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I. Introduction

It is well known that the frequency response and radiation characteristic of surface
acoustic wave (SAW) interdigital transducers, consisting of a set of parallel thin metal-
lic strips (fingers) deposited on a piezoelectric substrate, can satisfactorily be described,
if the charge distribution on the fingers is determined, [1]. Further, in linear weak piezo-
electric approximation, the Fourier transform of the electrostatic charge distribution can
be regarded as the driving function for SAWs, which is the most relevant function for
the design of SAW filters, [2]. .
In the past several years considerable research effort has been devoted to the develop-
ment of methods for the field analysis applicable to 3AW transducer structures, (3], [4],
[5]. Recently new SAW devices have been introduced, which contain single and inter-
connected floating fingers (FF) to achieve a desired frequency response, {6]. However,
since the potentials of the FF’s are a priori unknown, and the boundary conditions
generally have a complicated nature, the inclusion of FF’s'in the analysis of SAW filters
has not been possible so far.

Using the Green’s function formulation, the spectral domain representation and the
moment method, we have developed a non-iterative, semi-numerical method of analy-
sis with closed-form formulae. The involved integral equation is replaced by a matrix
equation. The elements of the resulting matrix, a modified inverse capacitance matrix,
are calculated in closed form. The electrode interaction and the end-effects are fully

taken into account.
I1I. Theory

Consider a semi-infinite anisotropic dielectric. On the surface of the substrate a finite
number of infinitely thin metallic strips (fingers) with ideal conductivity may be de-

posited. The fingers are infinitely long and parallel to the x-axis (3% = 0). The width
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of the fingers and the spacing between any two fingers ma,y be arbitrary. There are no
restrictions imposed on the finger potentials, they may be real- or complex-valued, and
not all the fingers have to be driven electrically, that is may float. The problem is to

find an efficient and rigorous solution for the boundary value problem sketched in Fig.1.
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Fig.1:One dimensional representation of a SAW Transducer

By substitution one can show that solutions for the electric potential ¢{y,z2) of the

form

+oco
$(v,2) = 2%; [ ) -7k bk v, 1 © (11.1)

satisfy the Laplace’s equation in the free space and within the substrate. Therein,

By ks) = —lke] - H) + G 2k + 2 |ke]) - H(-), (11.2)
22 €22 .

H(y) is the Heaviside’s stepfunction and ¢y = 1/€gp€33 — €932. Once we have fouhd an
expression for ¢(k;), then the potential distribution ¢(y, z) in the whole (Ry, R,)—space
is uniquely determined. Furthermore, by means of E = ——Y_}d), D= € E in the free
space and D = (€) . E within the substrate the vectors E(y, z) and ﬁ(y,z) can be
calculated from ¢(y, z) directly. (IL.1) with y = O gives

+00
®(z) = $(0,2) = E];}‘ / B(kz)e TF2dk, + C (I1.3)

Eq.(IL1.3) shows that ¢(k,) is the Fourier transform of the potential distribution on the
surface, ®(z). The boundary condition at the surface (y = 0) is

Dy(0%,2) — Dy(07,2) = p(2) (I11.4)

Where Dy is the y-component of the electric displacement.
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A general expression for the charge distribution on the fingers is the corresponding

Fourier integral. :
1 +o0 N
e Q- ) —IRzz N .
o(z) =5 ﬂ,_/ plks)e™?"*dk, (11.5)
(IL.4) with regard to (II.1) and (IL5) gives
a(kz) = ac(kz) ‘—ﬁ(kz) (IIQG) '

where the bar denotes the Fourier transform and

I

Ge(k = —— 117
C( 2) Ik l Qe € * (1 + Ep) ( )
Insertion of (IL.6) in (IL.1} results in (I1.8)
+o0
1 red = -1k.z
9(2) = o= [ Gulka) - 8lkz) - T dh + €. (I1.8)
—00

Assuming that the inverse Fourier transform of G.(k,) can be formulated as follows in
(I1.10), and denoting it by G.(z), (I1.8) can be written as

+o0
o(z) = f Ge(zt — 2)p(2t)dzt + C. L (11.9)

-0

The inverse Fourier transform of G.(k;). is defined by

-+o0
Ge(z) = %; )[ Gelky) - e 5% dk, (I1.10)
oo |

where the integral symbol in (I1.10) means that the integration has to be int'erpreted in
Cauchy’s sense. Using the definition of the Cauchy’s integral, we have

=2 %y L e
Ge(z) = — elgr(x)lne - In|z|, (I1.11)

where - is the Euler Constant. Notice that although G¢(z) not even exists in Cauchy’s
sense, the expression in (IL.11) allows further algebraical manipulations, as follows:
Insertion of (IL.11) in (IL.9) gives

+o0
o(z) = / (-—% S % . 611_1}(1) Ane — —? -ln|at — z]) p(=zt)dz=t + C - (I1.12)
—0o0

The first and the second parts in (I1.12) are mdependent of zI and because of the charge
neutrality condition ( f p(z1)dzt = 0) we obtain

—o0
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+o0 '
P(z) = -—E:f : / In|zt — z|p(zf)dzt + C (I1.13)
-0

III. Discretization of the Fingers

To reduce the number of the discretization points of the fingers (saving computer mem-
ory requirements and calculation times) we have chosen the following non-equidistant
discretization scheme. Let an arbitrary finger in a given transducer have the start and
end coordinates z; and z.. The width of the finger, may be denoted by | = 2z, — 25,

Fig.2.
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v Fig.2: Discretization of the fingers

On the width of the substrips of the fingers the conditions h;,; = e-h;, 1 = 1.n—1,
may be imposed, where 0 < a < 1. For given z;, 2., @ and M, h; (i= 1..n) can be

calculated from (IIL.1).

h1+...+hn=%; h,;+1=a-h,-; i=1..n—1L (III.].)

