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Abstract - We present simulations of IC-fabrication steps and 
of the electric behaviour of devices using fully adpative 
grids in space and time. The strategies have been developed 
for finite differences and are independent of the physical 
models. Critical domains are detected automatically and 
carefully resolved. The additional amount of code and 
simulation time caused by the grid strategies is by far 
compensated by the reduction of CPU-time and memory caused by 
the optimal exploitation of the computer resources. The grid 
strategies become important for the development of advanced 
physical models for process and device simulation when 
critical domains in space and time cannot be estimated in 
advance and for simulations in two or three dimensions when a 
shortage of computer resources impedes the simulation. 

!.Introduction 

The increasing complexity of physical models in device 
and especially in process simulation necessitates a secure 
numerical environment for solving the systems of nonlinear 
coupled partial differential equations (=PDEs) which usually 
describe the processes. A spatial and transient grid is 
required to discretize the operators of the PDEs in space and 
time. Equidistant meshes have been used in the early days of 
simulation but turned out to be too-inaccurate to match the 
requirements of process and device simulation of 
VLSI-devices. Rigid problem oriented grids followed and have 
contributed a good deal to the success of simulation, 
especially in two dimensional device simulation. The design 
of specific grids is mainly based on experience and a 
qualitative knowledge of the solution of the PDEs. The 
extension of a space charge layer close to a p-n junction or 
the migration of a dopant profile during an annealing step can 



easily be estimated and a proper grid can be set up by 
accumulating points in domains of interest. 

These methods begin to fail whenever the physical models 
get more complicated and domains of critical simulation in 
space and time are difficult to estimate. A similar problem 
occurs if computer resources reach their limits and the 
distribution of the grid points in space and time becomes 
critical. A three dimensional device simulation or the 
simultaneous solution of a large number of coupled PDEs in one 
or two dimensions exceeds practically the capacity of today's 
computers. 

This paper presents strategies for fully adaptive grids 
in space and time for the simulation of process steps during 
the IC-fabrication and the evaluation of the electrical 
behaviour of semiconductor devices. The strategies are 
independent of the physical model under consideration. 
IC-fabrication steps with a spatial simulation domain of some 
tenth of a micron and process times of some hours can be 
handled as well as device simulations with a simulation domain 
of some hundred mircometers and switching times in the order 
of nanoseconds. Critical simulation steps in space and time 
are detected automatically and carefully resolved. 

2.Spatial Grids 

The design of a spatial grid can be split up into two 
independent steps: computation of the position of the maximum 
discretization error and refinement of the grid in the 
vicinity. The computation of the discretization error depends 
on the method of discretization. Finite differences are 
applied to discretize the PDEs and therefore the differential 
operators are approximated by their differences. 
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Eq.(l) is only exact if the distribution of C(x) can be 
described by a local polynomal of second order(2). The 
discretization error can therefore be defined as the deviation 
of C(x) from a polynomal 
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the discretization error must decrease with decreasing mesh 
spacing. The computation of the third derivative of C(x) by 
numerical differentiation of C(x) can certainly not be used. 
The comparison between C(x) and a polynomal p(a,x) the 
parameters a. of which have been obtained by a least squares 
fit through vklues of C(x) at four adjacent grid points 
xk···~k+J turns out to be a fairly good method. The large 
dynamic range of the values of the variables in process and 
device simulation permits only the control of the relative 
errors. 
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The error can be computed with respect to the local maximum of 
C(x) (e.g. concentrations of dopants) or with respect to the 
maximum of C(x) in the whole spatial simulation domain 
(e.g. potentials). 

