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Abstract - We present the analysis and measurement 
of spurious responses generated at the ends of interdigital 
transducers (IDT). Filters fabricated on LiNb03 show an un
wanted pass band ripple whose period indicates additional 
generation of acoustic waves at the IDT end. As this ef
fect cannot be explained by methods of analysis based on 
the infinite array approximation, an exact analysis of the 
complex-valued, frequency-dependent electric charge distri
bution on the finite IDT structure is required. 
Utilizing the method of moments our analysis is based on a 
Green's function concept and a spectral domain representa
tion. 
Three effects are shown: The first is the charge accumulation 
on grounded guard fingers located closely to the IDT end, 
resulting in unwanted end radiation. The second is acoustic 
end reflections in split-finger IDT's, occurring at the transi
tion from the periodic finger structure to the free substrate. 
The third is the finger charge induced by the metallic ground 
plane when the transducer is driven unbalanced to ground. 
Computer simulations based on our method agree well with 
measurements. 

I. Introduction 

Filters fab;ica~ed .on LiNb0.3 ~how an unwanted passband ripple 
whose period md1cates add1t1onal generation of acoustic waves 
at the inter~igital transducer {IDT) end. As this effect can
not be explamed by methods of analysis based on the infinite 
array approximation, an exact analysis of the complex-valued, 
frequency-dependent electric charge distribution on the finite 
IPT structure is required [lj. The need for the exact calcula
t1on of the charge density distribution is due to the fact that 
the latter can be regarded as the distributed source for the ex
citation of ac~mstic waves in the piezoelectric crystal. 
In the followmg, based on a Green's function concept (for a 
theortical .treatment see for example [21, [3)) , [4), [5), a spec
tral domam representation [6]-[8), and the method of moments 
(!"1oM) f9)-[11), an efficient formalism, [12)-[16) for the calcula
tion o_( the. spatial charge density distribution will be presented. 
Treatmg lmear boundary value problems as it is known the 
primary task is the construction of Green'; function. The l~tter 
is the response of the medium under consideration to a Dirac 
6-excitation. Generally, the determination of Green's function 
is a difficult procedure. Using spectral domain representation, 
the determination of the Green's function in the wave number 
domain can be simplified considerably. But a problem arises: 
The resulting Green's function in the wave number domain must 
be ~ra~sformed in~o the real space. This is a difficult procedure, 
which mherently is accompanied by integral transforms. From 
a computational point of view, in some cases, it is much easier 
to transform the product of Green's function and Fourier trans
formation of the source distribution, which excites the medium. 
Here, using an exactly calculated expression for the electrostatic 
part tog;ther with an appropriate form for the piezoelectri
cally excited SAW component of Green's function, the problem 
of electr<?-acoustic. interaction with arbitrary metallic fingers is 
solved with analytical formulae. The used Green's function is a 
good approximation, if the predominant surface acoustic wave 
is a Rayleigh wave. 
First, the associated integral equation is reduced to a matrix 
equation. Thereby the SAW components of the elements of the 
involye~ matri'.' are.evalu~ted analytically. Then, the resulting 
matrix 1s modified m a simple manner, in order to include in 

the analysis the single and interconnected floating fingers with 
arbitrary geometrical complexity, [121. 
Three effects will be discussed: The first is the charge accumu
lation on grounded guard fingers located closely to the IDT end 
resulting in unwanted end radiation. The second is acoustic end 
reflections in split-finger IDTs, occuring at the transition from 
the periodic finger structure to the free substrate. The third 
is the finger charge induced by the metallic ground plane when 
the transducer is driven unbalanced to ground. 
S~veral Sft:.W filters consisting of unapodized split-finger IDT's 
with varymg numbers of guard fingers have been fabricated. 
The frequency response has been measured and transformed 
into the time domain, where the different effects of interest can 
be observed separately. 
In the final section, results of computer simulations based on our 
method will be compared with the experimental results. Good 
agreement could be achieved. 