Then with regard to the Fig.1 one can easily evaluate the ¢* and ;.
IV. Approximation of the charge density on the fingers

In this section we give a formula for the stepfunction approximation of the charge den-
sity. Other approximations, which are frequently used in the moment method technique
are triangle and pulsfunction approximations. Formally the stepfunctibn approximation
for the jth substrip can be written as

p;(2) = 0; - [H(z - 2}) — H(z — 2})] (1v.a)

Now let us assume that the transducer under consideration consists of N substrips.

Using (IV.1), the stepfunction approximation for the charge density is

N 4
p(2) = po Y 0+ [H(z — ) — H(z — 25)] (1v.2)
. =1
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V. Approximation of the potential distribution on the surface

Insertion of (IV.2) in (IL.13), setting Z#pg = 1 and interchanging the order of the
summation, we have
N +co
O(z) = z o;- / Inlzt — nz| - [H(2r — zg’) — H(zl — 27)|dz1 + C (v.2)
= —00 .
With regard to the definition of Heaviside’s function, and the explicit formulation of

the charge neutrality condition, evaluating the integrals we obtain

N
B(z) = Z: ;- [~(2f — 2)in|2] — 2| + — (z - z)ln|z ~ 2| + (v.3)

VI. Point-Matching and a Modified Inverse Capacitance Matrix

In the preceding section we have found an approximation for ®(z), which contains.
N + 1 unknowns. The unknowns are the N constant charge values on the substrips
(0,5 = 1..N) and the parameter C. The physical meaning of C will be given below.
One possible way to determine o; and C is the so-called point-matching or collocation
method, which will be discuussed in this section. A systematic derivation of the formulae
demands firstly to assume, that all the fingers are driven electrically ( there are no FF).
In a later section the formalism will be slightly modified to include the class of SAW
problems, which contain FF. Now let the potential of the ith substrip be denoted by ¢;.
Then the following is valid (Fig.2)

8(z) = i, zelz], 5] (VI1-a)
(&) = ¢i (VI1-b)
Using the formula (V.2) for ®(z) and (VL.1-b) we have
(25 — €M)
Zo R
7%
b m
22— €
- L zb) Anld - EP+C; i=1.N  (VI2)
2} — 2]

With o - (2:]c - zg) = ¢;, (V1.2) can be written
N
$i= > ¢;A*(i,5)+C; i=1..N (V1.3)

Where A* is the inverse capacitance matrix. For a transducer with geometrical symmet-

ric and electrical antisymmétric fingers, C is exactly zero. If the transducer considered
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relative to the reference transducer has a structural mismatch, C is not equal zero.
Therefore C can be regarded as a system mismatch parameter. Equating C = qy41
and A*(7, N + 1) = 1 we can write

N+1
$i= D g A"(,4); i=1..N (V14)
j=1

N
The explicit formulation of the charge neutrality condition )} ¢; = 0 with (V1.4) are
7=1

N+1 equations for the N+1 unknowns e which compactly is written as
_qé* = (__f_f)g* (V1.5)
VII. Method of Moments

The resulting formula (VI.2) section is quite general and can be applied to any trans-
ducer of arbitrary topological complexity a.nd of unrestricted values of the finger poten-
tials. However, with respect to a change of indices i and j (+ — 7,7 — %), there is a lack
of symmetry, which can be avoided as follows: The potential of the ith substrip is now

calculated by the mean value

1

28— 2P
k4 (3

é: = : [ 8 (2)dz. - (VIL)

Insertion of ®(z), (V.2), in (VIL.1) and performing the integration we obtain (VIL2),

where L is a normalization factor.

.. 1 1
A(7,7) S b et
(=) - (=)
. N2 gD R
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(VII.2)
or (VL.5) in a symmetrical form:

é** — (é**)g** (VII.3)
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VIII. Floating Fingers

In some cases of greatest practical interest, [6], to control more efficiently the frequency
response and the radiation characteristic of SAW filters, a number of the fingers are
disconnected from the bus bars. These FF’s can be single, SFF’s or interconnected
in groups, ICFF’s. The aim of this section is to include the SFF’s and ICFF’s in
the analysis. The system of equations, which is derived in the two preceding sections
have to be modified as follows: The apriori unknown potentials of the single and/or
interconnected floating fingers can be regarded as additional components of the unknown
charge vector. Doing that, the number of the columns increases according to the number
of floating fingers, so that we need further equations to make the system of equations
invertable. The additional equations are the explicit formulation of the charge neutrality
conditions for SFF and ICFF, which are included to the system of the equations as
additional rows. The solution of the resulting system yields simultaneously the charge
values on the N strips (SFF and ICFF included), the constant parameter C and the
potentials of FF and ICFF. ‘

Results

To demonstrate the generality of the described method, we ha&e analyzed an hypothet-
ical SAW interdigital transducer sketched in Fig.3. The transducer contains both SFF
and ICFF.

-+
-
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Fig.3 a: An hypothetical SAW interdigital transducer containing single and
interconnected floating fingers, b: Charge distribution, ¢: Potential distri-
bution
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Conclusion

Based on Fourier transformation, the Green’s function concept and Moment method
we have shown that the electrostatic field problem for metallic comb-like structures
containing single and interconnected floating strips can be solved with closed-form ex-

pressions.
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