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Abstract-Due to the  advances in device miniaturization it is often, 
necessary to get  a  better  understanding of the physical fabrication p r o  
cesses by applying advanced  physical models. Since existing process 
modeling programs can  handle only specific physical quantities, we haw 
developed general purpose solvers for one and two space dimensions; 
which are able to treat an arbitrary number of coupled partial differ- 
ential equations for  physical quantities. In the  paper we will show the 
general formulation of the equations which can be solved. We deal  with 
the user-interface of the programs and the numerical  problems  one has 
to face. To demonstrate the capabilities of the  programs we will  show 
typical applications. 

1. INTRODUCTION 

U P-TO-DATE process simulation has to keep pace with. 
the steadily increasing complexity of physical model!; 

and the increasing miniaturization of the devices for VLSI- 
fabrication. In recent years device simulation program!; 
have proven to be important tools to optimize old struc- 
tures and to design new devices. In the  area of increasing 
miniaturization the simple models for the doping profile 
incorporated in most  of the device modeling programs turn 
out to  be one of the bottlenecks for device simulation. At 
the  same  time  it becomes more and more clear that corn,- 
monly used models for the migration of dopants turn out 
to  be  inadequate  or have to be checked at least. 

Since most existing process modeling programs handle 
only specific physical quantities, the implementation of ad- 
vanced models often exceeds the capabilities of these pro- 
grams or requires simplifications which cannot be  justi- 
fied. On the  other hand it is necessary to simplify the 
models where effects are negligible to  reduce  the required 
computer resources and the computation time for engi- 
neering programs. 

Therefore, we  have  developed general purpose simula- 
tion programs in order  to  master  the above-mentioned dif- 
ficulties and  to obtain a powerful tool for the development 
and verification of  physical models. The programs are able 
to solve an  arbitrary number of partial differential equa- 
tions for physical quantities. The models which describa 
the physical processes  can  be  fairly general. The goals of 
our programs are, therefore, scientific applications. We 
use  our codes to check  the validity range of existing 
models and  to study physical phenomena which can be de- 
scribed by advanced models. 
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The physical models are easy to implement and to ex- 
change in  order to ease  the  usage of the programs. To re- 
lieve the user from nonphysical  problems the mesh  in space 
and time is adapted automatically. Sophisticated mathe- 
matical formalisms for the discretization have been 
adapted from device simulation programs to minimize the 
truncation  errors [6] , [ 171. 

In Section I1 we shall give an  outline of the capabilities 
of our programs and the differential equations which can 
be solved. In Section I11 we will treat some of the numer- 
ical problems which occur. The design of a mesh and 
methods for the interpolation between gridlines and for the 
integration of PDE’s are explained in detail. An  example 
of a coupled boron-arsenic diffusion with strongly moving 
p-n junction shows the advantages of a fully adaptive 
quasi-uniform mesh. The automatic timestep and order 
control is  demonstrated by examples of coupled boron- 
arsenic diffusions and the growth and shrinkage of stack- 
ing faults. 

11. FEATURES 
Although our programs can handle systems of coupled 

partial differential equations with fairly arbitrary  structure 
and general boundary conditions, much emphasis has been 
laid on satisfying the particular needs of process model- 
ing. 

Process modeling deals with the generation and redis- 
tribution of dopant concentrations. The redistribution of 
dopants is usually modeled by parabolic systems of partial 
differential equations. For those systems initial conditions 
have to  be defined. Additionally, elliptic differential equa- 
tions such as the Poisson equation have to  be solved. 

Usually in modern processes the initial doping concen- 
trations  are obtained by predeposition and/or ion implan- 
tation. Predeposition can  be seen as a diffusion process 
where a high concentration of dopants is supplied at  the 
surface of the wafer. This allows the modeling of the pre- 
deposition as a normal diffusion process with Dirichlet 
conditions at  the boundaries. Ion implantation on the other 
hand is commonly used in VLSI fabrication because of the 
high efficiency and reproducibility. 

Our programs are, therefore, designed to handle all 
commonly used numerical models for ion-implantation. 
The  parameters for the  range statistics, range straggling 
in vertical and lateral  direction, and the higher moments 
can be derived by using well established theories of the 
penetration of ions in solids such as the LSS-theory [12] 
or the theory of Biersack [3], [2]. Well-established fre- 
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quency functions are used to  describe  the impurity con- 
centration profiles. We have implemented Gaussian, 
joined-half-Gaussian, and Pearson IV distributions [16]. 
Due  to  the flexibility of the program it is easy to imple- 
ment other frequency functions if desired.  The  lateral 
shape of the doping profiles is assumed to be an error 
function for Gaussian distributions in  the vertical direction 
under  the assumption of an infinitely steep mask edge ac- 
cording to Furukawa [7]. The profiles for arbitrary mask 
edges and frequency functions in the vertical direction are 
obtained by accounting a convolution integral  as proposed 
by Runge [ 141 and Ryssel [ 151. 

The programs can  read and process data from  external 
files to support the  use of Monte Carlo programs and the 
use of measured data. However, data  from SIMS, NAA, 
spreading  resistance, or other measurements often have to 
be smoothed by a mathematical pretreatment  to obtain 
profiles  which are  three  times continuously differentiable. 
Additionally it  is possible to define the values of the quan- 
tities by user-defined subroutines. Due to these specifi- 
cations the programs for the generation of initial doping 
profiles  have shown to be sufficiently flexible for practical 
use. 

The main part of the program package is  the  code for 
the integration of the PDE’s. The systems of differential 
equations which can  be solved by our codes consist of N 
partial differential equations where N denotes  the number 
of physical quantities. Each of the differential equations is 
represented by a very general continuity equation (1) with 
general current relation (2 )  and generation-recombination 
term: 

N a cj 
at c aij - - + div Ji + Gi - Ri = 0 (1) 

j = l  
N 

Ji = 2 (dij - grad cj + pij cj - grad 4). (2) 
j =  1 

The coefficients aij, dij ,  p i j ,  Gi, and Ri can  be functions 
of the simulation time,  the simulation temperature,  the 
space variables, and any of the dependent variables Cj. 
The quantity 4 in the  current relation is one of the cj and 
denotes  the electrical potential.  This part of the  current 
relation is mainly used to  describe  the field-induced cur- 
rent.  It  could, in principle, be incorporated in the first 
term of (2 )  but the above-used notation supports sophis- 
ticated discretization schemes for finite difference discre- 
tizations [18]. The  structure of the programs defining the 
coefficients of the PDE’s is outlined in  the appendix. 