We emphasize to use and to maintain a quasiunif orm mesh 
in the spatial simulation domain. A grid is called 
quasiuniform if the ratio between two adjacent grid widths is 
small compared to unity. It is an important property of these 
grids /1/ that the discretization error decreases superlinear 
with the local mesh spacing. Furthermore it guarantees a 
smooth transition from a coarse to a fine grid. Fig.l shows a 
quasiuniform mesh and compares it to an arbitrary mesh which 
has been created by simple bisection. The "sectio aurea" is 

used for the grid refinement, i.e. AC:CD=CD:DE and AC=CE, the 
ratio between two adjacent grid spacings can only be 
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Fig.2 and Fig.3 show a 
typical application of the 
adaptive grid during the 
device simulation of a 

+ -lOV reverse biased n -p 
diode. Solving the PDEs 
means solving the 
discretized system as well 
as providing an optimal 
grid for the distribution 
of the variables. In the 
example of Fig.2 five grid 
updates have been-? 
necessary until two ~ 
succeeding grids did not z 
differ significantly. § 
Although all plotted ~ 

f-
distributions are ~ 
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solutions of the ~ 
0 10° discretized system of the u 

PDEs the corresponding 
profiles of the variables 
differ. Fig.3 shows the 
creation of the final grid 
in Fig.2. Grid points are 
mainly concentrated at the 
boundaries of the space 
charge layer which are in 
depths of 2pm and 5.~IJm. 

We have made the 
experience that it is easy 
to enlarge a quasiuniform 
mesh but it turns out much 
more difficult to remove 
single grid points. 
Therefore we prefer 
creating a completely new 
grid starting with an 
equidistant very coarse 
initial grid. The problem 
of interpolation is 
strongly reduced by the 
fact that two quasiuniform 
grids for similar 
distributions of the 
variables have many grid 
points in common. This 
can be seen at the top of 
Fig.2, where the different 
grids are plotted close 
together. This fact is 
explained by the use of 
the same initial grid 
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(eleven equidistributed points within zoopm in this example) 
and the technique of splitting the intervals. 

3.Transient Grids 

Backward Differentiation Formulas (=BDF) up to 6th 
order are used to discretize the transient operators. BDF are 
nicely summarized and applied to simulations of electric 
networks in /2/. Although the basic ideas can be copied for 
process and device simulation the implementation requires 
major modifications. After the spatial discretization we 
treat the discretized PDEs as a system of 'ne'·'nx' coupled 
algebraic equations ('ne' is the number of PDEs, 'nx' the 
number of spatial grid points) and concentrate on solving 

= L(C). 
3t 
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Although there is no explicit coupling between the spatial and 
the transient grid we observe that the automatically chosen 
time steps get smaller with decreasing spatial grid widths. 

The large dynamic range of the variables which is 
usually on the order of twenty decades permits only a relative 
error control. The error is computed at every depth for every 
variable. The maximum error of all variables at a certain 
grid point determines the error of the transient integration 
at this point. Since the BDF is a predictor corrector method, 
the error of the transient integration is computed from the 
deviation of these two values. These computations are 
performed for the actual order of integration and the higher 
and lower order. The order which computes the lowest 
discretization error and permits therefore the largest next 
time step is chosen for the next integration. The comparison 
between the specified error of the integration and the 
computed discretization error determines whether the next time 
step will be larger or smaller than the prior one. 

Interpolation of the values of the variables at inserted 
points during a transient integration must be carried out very 
carefully. We have tested four possibilities. From the 
mathematical point of view the interpolation using the PDEs 
itself is the best way to solve the problem. The PDEs are 
solved on a three point problem, the boundary conditions are 
specified as Dirichlet conditions using the values of the old 
grid. Unfortunately this method is far too time consuming for 
an implementation into a process or device simulator. A 
simple linear or logarithmic interpolation works well if the 
grid is sufficiently fine and grid points are inserted only. 
During grid updates starting with the coarse initial grid 
(typically 11 equidistributed points) when grid points are 
also deleted the use of this method often causes errors in the 



dose of the simulated concentrations. 
therefore not be recommended for typical 
where constancy of dose is important. 

This method can 
process simulations 

Computing the values of the variables on the new grid 
from the old distribution in such a way that the dose of the 
old and new distribution remains constant turns out to be 
fairly good to interpolate during a transient integration. 

