACT 

In this paper we present a state-of-the­
art report on mathematical and numerical 
steady state semiconductor device modeling. 
As underlying device model we use the bas­
ic semiconductor device equations, which 
consist of Poisson's equation, the current 
relations and the continuity equations. By 
appropriate scaling we reformulate the de­
vice problem as singularly perturbed ellip­
tic system with the characteristic Debye 
length A as perturbation parameter. Asymp­
totic analysis for A+O+ is used to analyse 
the structure of solutions. We employ the 
information obtained by the perturbation 
analysis to develop appropriate numerical 
simulation techniques and present simula­
tion results for a MOS-transistor. 

1. THE MATHEMATICAL MODEL 

The system of partial differential equa­
tions, which describes potential distribu­
tion and current flow in an arbitrary semi­
conductor device, is - in the steady state 
case - given by (see (8),(11)): 

(1.1) E~W = -q(p-n+C(x)) 

( 1 • 2) 

( 1 • 3) 

div Jn qR 

div J -qR 
p 

(1.4) Jn= q(Dngradn - µnngrad~) 

(1.5) J = -q(D gradp + µ pgradwl 
p p p 

Q denotes the semiconductor geometry. w de­
notes the electrostatic potential, -grad W 
the electric field, n the electron concen­
tration, p the hole concentration, J0 the 
electron current density and Jp the hole 
current density. E is the semiconductor 
permittivity constant, q the elementary 
charge , C the doping profile, D ,D the 
electron and hole diffusion coef f i8ieRts 
resp; R the recombination-generation rate. 
Usually Einstein's relations are assumed 
to hold for the mobilities µ ,µ : 

n p 
(1.6) D =µUT, D =µUT, n n p p 

where U denotes the thermal voltage. 
Poissonts equation (1.1) and the current 

continuity equations (1.2) ,(1.3) are direct:­
ly derived from Maxwell's equations and the 
current relations (1.4), (1.5) are obtained 
from Boltzmann's transport equation by 
using various simplifying and partly -inre­
alistic assumptions (see (8), (9)). 
The physical parameters R,µ ,µ ,c have to 
be modeled .with extreme caPe ~hen accurate 
simulatiun results are desired. An assess­
ment of commonly used models can be found 
in ( 8) • 
In general, the physical boundary of a de­
vice splits into insulating segments , 
Ohmic contacts, Schottky contacts and - for 
a MOS-device - a semiconductor oxide inter­
face. 
Physically appropriate boundary conditions 
can be found in (8). 
By inserting the current relations (1.4), 
(1.5) into the continuity equations (1.2) 
and (1.3) resp. and by using Einstein's re­
lations (1.6) we obtain 

(1.7) div(µn(UTgradn - ngradwl) = R 

(1.8) div(µp(UTgradp + pgrad~)) = R 

Poisson's equation and (1.7), (1.8) are sca­
lar elliptic equations~ Therefore the sta­
tionary semiconductor device problem con­
stitutes a nonlinearly coupled elliptic 
system subject to boundary conditions. 

2. SINGULAR PERTURBATION ANALYSIS 

An important step towards the structural 
analysis of a mathematical model is an ap­
propriate scaling,which introduces dimen­
sionless quantities and isolates the rele­
vant dimensionless parameter on which the 
model depends. 
We define C as a characteristic doping con­
centration, l as a characteristic length 
and µ as a characteristic mobility of the 
device under consideration and introduce 
the scaled quantities: 

( 2. 1) 
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n _n P -E ,1, _j:_ x _x c _c 
s-C, s-C' 'l's-U ' s-I, s-C' 

T 
_µn -~ 

µn - µ , µp - µ 
s s 



The scaled semiconductor device equations 
are obtained by expressing w,n and p in 
terms of v_,n_ and p resp., observing 

1 "' ;;, s 1 
divx = ldivx , gradx = lgradx , 

s s 

and by multiplying the current 

rela~ions and the continuity equations by 
' -'-

g;:'.uTc· They read after dropping the sub-

script s: 

{2.2} n-p-C(x) 

(2.3) div Jn R 

{2 .4) div JP -R xsrL 

(2.5} Jn= µn(gradn - ngradw) 

{2.6) JP = -µp(gradp + pgrad~) 

~ no~ stands for the scaled semiconductor 
donain, J ,J0 and R for the scaled current 
densitiesnanc recombination-generation 
rate resp. 
~ is a characteristic normed Debye length 
of the device: 

, 2 UTE: 
A --

12q~ 
(2. 7) 