With the described system of equations we can treat 
coupled and uncoupled diffusion, dynamic and static clus- 
ter models, coupled Poisson equations, etc. 

The  general formulation of ‘the boundary conditions (3) 
allows Dirichlet , Neumann, and mixed-boundary condi- 
tions which correspond physically to predeposition, inert 
diffusion, and an oxidizing ambient where, for instance, 
point defects  are  emitted  at  the  surface: 

The coefficients tij can be functions of the simulation 
time  and  the  space variables, and Fi can  be functions of 
the quantities Cj, time, and the  space variables. The quan- 
tity n denotes  the unit vector normal to  the boundary. 

It should be mentioned at  this point that due to the very 
general formulation of the PDE’s and  the boundary con- 
ditions it  is possible to specify systems which are improp- 
erly posed and,  therefore, cannot be solved. 

In  the present state of our program we restrict ourselves 
to fixed boundaries. We exclude moving boundaries at 
present. Nevertheless because of the flexibility regarding 
the boundary conditions it is possible to simulate some 
effects of oxidation such as  interstitial and vacancy gen- 
eration  at  the  surface. 

111. EXAMPLES AND NUMERICAL ASPECTS 
The goal of this section is  to present the mathematical 

formalisms which  have been installed in our programs. Our 
codes are  written  in a modular form so that improvements 
in the applied numerical mathematics can be carried out 
without severe problems in the program architecture.  In 
the following subsections we will outline the methods of 
the numerical methods used for the solution of the PDE’s, 
the  grid adaption in the one- as well as in the two-dimen- 
sional code,  the methods used for the interpolation be- 
tween gridlines, and the methods used for the transient 
integration of the PDE’s. Examples of coupled boron ar- 
senic diffusions are used to demonstrate  the adaption of 
the spatial grid in the one- and two-dimensional code as 
well as  the design of the transient mesh in the one-dimen- 
sional code. An example dealing with stacking fault 
growth and shrinkage shows the capabilities of the used 
formalisms. 

3.1. Numerical Solution of the PDE ’s 
The main goal of our programs is  the solution of non- 

linear PDE’s. The PDE’s are  linearized by applying New- 
ton’s method and then discretized by using finite differ- 
ence  approaches.  The spatial discretization formalisms 
used for the discretization of the continuity equations are 
similar to those used in device modeling [18]. The usage 
of an exponential fitting factor for the continuity equations 
with field terms improves especially the convergence 
property of Newton’s method. The solution of the linear 
system is performed using LU-decomposition in the one- 
dimensional code and point-successive over-relaxation 
method (SOR) or Gaussian elimination in  the two-dimen- 
sional code. 

The maximum of the electric fields caused by a doping 
concentration C is assumed to occur in the vicinity of 
p-n junctions.  It  can  be estimated under  the assumption of 
quasi-neutrality and by applying Boltzmann statistics by 

- a* - T-II2 . exp (3) . __ a c  
ax 2kT ax (4) 

N 

E i j  - (4  - n) + Fi = 0. (3) where 4 denotes  the electric potential, T the process tem- 
j =  1 perature, Eg the energy gap, and IC Boltzmann’s constant. 
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Fig. 1. The  adopted nomenclature  for  finite  differences. 

The  carrier  concentration and potential profiles  in process 
modeling are  therefore smoother than the profiles of PO- 
tential, electron, and hole concentrations in device mocl- 
eling due  to  the much higher temperatures. This means in 
practice that Newton’s method converges qualitatively bet- 
ter and nearly without overshoots for most of the diffusion 
problems. Nevertheless  we  have implemented a Deufr1.- 
hard-like damping [5] which guarantees that the norm of 
the residual in Newton’s method is decreased in each it- 
eration step. 

3.2. Design of a Spatial Grid 
One of the main problems in numerical simulation is thle 

design of a good mesh. The heuristic mesh design rules 
used in most of the existing programs prevent many au- 
thors from giving explicit information. 

3.2.1. One-Dimensional Mesh Adaption: In the one-di- 
mensional code we  have implemented a fully adaptive 
quasi-uniform mesh. The characteristic of this mesh type 
is that the  ratio between two adjacent grid distances hi and 
hi - is close to unity. The mathematical formulation is 
given by (5 ) :  

h i - 1  = hi (1 + O(h,)). (5 )  

A reason for the  use of a quasi-uniform mesh is its prop- 
erty to reduce the  truncation  errors caused by the discre- 
tization of the differential operators with the square of  thle 
mesh spacing. This property is shown in the following. 
For these considerations let us assume a one-dimensional 
finite difference discretization scheme as shown in Fig. 1. 
For the discretization of an arbitrary differential equation 
div U = div A grad C we replace the differential operators 
by difference operators, cf.’ 1161. Under the usual assump- 
tion that U is  three times continuously differentiable we 
obtain 

L 

hi + 
We assume that U is constant within each interval. 

Therefore, we obtain 

Since (7) holds for a quasi-uniform mesh we can see that 
the local truncation  error  is  on  the order of the square of 
the mesh spacing if the  ratio between two adjacent mesh 
spacings minus unity is small compared to unity. 

initial  grid : equidistant ’ 
D E F  * 

refined  grid : quasiuniform 
Fig. 2. Strategy for the quasi-uniform  refinement of a grid. 
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Fig. 3. Construction of a quasi-uniform  mesh. 

Theoretical investigations suggest some ideas as  to how 
to  create a spatial grid and how to reduce the numerical 
errors during the simulation [ 131. The implemented ideas 
which  follow represent an amount of numerical effort  which 
leads to satisfying spatial grids and acceptable computa- 
tion time. The proposed mathematical formalisms are in- 
dependent of the physical model under consideration and 
work without user  interaction. 