II. Theory 

Asumme N infinitely thin metallic strips (fingers) with ideal 
conductivity deposited on the plane surface of a piezoelectric 
substrate of finite thickness. The finger geometry and the finger 
potentials may be arbitrary. The back side of the substrate may 
be metallized and grounded (Fig.1). 

Fig.1 SAW-IDT on a piezoelectric substrate 
of finite thickness with grounded back plane 

The problem is to find an efficient method for the analysis of 
the frequency-dependent spatial charge density distribution. 
The linearity of the boundary value problem sketched in Fig.I 
implies the validity of the superposition principle. Equivalent to 
the latter property is the fact, that the potential on the surface 
of the substrate, <I>(x), can be written as a convolution integral 

+oo 

<I>(x) = J G(x' - x)p(x')dx', (1) 
-oo 

~here P\x) is the spatial charge density distribution and G(x) 
1s Green s function characterizing the boundary value problem 
shown in Fig.I. By definition, G(x) is the potential distribution 
on the surface of the substrate if a line charge source excites a 
medium (Fig.2). 



Fig.2 Line charge source excitation of 
a piezoelectric substrate of finite thickness 
with grounded back plane 

Following the ideas of Milsom et.al. [4), G(x) can be decom
posed into two parts 

G(x) = G'(x) + G'°"'(x). (2) 

G'(x) and G'•"'(x), respectively, are the electrostatic and the 
surface acouctic wave (SAW) components of Green's function. 
Insertion of (2) in (1) yields 

<I>(x) = <I>'(x) + <I>'."'(x), (3) 

with 
+oo 

<I>'(x) = J G'(x' - x)p(x')dx', (4) 

and 
+oo 

<I>'"w(x) = J G'""'(x' - x)p(x')dx'. (5) 

An equivalent formula for <I>'(x) is 

+oo 

<I>'(x) = 2~ J c'(k.)p(k.)e-;k,.dk., (6) 
-oo 

(Convolution in real space corresponds to the multiplication in 
the wave number space). The bar indicates Fourier transforma
tion. With regard to Eqs. (5) and (6), and following the concept 
discribed in [12]-[16], the first step in the solution procedure is 
to find a reasonabe approximation for p(x), and, consequently, 
for p(k,). The second step is to construct appropriate expres
sions for Green's functions G'(k,) and c••w(x). Utilizing MoM, 
in the final step the associated integral equation is reduced to 
a matrix equation. 

III. Approximation of the Charge Density 

Asumme that the fingers already have been discretized into 
N ST substrips. Then, with appropriately chosen basis func
tions b1(x), the charge distribution on the fingers can be ap
proximated by 

NST 

p(x) =Po L pzb1(x). (7) 
l=I 

p0 is a normalization factor and p1 is the constant unknown 
charge value on the Ith substrip. Employing MoM, most com
monly, the impulse, pulse or triangle functions are used as ba
sic functions. The following analysis will be based on puls
functions, i.e. 

(8) 

with 
+oo 

ti.t = J b1(x)dx = x; - xt. (9) 
-oo 

Eq.(7) with (8) gives 

NST 1 
p(x) =Po L pzti.t t,.bP(x - €/,oz). (10) 

l=I I 

Fourier transform of p(x) easily can be carried out: 

In (8), P(x - €1, oz) is defined as 

P(x- €/,oz)= {6: if xr '.':: x '.':: x;; 
otherwise. 

(12) 

The parameters €1 and Oz, respectively, are the midpoint coor
dinate and one half of the width of the 1th substrip. xr and x;' 
respectively, are the start and end point coordinates of the [lh 
substrip. 

IV. Green's Function 

In this section we will briefly discuss the above mentioned com
ponents of Green's function. 

IV-1. Electrostatic Component of Green's 
Function in Wavenumber Domain 

In [14) we have shown that G'(k,) has the functional form 

-· 1 1 
G (k,) = ;--lk I . 1 + £ coth( 'r·'-Dlk !) (l 3) 

0 % P,r €33.r :t 

with 
£p,, = V£11,,£33,, - £ia,r• 

D is the thickness of the substrate. 