?or a typical Silicon device jat room tem­
perature) of length 1 ~ 5x1 o- cm and 
charac~eristic doping concentration 
{; ~1o 11 cm-3 we calculate ;i.2 -=10-7. In 
practice A is a small constant. It appears 
as multiplier of the Laplacian of the po­
tential in Poisson's equation and is there­
£cre expected to influence directly the 
variation of solutions. In the mathemati­
cal terminology a problem, in which a small 
para..~eter multiplies a derivative of high­
est order, is called a singular perturba­
tion problem (see (1), (2)). The appropriate 
mathematical tool for the analysis of the 
structure of solutions of singular pertur­
bation problems is asymptotic analysis for 
the singular perturbation parameter A+O+. 
At the first glance it looks intriguing to 
set A=O in (2.2) and to accept the so ob­
tained zero-space-charge-approximation as 
'neighbouring problem'. Since, in doing so, 
we lose one degree of freedom in imposing 
boundary conditions, WP. have to drop the 
conditions imposed for w and retain the 
conditions f6r the carrier concentrations 
n ar.d p. 
The performance of a semiconductor device 
is nainly determined by the number and lo­
cation of pn-junctions, which are surfaces, 
at which the doping profile changes sign 
(bo~ndaries between n and p-domains) . Usu­
ally the doping profile varies rapidly 
across junctions (see (10)), and therefore 
we assQ~e for simplicity that junctions are 
anr:.:pt, i.e. the doping profile has jump­
discontinuities across device junctions. 
Since the solutions of the zero-space­
charge-approxima tion (also called reduced 

problem in the context of singular pertur­
bation theory) satisfy 

(2.8) 0 = n-p-C in Q 

we conclude that either the 'reduced' elec­
tron concentration n or the reduced hole 
concentration p or both quantities are dis­
continuous at abrupt junctions. However, 
the solutions of the 'full' singularly per­
turbed device problem are continuous in a 
and therefore they cannot be approximated 
uniformly in Q by the reduced solutions for 
small A. By employing the methods of singu­
lar perturbation theory it can be shown · 
that the ~educed solutions only approximate 
the 'full' solutions outside thin 'layer' 
strips of width O(>.llnAI) about junctions, 
semiconductor oxide interfaces and Schottky 
contacts and that the potential and the 
carrier concentrations vary fast (exponen­
tially) within the layer strips: 

lw-~I :;; 
c2r 

c 1exp{--A-), 

( 2. 9) ln-nl :;; 
c2r 

c 1exp(--A-), 

IP-Pl 
c 2r 

:;; c exp(--), 
1 A 

where r(x) denotes the normal distance of 
xsa td the critical surface (~,n,p denote 
the reduced solutions). The potential ana 
the carrier concentrations are moderately 
varying functions away from junctions, 
Schottky contacts and semiconductor-oxide 
interfaces. They only vary fast close to 
these critical surfaces. 
A detailed mathematical analysis can be 
found in the references (4), (5) and (6). 

3. NUMERICAL SIMULATION 

OF SEMICONDUCTOR DEVICES 

For the numerical solution of the semicon­
ductor device problem the scaled current re­
la tions (2.5),(2.6) are inserted into the 
scaled continuity equations (2.3),(2.4) 
resp. and the so obtained elliptic system 
is approximated by a discrete system of non­
linear equations originating from an appro­
priate finite difference or finite element 
method (see (8)). A mayor problem is the 
construction of appropriate meshes on which 
the discretisation is performed. Usually, 
this is done by equidistributing the local 
discretisation error (see (3)), which cor­
responds to balancing large derivatives 
of solutions by small meshsizes. Obviously, 
the solution structure obtained by the sin­
gular perturbation analysis yields large 
meshsizes in outer regions (away from layer 
strips) and small meshsizes within layer 
strips. Asymptotic a-priori grids can be 
constructed using the asymptotic behaviour 
of solutions {see (3)) and the convergence 
properties of discretisation methods can be 
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assessed. 
In order to illustrate the theory we pre­
sent numerical results for a MOS-transis­
tor. The simulation was performed with the 
code MINIMOS (7), which uses a specialized 
exponentially fitted finite difference me­
thod (Scharfetter-Gummel method). 
The steeply graded doping profile of the n­
channel MOS-transistor is depicted in Fi­
gure 1. The channel length is 1.5 µm, the 
channel width 1 µm and the junction depth 
is approximately 0.3 µm. The applied gate­
source voltage was chosen to be 2V, the 
drain-source voltage SV and the source­
bulk voltage is OV. The computed drain 
current is 1.6Sx10-SA and the bulk cur­
rent -2.74x10-6A~ The device operates in 
the saturation regime close to breakaown 
since the bulk current is - due to impact 
ionisation - already about one sixth of 
the drain current. 
In Figure 2 we show a level-curve plot of 
the potential. The electron and the hole 
concentrations are shown in the Figures 3 
and 4. The layer strips about the two pn­
junctions and at the semiconductor oxide 
interface - as explained by the singular 
perturbation analysis - are clearly visi­
ble. n,p and ~ vary moderately away from 
these critical surfaces. The impact ionisa­
tion rate is depicted in Figure 5. 

L = 1.5 MICRON 
W = 1 MICRON 
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IB = -2.74E-6 R 
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DOPING CONCENTRRTION 
Figure 1 
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HOLE CONCENTRATION 
Figure 4 
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