Considerations of error minimization lead automatically 
to modifications of the spatial grid and suggest the use of 
a dynamic instead of a rigid grid. Quasi-uniformity seems 
to  be a good criterion for a spatial grid. A simple consid- 
eration leads to  the following grid  strategy which is also 
demonstrated in Fig. 2. Imagine an equidistant mesh A - 
C - E - G. If we intersect  the  interval C - E by the 
midpoint D ,  our new mesh is not quasiuniform since the 
ratio of distance C - D to A - C is 1 : 2. Therefore, we 
have to move D towards E. Now  we  have three distances 
A - C ,  C - D, and D - E,  with the relation A - C = 
C - D + D - E. The optimal quasi-uniformity is ob- 
tained whenA - C :  C - D = C - D : D  - E. This leads 
to a reduction factor of  0.5 + sqrt(1.25) = 1.618 - - - 
well  known as sectio aurea. Fig. 3 shows the first ten  steps 
of a grid refinement in the half  of the simulation domain. 
The quantity to  be discretized is an implantation profile 
with its maximum at about 1.2 pm. The initial grid is an 
equidistant mesh consisting of 11 points within 0-20 pm. 
Generally larger  grid domains have to be refined to obtain 
the quasi-uniformity of the mesh if a certain interval shall 
be divided. In the first example two points ( D  and F )  have 
to be  inserted which lie symmetrically to E. A grid which 
is built up this way turns out to have  many practical prop- 
erties. 
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Quasi-uniformity guarantees a quadratic decrease of 0 SPO 

the  trunction  errors with the local mesh spacing. 
* It  permits easily the  construction of meshes which 

include domains of fine resolution and very coarse 
mesh regions close together. 

30 sec 

1022 

Y 

The strict  recipe how to  introduce new grid lines 
guarantees that two distributions which need a fine 
resolution at  the  same depth will have many gridlines 
in common. During grid updates this property as- 
sures that interpolation is necessary only at a few 
gridlines whereas the majority of values for the new 
grid can  be taken unchanged from the old grid.  Since 
it minimizes the number of interpolations at  intro- 
duced meshlines during  grid updates it increases  the 
accuracy of the simulation. (Simple and  therefore  fast 
interpolation always introduces errors into the simu- 

Y 

t 
lation.) 
The organization of the refinement of a quasi-uniform 0.0 .I .2 

mesh is Simple. (on  the 0 t h  hand it is difficult  to Fig. 4. Spreading of the  arsenic profile at the very beginning of the 
coarsen a quasi-uniform grid and maintain quasi-uni- diffusion. 
formity, cf. [lo] .) 

DEPTH t p l  

The way the spatial mesh is created, refined or updated 
depends on the distribution of the quantities and the This system of equations consists of a Poisson equation 
way the discretization  error is computed. Our main con- (8) and two continuity equations for the dopants (9) and 

one-dimensional program we derive the estimate of the and to obtain fairly high electric fields  we neglect cluster- 

if the distribution of the quantities can be  described  by a The initial profile has been obtained by the simulation 
polynomial of not more than second order. If the distri- of two ion implantations of arsenic with a dose of 2 X 10'~ 
bution is described by a second-order polynomial then the cm-2 and an energy of 140 keV and boron with a dose of 
values of the quantities are identical to the values obtained 3 X 10'' cm-* and an energy of 400 keV. The background 

tern is the minimization of the discretization error. In the (lo). In Order to improve the transparency Of the 

error  from  the  fact that our discretization scheme is exact ing, precipitation? and degenerate 

by a second-order polynomial as a function of depth.  The impurities have been assumed to be cm-3 for both 
deviations of the values of the quantities from  an optimally dopants. The diffusivities are IbY using superim- 
fitted second-order polynomial is, therefore, a measure for posed Arrhenius expressions assuming diffusion via Ileu- 
the discretization error. An additional criterion, which tral and singularly charged vacancies. The simulation do- 
may be turned on or off by the user, controls the maximum main 's o-20 Fm in 'pace and o-2 h in time* 
difference or ratio between adjacent quantities and inserts Fig. 4 shows the spreading of the arsenic profiles at  the 

value. The  grid refinement is performed in such a way that 5 shows four snapshots of the distributions of boron and 

strategy  guarantees  that  the grid is optimal even if  there that up to about 1000 s the diffusion is  uncoupled  (except 

ified by the user. The  user may set a minimal grid distance arsenic).  After  that period a strong  interaction between 
to avoid too fine a spatial resolution. This option is im- boron and  arsenic via the electric field takes place. In Ex- 
portant if the quantities are discontinuous (simulations of ample 1 the accuracy has been checked down to 10" 
predepositions , measured values as initial solutions, etc .) . Therefore  the transition from  areas with steep ar- 

Example 1 is the of a coupled  boron-arsenic senic and boron gradients to  the constant background con- 
diffusion. centration is resolved, too. Figs. 6 and 7 show the com- 

A coupled B - A ~  diffision can be  described  by (s)+o): plete spatial and transient grids for the simulation of 
Example 1 in a linear and logarithmic time scale. Contin- 

minating lines  indicate  grid modifications. Three domains 
of fine resolution can  be seen. The most impressive one 

points until the difference/ratio  is below a user-specified very  beginning and the grids. Fig. 

the  largest  discretization  error  is  attacked.  This simple arsenic and the grids. This figure shows 

are too few gridpoints available to obtain the accurcy spec- the enhancement the intrinsic charge Of boron and 

(8) uous lines represent existing gridlines; beginning or ter- 

CB 
at 

at 

C, - - - grad 4)) (9) represents  the  steep gradient of the  arsenic profile  which 

CAS + - grad +)). 
ut moves into  the bulk. As soon as  an  interaction with the 

boron atoms takes place (after approximately 1000 s), this 
dark domain is identical to  the moving p-n junction and 
becomes broader. The  other two domains are related to 

(10) the  spreading of the boron profile. In  the beginning the 

Ul 
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Fig. 5. Boron  and arsenic  concentrations  at 4 different  times  during 51 2-h 
annealing  step  at  1000°C. 
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0 1800 3600 5400 7200 
TIME [ s e d  

Fig. 6. Grid modifications during the  simulation of Example 1  (linear 
timescale). 
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Fig. 7. Grid modifications during  the simulation of Example 1 (logarithmic 
timescale). 

spreading is  symmetrical.  After  the beginning of the in- 
teraction with arsenic, the diffusivity of boron in the n- 
doped regime  is  strongly reduced (suppressed V +  concen- 
tration) compared to  the diffusivity in the other domain. 
Therefore,  the  spreading of boron towards the surface  is 
slower than the spreading towards the bulk. This effect can 
be clearly seen by inspection of the dynamic grid. The 
grid lines which resolve the steep arsenic gradient show 
an interesting behavior. Towards the bulk  we  find a con- 
tinuous motion of gridlines whereas there are steps to- 
wards the  surface.  This phenomenon is related to the way 
the dynamic grid is established and will be discussed 
further. 