Properties of Ge(kx) 

i) Behaviour of c'(k,) for the limit k,-+ 0: 

(14) 

. _, D 
hm G (k,) = -- = canst. (15) 

k:i-O £0£33,r 

In contrast to Green's function of the semi-infinite substrate, 
G'(k,) is regular at point k, = 0. This is because the line charge 
source, which excites the medium (Fig.2), is not isolated. 

ii) Behaviour of G'(k,) in the limit D-+ oo: 

lim c'(k.) = 1 1 . 
D-oo £o(l + £p,,) lk,! (16) 

As it is known, the expression at right hand side is Green's 
function for a semi-infinite substrshowedate. 

IV-2. SAW-Part of Green's Function in Spa
tial Domain 

Milsom et.al., 14], have shown that c••w(k,) can be written as 

Using Cauchy's residuue theorem they have shown that 

c••w(x) = -jG,e-iknl•I 

( 17) 

(18) 

is valid. G, is a piezoelectric coupling proportionality. k0 is the 
wave number at the free surface of the substrate for a Rayleigh 
wave propagating with the velocity v0 at frequency w. 



V. Potential Distribution on the Surface 

As we have mentioned above, the potential at the surface can 
be written as 

<Ji(x) = <Ji'(x) + <Ji' 0 ..,(x). {19) 
At this stage of calculation we have to establish an appropriate 
innerproduct, denoted by < u, v >. In this context, in the 
theory of MoM, a frequently used innerproduct of two complex
valued functions u(x) and v(x) is defined as 

+oo 

< u,v >= j u(x)v·(x)dx. {20) 

a is the complex conjugate of a. Next, we have to choose 
proper weighting functions wk(x). As in the case of basis func
tions, usually the impulse, pulse or triangle functions are used 
as weighting functions. In the present analysis, we will use pulse 
functions for wk(x). That is 

w (x) = { 1, if xt ~ .x ~ xi:; 
k 0, otherwise. 

{21) 

For a non-equidistant discretization (as in our case), it is nec
essary to use a modified form of {20) (normalized weighting 
functions). Appling this, to <Ji(x), we obtain 

+oo 
J <Ji(x)wk(x)dx 

</Jk = --""'--+-oo ___ _ {22) 
J wk(x)dx 

( wk(x) is a real-valued function, therefore we have wZ(x) 
wk(x)). <Pk is the applied potential of kth substrip. Inserting 
{19) in {22) together with 

+oo 

b,.~ = j wk(x)dx = xi: - xt, {23) 

we have 
{24) 

with 
+oo 

<Pk=;.., j <Ji'(x)wk(x)dx, 
k -oo 

(25) 

and 

(26) 

With regard to Eqs. {25) and (26), in the next four calculation 
steps, we will formulate approximations for <Ji'(x), <Pi,, <Ji'"..,(x) 
and finally for ¢;,•w 

V-1. Electrostatic Component of the Poten
tial on the Surface 

i) Approximation of <I>e(x) 
Insertion of (11) in {6) and subsequent interchange of the order 
of summation and integration yields 

Po N ST b 1 /+oo -• eik,(•1-•) - eik,(•t-•J 
<Ji'(x) = - L p16.1 Ab G (k,) .k dk,. 

211' l=l LJ.1 -oo J • 

{27) 

ii) Approximation of </lk 
The insertion of the above equation in {25) and the interchange 
of the order of summation and integration yield 

{28) 

with 

+oo 
11,, = J c'(k.). sinc(okk.). sinc(Oik.). e-)k,l<>-<tldk,. {29) 

{for c'(k,) see Eqs. {13) and (14)). 

Remark 

In the limit D --+ oo, i.e. a semi-infinite substrate, l!c1 can be 

calculated analytically 

f/c1 = "'n(l~<r .• ) · LJ./l!.f · 
·!+ {xt - xt) 2lnlxt - xtl-

- (xt - xi) 2lnlxt - xjl - (xi: - xt} 2lnlxi: - xf I+ 
+ (xi: - xl) 2 lnlx!: - xii). 