4.Examples 

Process and transient device simulation are challenging 
examples for fully adaptive grids in space and time. Fig.4 
specifies the most important process parameters of Ex.I. 
Fig.5 and Fig.6 show the results of the simulations, Fig.7 to 
Fig.9 demonstrate the corresponding grid modifications for the 
simulation. The physical model for the simulation is the 
dynamic cluster model of /3/ for arsenic and a diffusion 
equation for boron. The arsenic spreads from 0.25pm to lpm 
and shows a steep gradient in the profile which is caused by 
the strongly concentration dependent diffusivity. Fig.7 shows 
the grid modifications in the first 40min of the annealing. 
The horizontal lines represent existing grid points, beginning 
or terminating lines indicate the insertion of a new point or 
the deletion of an existing point. The vertical bars at the 
top of the figures indicate the transient grid used for the 
simulation. In the very beginning the initial profile is 
carefully resolved which can be seen by the accumulation of 
grid points close to the surface and in a depth of about 
0.15pm. The fine transient grid is necessary to resolve the 
tranformation from electrically active arsenic into clustered 
arsenic. Within the first 5min BDF speed up the simulation 
but then reduce the time steps size since the simulation of an 
annealing at I000°c requires a finer discretization than an 
annealing at 800°c. During the diffusion the maximum arsenic 
concentration gets smaller. Since the diffusivity of As 
reduces with decreasing concentration the simulation becomes 
less critical which is indicated by the enlarging time step 
size. The strong accumulation of grid points in the figure 
indicates the spreading of the arsenic profile. Grid points 
are inserted and removed due to the actual spatial 
distribution of the variables and always guarantee an accurate 
discretization. The spatial grid is enlarged after every time 
step. Completely new grids are installed after a certain 
number of time steps has elapsed or after a certain number of 
additional grid points has been inserted. This strategy turns· 
out to be the most effective one. The times when the grid has 
been updated can be detected by the "steps" in the domains of 
fine spatial grids. 

After 30min the simulation has been interrupted. It 
starts again with a small step width and speeds up since the 
inital step width has been chosen too small for the reguired 
accuracy. As soon as the temperature reaches the 1100 C the 
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diffusion speeds up significantly and therefore a much more 
accurate simulation is required. These phenomena are 
demonstrated by the dense transient grid at the right top of 
the figure and the larger grid modifications after 35min. 

Fig.8 shows the grid modifications between 30min and 
80min. The fine discretization and the strong grid 
modifications indicate the high temperature annealing from 35 
to 65min, the coarse transient grid and the static spatial 
grid are caused by the final low temperature annealing at 
soo 0 c. 

The grid modifications during the boron predeposition at 
the rear side of the wafer are shown in Fig.9. In the 
beginning a fine grid is required very close to the surface. 
As the boron spreads from the surface into the bulk the 
accumulation of grid points gets less distinct and moves from 
the surface into the bulk. 

+ + 
Ex.2 shows the simulation of the switching of a n -p-p 

diode from +0.5V forward bias to -4.SV reverse bias within 
lps. Fig.10 and Fig.11 show the doping profile and some 
snapshots of the electron and the hole concentration during 
the switching. Fig.12 shows the corresponding grid 
modifications. The figures show the creation of the space 
charge layer which is nicely reflected in the grid 
modifications. The simulation of the forward biased diode 
requries a fine grid close to the contacts. During the 
switching grid points are removed from the contacts and are 
inserted close to the p-n junction which is in a depth of 
about 2pm. The extension of the space charge layer into 
direction of the n+-domain remains nearly unchanged while the 
extension into the p-domain increases strongly. The transient 
grid at the top of the figure indicates again the domains of a 
critical transient integration, the black domains in Fig.12 
show domains of critical spatial simulation. 

The ratio between the largest and the smallest grid width 
is usually in the oder of some thousands (c.f. /4/). The 
ratio between all different depth ever used during the 
simulation and the average number of grid points used is about 
four for typical device simulations and up to ten for process 
simulations. Since the CPU-time for the modification and 
creation of adaptive grids takes typically only 10% of the 
total simulation time the use of adaptive grids saves memory 
as well as CPU-time. 
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