As mentioned earlier, a dynamic grid  is easily refined 
but it is difficult to  coarsen.  Furthermore,  the deletion of 
a mesh line requires the computation of the discretization 
error before and after the deletion of the meshline. If the 
discretization error  after  the removal is too  large the grid 
line has to be inserted  again  and  the  gridline with the sec- 
ond smallest discretization error has to be removed. The 
difficulty of describing these activities may give the reader 
a slight impression of  how difficult, time consuming, and 
laborious it is to put it  into a programming language. 
Therefore, we decided to  create a complete new  mesh after 
a certain number of additional gridpoints have been in- 
serted or  after a certain number of time steps have passed. 
The problem of interpolation is reduced since the new grid 
contains many points from the old mesh. In practice the 
old and the new mesh have 85-95 percent of the points in 
common. The remaining 5-15 percent of the new grid 
points require interpolation as well as the grid lines in- 
serted during the refinement of the  grid. 

3.2.2. Two-Dimensional Grid Adaption: The adaption 
of a spatial grid in two dimensions has to satisfy numerous 
demands which are mostly qualitative. The  test of new 
models requires that the computational accuracy is suffi- 
ciently high.  This is usually checked by examining the 
conservation of the dosis during time integration. Other 
important goals are  the determination of the position of 
the p-n junction in the bulk and the fine resolution of 
model-immanent kinks and spikes in the impurity profiles. 
On  the  other hand no special information such as space 
charge in device modeling can  be used to  get information 
about necessary insertions and deletions. Since the maxi- 
mum number of gridlines is usually restricted  to a rela- 
tively small number of lines we  have to restrict ourselves 
to the equidistribution of characteristic functions com- 
puted by the grid  criteria. 

The first criterion which is used in the two-dimensional 
code is the equidistribution of the second derivatives of 
the profiles weighted with the discretization area. This cri- 
terion inserts gridlines mainly in the vicinity of the max- 
ima of the profiles and is, therefore, indirectly responsible 
for the conservation of the dose. A second criterion checks 
the maximum ratio of the quantity values at two adjacent 
meshlines and inserts lines mainly at  the slopes of the pro- 
files to resolve p-n junctions properly. 

The example  which we present to demonstrate  the adap- 
tion of the spatial grid  is an extrinsic boron-arsenic dif- 
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Fig. 8. Isoconcentration plot of the boron profile at the beginning of the Fig. 10. Two-dimensional mesh at the beginning of the simulation. 
coupled diffusion. 
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Fig. 9. Isoconcentration plot of the  arsenic profile at the beginning of the 
coupled diffusion. 

fusion.  The  differential  equations  are given by (8)-(10). 
The  initial  doping  conditions have been obtained by ion 
implantation of arsenic  and  boron with 4 X 1015 cmU2 at 
90 and 80 keV, respectively. The  arsenic  has been im- 
planted  through a mask with  an infinitely steep  edge  to 
simulate  a MOS transistor  process.  Figs. 8 and 9 show 
isoline plots of the profiles of boron and arsenic at the very 
beginning of the diffusion process. Fig. 10 shows the  spa- 
tial mesh at this  snapshot.  The  lines  are, as can be  seen, 
extremely  tight in the  regions with high  gradients of the 
arsenic profile and relatively coarse  at  the flanks of the 
boron profile since  the  arsenic profile is much steeper. 
Figs. 11 and 12 show the  boron  and  arsenic  concentrations 
after a 3600-s inert  diffision at 950°C. 

0 .4 .a 1.2 

Fig. 11. Isoconcentration plot of the boron profile after 60-min coupled dif- 
fusion at 950°C. 

The  arsenic profile shows a  distinct,  J-shaped maxi- 
mum. This maximum is forced by the  divergence of the 
electric field  in the vicinity of the p-n junction. Analo- 
gously the  boron profile forms  a maximum of the same 
shape and value at the  same  position.  The  migration of 
boron at the surface in  regions of high arsenic  concentra- 
tions  is  strongly  retarded due to the reduced diffusion coef- 
ficient whereas the boron profile spreads unaffectedly else- 
where near  the  surface. 

The mesh (Fig. 13) shows accumulations of gridlines in 
the vicinity of the maximum and in  the regions where the 
boron profile crosses  from  the  J-shaped maximum to the 
region in  the bulk where the  arsenic  accumulation  has no 
direct  influence. 
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Fig. 12. Isoconcentration plot of the arsenic profile after 60-min coupled 
diffusion at 950°C. 
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Fig. 13. Two-dimensional mesh after 60-min coupled diffusion 

3.3. Interpolation  between  Gridpoints 
Interpolation becomes necessary for grid refinements 

and  grid  updates.  It  can be a source of unpredictable er- 
rors during the simulation and must therefore be treated! 
carefully. 

The simplest approach is  to  interpolate  linear quantities 
bilinearly and logarithmic quantities bilogarithmically. A 
coarse definition of linear quantities is: they  have a dy- 
namic range which is less than the dynamic range of the 
computer  accuracy; they may contain zero and change 
sign. Typical examples of linear quantities are  the electro- 
static potential, stacking fault length, or radii of precipi- 
tates. Logarithmic quantities have a large dynamic range 

of interest, they must not be zero  or change sign. Typical 
examples are  carrier and dopant densities, point defect 
concentrations, etc. This suffices for the quasi-uniform 
mesh in  the one-dimensional code if the mesh is fine 
enough. An obvious advantage of this method is the fast 
performance which is important when backward infor- 
mation has to  be interpolated too. In the two-dimensional 
code, where the  grid  is  coarser a better interpolation must 
be used such as spline interpolation or Akima’s interpo- 
lation method [l]. Since these methods tend to overshoot 
it is useful to improve the above-mentioned methods by 
monotonicity considerations [9]. For logarithmic quan- 
tities it  is useful to  interpolate  the logarithm of the values 
of the profiles. 