(30) 

V-2. SAW Component of the Potential on 
the Surface 

iii) Approximation of <I> saw ( x) 
Insertion of p(x), (10), in (5) and interchange of the order of 
summation and integration we obtain 

NST 

<Ji'aw(x) = -fG,po L P16.t ~bl1(x), (31) 
l=l l 

with 

(32) 

iv) Calculation of ¢/tw 

Insertion of (31) in (26), interchange of the order of summa
tion and integration and performing the associated integrals 
-~~ , 

with 

.1 ,aw _ { 6.\ At sine( okko)sinc( 61k0 )e-iko(<;-et l, if k ~ l; 
kl - ~[1 - sinc(61k0 )e-;k.,61 ], if k = l. 

VI. Summary of Relevant Formulae 

<fJk = <Pl, + q,~aw. 
NST 

<Pl:= L P1A1 · P.o_Ik1· 
l=I 211' 

(34) 

(35) 

{36) 



with ei.t = 1 2 .. 

where 

NST 

tPk = L P1Li~Aki. 
l=I 

A - I' 'G 271' 1••W 
kl - kl-J 't::,.wAb kl 

k'-'l 

l/c1 and Itr as given in {29) and (34). 

(37) 

(38) 

(39) 

VII. Experimental Results and Simulations 

Three SAW filters Fl, F2 and F3, consisting of two unweighted 
split-finger IDTs were fabricated and measured. The IDTs con
sisting of 6 active gaps, had a center frequency of 140 MHz and 
an aperture of 3000 µm. In addition to the active fingers, the 
filters Fl, F2 and F3, respectively, had at left- and right- sides, 
0, 6 and 11 dummy fingers The frequency domain measurement 
was performed with zero fingers grounded. The measurement 
range was from 45 to 235 MHZ and included the main lobe and 
the nearest sidelobes of the sin(x)/x transfer function. For a 
better discrimination of the second order effects involved, the 
data were transformed into the time domain (Figs. 3, 4 and 5). 
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Fig.3 Time domain response of the filter Fl 

µs 

Fig.4 Time domain response of the Filter F2 
with grounded zero fingers 
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Fig.5 Time domain response of the filter F3 
with grounded zero fingers 
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Fig.6 Calculated time domain response of 
the filter F3. a) grounded zero fingers, 
b)"hot" zero fingers, c)semi-infinite sub
strate 
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Fig. 7 Measured time domain response of the 
filter F3. a)grounded zero fingers, b)"hot" 
zero fingers 
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The trailing peaks marked by arrows in Figs. 4 and 5 result 
from IDT end reflecitions. While reflecitions cancel within the 
IDT because of the ~ spaced fingers, this is not the case at the 
ends. 
To demonstrate the versatility of the presented method, we have 
calculated (Fig.6) the time response of F3 for the following two 
cases: Curve (a) with the zero fingers grounded, and curve {b) 
with excited zero fingers. For comparison, we have also included 
the time response of the IDT on a substrate with infinite thick
ness (curve (c) in Fig.6). The corresponding measurements are 
shown in Fig. 7. The peak appearing before the main response 
is due to aliasing of the triple-transit signal. The pedestals ap-



pering for case (b) at both sides of the main response are due to 
charge accumulation on the "hot" zero fingers induced by the 
presence of the grounded backplane. The arrows mark reflec
tions from the IDt ends. 

VIII. Conclusion 

Employing the method of moments, the concept of Green's func
tion and .using the spectral domain representation, an efficient 
formalism for the analysis of SAW interaction with IDTs has 
been presented. The influence of the end fingers as well as the 
infulence of the back plane on the charge distribution have been 
discussed. Theoretically and experimentally three second order 
effects in SAW-IDTs are shown. The first is the charge accu
mulation on grounded guard fingers located closely to the IDT 
end, resulting in unwanted end radition. The second is acoustic 
end reflections in split-finger IDTs, occurring at the transition 
from the periodic finger structure to the free substrate. The 
third is the finger charge induced by the metallic ground plane 
when the transducer is driven unbalanced to the ground. Good 
agreement between computer simulations and experimental re
sults are achieved. 
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