The best results for the interpolation in meshes of  con- 
secutive timesteps have been obtained by additionally in- 
terpolating with the differential equations themselves. For 
this method all mesh points of the unrefined mesh are 
treated  like Dirichlet points. The PDE’s are solved  for all 
inserted points and the recent timesteps which are stored 
for backward difference formulas used  for the integration 
of the PDE’s. 

This method ensures that the local truncation  error of 
the interpolation is of the  same  order as the truncation 
error of the values on the unrefined mesh. 

3.4. Transient Integration 
For the transient integration of the PDE’s backward dif- 

ferentiation formulas are used. In the two-dimensional 
program, backward Euler discretization with time-step 
prediction and correction is used. 

From the mathematical point of view backward Euler is 
only correct if the  transient behavior of the quantity is a 
function of first order. Backward differentiation formulas 
(= BDF) of higher  order have already been studied exten- 
sively and have been applied to circuit simulations. Ref- 
erence [4] gives a nice presentation of the basic ideas and 
proposes some suggestions for error,  step width, and order 
control. Certainly some changes are necessary since pro- 
cess simulation reveals problems which are unknown in 
circuit simulation, e.g., high dynamic range of quantities, 
interpolation, spatial operators, moving grids,  etc.  The 
use of BDF of up to sixth order has many advantages. 

BDF  guarantee an exact integration of functions of 
up to sixth order. 
The  integration method shows ‘“((a)-stability,” cf. 
V I .  
It enables a predictor-corrector scheme which speeds 
up the Newton iterations by better initial guesses and 
gives a realistic method of error control. 

Drastic changes have been necessary concerning the  er- 
ror  control and the  determination of the step width. We 
restrict ourselves to  the control of the relative error and 
have  avoided all  attempts  to obtain an absolute error con- 
trol (as is proposed in [4]). The deviation between pre- 
dicted and corrected values is a measure of the error. It 
determines the increase or reduction of the next time  step 
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0 10 20 30  40 50 60 70  80 90 
TIME [r;qrt(t/sec)l distant one if plotted over sqrt(t). This is approximately 

the  case  as  seen in  the upper two grids in Fig. 14 for the 
time from 1600 to 7200 s. It  is  interesting that the  tran- 
sition from the n-i-p to the n-p structure is not reflected 
in  the  transient gridbut only  in-the spatial grid.  (The black 
strip  in  Figs. 6 and 7 becomes significantly broader after 

diffusion is no problem for a transient  integration using 
BDF and a proper spatial grid. To confirm this hypothesis 

0 1200 2408 3600  4800  6000 7200 1000 s of simulation time.)  This indicates that  the coupled 
TIME [t/secl 

Fig.  14.  Transient  grids  for  Example 1 and 2 in  different  timescales. 

TIME [~qrt(t/~ec)I we have simulated Example 2 and plotted the transient 
0 2 4 6 8 10 mesh (inner grids  in  Figs. 14 and 15). The figures reveal 

that there  is no qualitative difference betweenthe grids of 
Ex. 1 and  Ex. 2. The  step width in Example 2 is larger 
and effects are delayed. The delay and the wider grid i s  
affected by a factor between 1 and 2 and can easily be 
explained by the  lack of field enhancement in Example 2. 
Since  there  is  no difference in the  grid when arsenic starts 0 20  40 60 80 100 

TIME [l/secl 

Fig. 15. Transient  grids  for  Example 1 and 2 in  different  timescales  for  the to interact with boron we find a confirmation Of Our as- 
begin of the  simulation. sumption. 

The accuracy criteria  in Examples 1 and 2 have been 
compared to  the  current  one  as well as  the choice of the made very small, i.e., they are  far more restrictive than 
order  for  the  transient  integration.  The  step and order con- usual. Some quantitative data for  Examlples 1 and 2 are as 
trol is a worst-case estimation since the most critical com- follows. 
ponent determines  the  step width and  the order. In  our Example 1 took 496 time  steps, Example 2 only 311. 
implementation every quantity is checked at every depth This ratio reflects the enhanced diffusion by the field in 
to fulfil the error  criterion.  The  step width and the order Example 1 which should be between 1 and 2. The average 
of integration  is  updated after every time step. Interpola- number of grid points during the simulation in Example 1 
tion causes no program controlled change of the  order and is 161, the minimum number after a grid  update has been 
step width, nevertheless we observe the phenomenon that 154, the maximum number before a grid  update has been 
grid updates which are accompanied by the insertion of 186. The total number of different grid points which oc- 
many  new gridlines lead to decreased step width. This curred during the whole simulation is about 1550 points. 
phenomenon can  be clearly seen in the transient grids of This number of gridlines would  have been necessary to 
this example. perform the  same simulation using a rigid quasi-uniform 

In  order  to investigate the influence of  field coupling on mesh (the user would  have to know in advance where to 
the  transient  integration we  have simulated Example 2, place the gridlines). The comparison with a rigid equidis- 
which is identical to Example 1 in Section 3.2.1 except that tant grid would lead to some ten of thousands of gridlines. 
all field induced currents have been set equal zero. Figs. The  ratio between the  largest  and smallest spatial grid is 
14 and 15 show transient  grids for Examples 1 and 2 in a more than 5000. The initial grid for Examples 1 and 2 
linear  scale and a scale proportional to  sqrt(t).  The  outer consists of 41 points equidistantly distributed in the sim- 
parts  are  the  transient grids for Example 1 the  inner ones ulation domain from 0 to 20 pm. 
show the  grid for Example 2. The first time  step  is made These numbers show that the dynamic grid speeds up 
very small (1 ms in our examples). For both examples the the simulation as well as  it  increases  the accuracy. The 
step  width  turns  out  to  be too small and is steadily in- savings of using only a tenth of the gridlines of a rigid 
creased.  After about 15 s a physical effect appears which grid  is far  larger than the time invested in the computation 
needs finer transient  discretization.  This effect can  be of the discretization errors and the  grid modifications. 
clearly seen  in Fig. 4 and  turns  out to be the diffusion of The  last example deals  with the simulation of point de- 
arsenic with a very steep slope in its  concentration. Ob- fects and the stacking fault growth. The simplest models 
serving a constant depth we see that the arsenic concen- which describe the kinetics of these phenomena are given 
trations  increase  during a very short  time from 10” cm-3 by (11)-(13), cf. [l l]:  
to lo2’ ~ m - ~ .  Since Gear’s method tries  to predict this ac, a 
behavior by polynomials it .takes several steps  to pass - - @I 2) - kB(czcv - CFq Cy) - kl r - 

ar 

through this  large dynamic range.  The  diffisivity of ar- a t  ax a t  
senic is  strongly  concentration  dependent, enhanced in (1 1) 
domains with high arsenic  concentrations and decreases, ac, 
therefore, with time  in Examples 1 and 2. This explains at - - a ax (&2) - kB(czcv - cFqceg> (12) 
the fine transient  grid within 25-900 s and coarser  time 
steps  afterwards.  Since sqrt(D - t) is a measure for the - 
speed of a diffusion, the  transient  grid should be an equi- a t  

- k,(C[ - c;q) * (13) 
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Fig. 16. Transient  behavior of the  interstitial  concentration and  the  stat:k- 
ing fault  length. 

TIME kecl 

“I” denotes  interstitials, ‘‘V’ vacancies, and “r” the 
radius of the stacking faults (OSF). For OSF shrinkage 
this approach is only valid when the length of the OSF is 
larger than the change 6r between two timesteps. If the 
shrinkage of OSF’s  is  simulated, the models compute 
“negative stacking fault lengths. ” We have  implementeld a 
radius dependent growth/shrinkage of the  OSF’s when  .the 
radius is smaller than a critical value. q (r)  is defined als 

for r < 0 

q (r) = 3 - ( r / r ~ ~  - 2 - ( r / ~ , ) ~ ,  for 0 < r < r, {:: for r > r,. (13) 

This improved model states  that OSF’s do not shrink be- 
yond a critical length and remain stable as long as there is 
no  supersaturation beyond the critical value for the OSF’s. 
This improved model avoids “negative stacking fault 
lengths” but has become a challenging example for the 
transient  step  and  error  control.  The  time  step control 
must decrease  the step width whenever a radius  is close 
to the  critical  radius  to accurately simulate the transition 
between the radius dependent and the radius indepenldent 
domains. The  step 6 t  must be small enough so that tSr is 
smaller than r,. To check this performance we  have  sim- 
ulated  the point defect kinetics of a dry oxidation at 
1200°C for a sufficiently long time to observe growth as 
well as shrinkage of the stacking faults. Fig. 16 shows the 
time dependence of the  interstitial concentration and the 
stacking fault length. The figure shows that supersatura- 
tion of interstitials  occurs  at  the beginning of the oxida- 
tion and close to the  surface. (Bulk recombination reduces 
the effective range of the  surface generation of intersti- 
tials.)  Therefore,  the OSF growth is also constrained to 
the  surface. As long as  the  interstitial concentration is be- 
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Fig, 17. Shrinkage  of  the  stacking  faults  during  the  critical time domain. 

yond the critical value, we  find growth of the  OSF.  After 
about lo5 s, OSF’s  are sources of interstitials which tend 
to keep the interstitial  concentration at the critical value 
and become smaller. Since  the  rate of shrinkage is inde- 
pendent of the radius of the OSF’s, the unmodified model 
would lead straightforwardly to “negative stacking fault 
length. ” This would not only cause incorrect results in the 
length of the OSF but would also falsify the point defect 
kinetics since the negative OSF’s would  work as an ideal 
source of interstials. On the  top of Fig. 16 we  find the 
transient  grid for the simulation of the improved model. It 
reveals that  our  grid control has detected  the change in 
the shrinkage rate and reduced the  step width. Fig. 17 
shows the critical period (the disappearance of the stack- 
ing faults close to the surface) and  the corresponding tran- 
sient grid. We see  that the step width gets smaller the 
larger  the  shrinkage  rate of the  OSF becomes. After all 
OSF’s have disappeared the grid control speeds up auto- 
matically to a step width which is some orders of magni- 
tude larger than the smallest one  during the simulation. 
Simulations with different critical radii r, reveal that the 
time  steps  get  smaller  as the critical radius goes down. In 
all our simulations the  time  steps have been small enough 
to avoid the “negative stacking fault  radii. ” 

The difficulty in this example is the  fact that the model 
is similar to a “switch”  in circuit simulation if the critical 
radius becomes very small. Our example is not an abrupt 
switch since the critical OSF length is obtained earlier in 
the bulk than at the  surface and the  shrinkage  rate in the 
bulk is less critical than at  the  surface. Nevertheless too 
careless error  criteria lead to a “negative OSF length.” 

We accept time  steps if the  error  is smaller than a max- 
imum error which is larger than the typical error. The 
bandwidth between these  error boundaries should be large. 
If a computed error  is  larger than the maximum error, the 
time step is rejected. By rejecting time steps we destroy 
the harmony of the transient grid which  may cause unex- 
pected small time steps or strongly varying step widths. 
This phenomenon occurs especially if the  order of inte- 
gration is high (5  or 6). 

Other criteria  to reject a time  step may be: 

the insertion of too many  new grid  lines, 
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the divergence of a Newton iteration,  or 
any of the physical quantities is  out of range. 

The first criterion  is not very critical. Nevertheless some 
investigations will be necessary  to find out how to  treat 
the problem. The other cases are essential. Too large  time 
steps may lead to  an initial guess which is out of the con- 
vergence radius of the Newton iteration, or lead to a non- 
physical prediction (negative OSF length, or negative con- 
centrations). In this  case a drastic reduction of the  time 
step  (factor 0.5) is essential for the continuation of the 
simulation. The grid  control aborts with a fatal  error if the 
Newton iteration diverges with the minimum time  step 
width (in  this  case  an  erroneous Jacobian is mostly the 
reason for the  fatal  termination of the simulation). 

where /NAME/  is any unique user-defined subroutine 
name. VDOX is the mask-thickness weighted with the 
stopping power estimation STOP(1) for Si02 masks and 
STOP(2) for Si3N4 masks. An initialization pass indicated 
by the logical variable INIT  is performed to initialize all 
internally used variables and the parameters  NCTOT and 
YCOR. NCTOT defines the number of lateral subinterval 
boundaries and the array YCOR defines the  lateral posi- 
tion of the subinterval boundaries. NCTM is used as di- 
mension of YCOR. 

Different frequency functions can  be used in the vertical 
direction. The program supports Gaussian, joined-half- 
Gaussian, and Pearson IV distribution functions. User-de- 
fined frequency functions have to be specified in the form: 

SUBROUTINE /NAME/ (VALUE , X ,  Y,RPV, DRPV,  SKEW, CURT, 
+ DRPL,FMULT,INIT) 

LOGICAL INIT 

The  third effect is  often caused by the linearization of 
the differential equations. A strict  truncation of the over- 
shooting is necessary to avoid  unphysical calculations and 
illegal numerical operations  (e.g., negative real to the real 
power). 

IV. CONCLUSION 
In this paper we  have presented general purpose pro- 

grams for the simulation of the migration of dopants in 
one- and two-space dimensions. The programs support 
easy implementations of advanced physical models and re- 
lieve the  user of unnecessary nonphysical tasks.  The  struc- 
ture of the differential equations to  be solved is explained 
and the implementation of physical models is shown. The 
numerical questions which one has to  face have been out- 
lined.  The advantages of a quasi-uniform mesh and of BD 
formulas for the  integration of the PDE’s have been dem- 
onstrated. Some critical examples have demonstrated  the 
capabilities of the numerical processors and the automatic 
grid adaption in one- and two-space dimensions. 

where /NAME/  is  any unique user-specified subroutine 
name, value denotes  the function value of the frequency 
function at  the position given by the coordinates X and Y. 
X specifies the vertical position and Y the  lateral distance 
from the mean value. The  parameters RPV,  DRPV, 
SKEW, CURT, and DRPL  denote  the  projected  range, 
vertical standard deviation, third and fourth moment ratio, 
and the  lateral standard deviation. An initialization pass 
is performed prior to computations of frequency function 
values where internal variables and the variable FMULT 
have to  be defined. This initialization pass is indicated by 
the logical variable INIT. FMULT is a multiplication fac- 
tor so that FMULT times the integral of the frequency 
function is unity. 

The moments of the frequency function are  either  de- 
fined directly or  via  the implantation energy by applying 
well-established theories of the penetration of dopants in 
solids. The program supports moments found by using the 
LSS theory [ 121. Other  parameter  sets can be defined by 
a user-defined function in  the form: 

SUBROUTINE /NAME/ (NELEM,ENERGY,RPV, DRPV,SKEW, 
+ CURT,DRPL,STOP,NSMOD) 

APPENDIX 
USER INTERFACE 

This section is to explain the structure of our codes. The 
programs consist of modules for the generation of initial 
profiles and for the integration of PDE’s. We shall show 
which subroutines,  parameters, and external files  have to 
be provided by the user. 

Initial profiles can be obtained either by reading a profile 
from an  external file, by modeling ion implantation or by 
executing a user-defined subroutine. For ion implantation 
the  user has to provide a program defining the profile  of 
the mask assumed in this  process step in the form: 

where /NAME/ is any unique user-defined subroutine 
name. NELEM  is  an  integer number which defines the 
dopant. ENERGY is  the specified implantation energy. 
RPV,  DRPV,  SKEW, CURT, and DRPL  are the projected 
range,  the standard deviation in vertical direction skew- 
ness, kurtosis, and the  lateral standard deviation. STOP(1) 
specifies the stopping power of a S i Q  mask, STOP(%) the 
stopping power of a Si3N4 mask. NSMOD is an auxiliary 
argument in the program-supported range  parameter def- 
inition subroutine which defines the way in which the stop- 
ping power is  estimated.  Either  the  ratio of the vertical 
standard deviations (NSMOD = 1) or  the ratio of the proj- 

SUBROUTINE /NAME/ (VDOX,POSY,NCTOT,NCTM, 

DIMENSION YCOR(NCTM),STOP (2) 
LOGICAL INIT 

+ YCOR,STOP, INIT) 
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The  second  term  denotes in principle  the sum of the The  array IDD specifies  the  structure of the  generation- 
divergences of the  currents  related  to  the cj. The  param- recombination term. If IDD is 0 it is assumed  that  DD(i) 
eters which specify  the form of the currents in lateral and is zero, too. If IDD is positive DD(0 has to  be specified 
vertical  direction  and  their coefficients are defined in  the and is assumed  to be constant  with  respect  to  the Ci. If 
form IDD is negative  the  derivatives of the  generation-recom- 

SUBROUTINE /NAME/  (NEQU,IBB,BB,DBB,IPSI, Cl,C2, * - * , AMSCl,AMSC2, * - .) 
DIMENSION IBB(NEQU,NEQU),BB(NEQU,2, NEQU),IPIS(NEQU) 
DIMENSION DBB(NEQU,NEQU,2,2,NEQU),Cl (NEQU),C2(NEQU). 
DIMENSION AMSC l(NMSCM) ,AMSC2(NMSCM) 

IBBU, i) specifies  the  structure of the  current  relations,  bination  term have to be specified, 
BBU, 1, i) and DBB(m, j ,  I ,  1, i) denote  the  entries of the 
tensor D and its derivatives, BB 0, 2, i) and DBB (m, j ,  DDD(j, i) = 
2, i) the  entries of the  tensor p and the  derivatives of the 

point in  the middle of two meshlines. C1 denotes  the val- the  form 

a(Gi - Rid 
ac, 

entries.  The cofficients are assumed to be defined at the  Similarly  the  boundary  conditions have to be given in 

SUBROUTINE /NAME/ (NEQU,IBD,BD,BDR,DBDR,C,CV,CL,DV,DL,BN,BS, 

DIMENSION IBD(2,2,NEQU),BD(NEQU,2, NEQU),BDR(2,NEQU)(N(NEQU),CL(NEQU) 
DIMENSION  DBDR(NEQU,2,NEQU),C (NEQU) 

+ BE,BW, * * - ) 

LOGICAL BN,BS,BE,BW. 
ues of the  quantities north or west of the  midinterval point 
and C2 the values of the  quanities  south  or  east of the point 
for  the  current  relations in vertical and lateral  direction, 
respectively. In  the same way the values of the  “internal 
functions” AMSC1 and AMSC2 are  defined. DBB spec- 
ifies the  derivatives of the  entries of D and p, IPS1 spec- 
ifies the Poisson equation. We can  distinguish several pos- 
sibilities for each  subcurrent. 

The coefficients d ,  and pij of the  subcurrent of the 
quantity j in  equation i are zero. The element IBBU, 
i )  is zero. No other  coefficients have to be defined for 
this subcurrent. 
The  quantity p, of the  subcurrent of the quantity j in 
equation i is  zero. IBB(j, i) = +1, BBU,  1, i) = dq. 
The  derivatives of  BB with respect  to  the  quantities 
Cl, and C 2 j  have to  be defined if IBB(j, i) is negative: 
DBB(m, j ,  I, 1, i) = ad,/aCl,, where C is C1  for 
I = 1 and C2 for I = 2. 
The  quantity dq of the  subcurrent of the quantity j in 
equation i is  zero. IBBG, i) = rf 2, BBG, 2, i) = pi j .  
The  derivatives of  BB with  respect  to  the  quantities 
Clj and C I j  have to be defined if  IBBU, i) is negative: 
DBB(m, j ,  2, i) = apiiiaCm, where C is C1 for I = 
1 and C2 for I = 2. 
The  quantities d,  and p, of the  subcurrent of the 
quantity j in  equation i are nonzero. IBBU, i) = 
+3, BBU, 1, i) = d,, BBG, 2, i) = p,. The deriva- 
tives of BB with respect  to  the  quantities Clj  and C2j 

have to  be defined if  IBBG, i) is negative: DBB(m, j ,  
1, 1 ,  i) = ad,/a C,, DBB(m, j ,  2, i) = +,/a C,, 
where C1 is C1  for I = 1 and C2 for I = 2. 

The  generation-recombination  term  is defined in  the 
form: 

For the  specification of the  boundary  conditions, (3) is 
separated  into  individual  equations for each  quantity: 

Eii  - J q  + Fi = 0. (15) 

JN denotes  the component of the  current normal to  the 
surface. IBD(1, k ,  i) specifies  the  summation mode of the 
quantity currents,  IBD(2, k ,  i) the  structure of the  term 
Fi. BD denotes  the  summation coefficients  for the quantity 
currents, BDR specifies  the  function Fj ,  and  DBDR the 
derivatives of Fi with  respect to the  quantities Cj. CV and 
CL denote  the values of the physical quantitities at the first 
inner  line in  vertical and  lateral  direction. DV and DL  de- 
note  the  distances between the  boundary and the first  in- 
ner  lines.  In  two-dimensional  simulation  the boundary 
conditions have to  be specified for the north and south 
boundaries of the simulation area (k  = 1) and for the west 
and east  boundaries ( k  = 2) .  The  boundary  condition of 
the north and the  south  boundary  overwrites  the boundary 
conditions of the  east and west boundaries in the  corners 
if a  boundary  definition  conflict  occurs. One exception to 
this rule is a  Dirichlet  boundary condition at the east and/ 
or west boundary which overwrites any boundary condi- 
tions in north and south  direction  for which  IBD(1, I, i )  is 
nonzero. The logical parameters  BN, BS,  BE, BW specify 
whether the  boundary  conditions have to  be defined for the 
north,  south,  east, or west boundary, respectively. 

The  structure for the summation of the  subcurrents of 
the  different  quantities  and for the  functions Fi can be de- 
fined individually: 

j 

IBD(1, k ,  i) = 0 means  that all E ,  for this equation 
are 0. The BD( j, k ,  i) does not  need to be defined. 

SUBROUTINE /NAME/  (NEQU,IDD,DD,DDD,C, * * .) 
DIMENSION  IDD(NEQU),DD(NEQU),DDD (NEQU,NEQU) 
DIMENSION C(NEQU). 



* IBD(1, k, i) = 1 means that ig is nonzero forj = i where TFV  is  the interpolated tablefunction value of the 
and zero for all otherj. BDG, k,  i) = table function LFU(j, i). 
IBD(1,  k, i) = 2 means that  one of the & is nonzero To decrease  the probabilities that the PDE’s will be 
for j f i. BD(j, k, i) has to be defined for all j .  solved with wrong or mispositioned physical quantities the 

- user has to provide a subroutine in the form: 

SUBROUTINE /NAME/ (MODEL,NEQL,NEQUM, NELEL) 
DIMENSION NELEL (NESQUM) 
CHARACTER “80 MODEL - 

The same declaration form is used to specify the Fi: 
IBD(2, k, i) = 0 means that F is assumed to be zero. 
BDR and DBDR need not to be defined 
IBD(2,  k, i) = 1 means that F is nonzero and invar- 
iant with respect to the C,. BDR(k, i) = Fi has to be 
defined. 
IBD(2, k, i) = - 1 means that F is nonzero and con- 
tains functions of the dependent variables (;, 

BDR(k, i) = Fj and DBDR( j ,  1, k ,  i) = a F J a  cj have 
to be defined. 
IBD(2, k,  i) = -2 means that F is assumed to con- 
tain additional functions of the dependent values at 
the first inner  line. Additionally to IBD(2, k, i) = - 1 
DBDR(j, 2, k, i )  = 2Fi/2Ckj has to be defined, where 
Ck = CL for k = 1 and CV for k = 2. 

Moreover, the scaling of the equations has to be per- 
formed by the user. All above mentioned quantities have 
to be specified in a scaled form. For the purpose of scaling 
it is assumed that all physical quantities are scaled by their 
maximum, lengths by the maximal length within the sim- 
ulation area.  These scaling factors and other auxiliary pa- 
rameters can be computed once for each timestep and 
stored to  the  auxiliary array SCAUX. The computation of 
these  auxiliary variables can be performed by a user-de- 
fined subroutine in the form: 

where MODEL specifies a string which will be printed in 
the control-output-file, NEQL specifies the number of 
equations required for the model, and NELEL contains 
the element numbers of the physical quantities used in the 
subroutines. NEQL and the element numbers in NELEL 
will be compared to the  actual number of physical  quan- 
tities and to the element numbers of the actual physical 
quantities. 

Additionally, a diffusion temperature can be specified. 
To simulate temperature profiles during the simulated heat 
treatment a subroutine has to be provided by the user in 
the form 

SUBROUTINE /NAME/  (TEMPER,  TIME). 

The results can be printed,  written to mass storage, or 
processed beginning with Step 1. 
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