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ABSTRACT: A brief and qualitative review about the entitled subject is given. 
Particular emphasis is laid on providing references to the relevant literature. 

1. INTRODUCTION 

Silicon VLSI Technology has evolved to a standard that hundreds of thousands 
transistor devices are integrated in a single chip. To optimize the efficiency in 
device design and fabrication improved understanding of basic device operation 
has become crucial. The application of numerical simulation packages for the 
development of prototype devices is therefore a basic requirement. 

2. HISTORY 

Hermann Gummel [27] in 1964 was the first to suggest fully numerical model­
ing of a semiconductor device based on partial differential equations [62] which 
describe all different regions of a device in one unified manner. He has demon­
strated this technique for the one dimensional bipolar transistor. This approach 
was further developed and applied to pn-junction theory by De Mari [15J, [16] and 
to IMPATT diodes by Scharfetter and Gummel [52]. A two dimensional solution 
of Poisson's equation with application to a MOS structure was first published by 
Loeb et al. [34] and Schroeder and Muller [53] in 1968. Kennedy and O'Brien 
[31] investigated in 1969 the junction field effect transistor by means of a two 
dimensional numerical solution of Poisson's equation and one continuity equa­
tion. At the same time Slotboom [59] presented a two dimensional analysis of 
the bipolar transistor solving Poisson's equation and both continuity equations. 
Since then two dimensional numerical modeling has been applied to nearly all 
important devices. For some more citations regarding the history of modeling 
the interested reader is refered to [56]. 



3. COMPREHENSIVE LITERATURE 

A few monographs [12], [19], [33], [37], [44], [56] have been published on the 
subject of numerical device simulation. 

Various conferences with proceedings published as books, e.g.:[6], [7], [8], [9], 
[41], [43] have taken place, and courses, e.g.:[2], [17], [39], [40], [42], [61] have 
been held. 

Among many more the following outstanding review papers have been published 
[18], [21], [30] and [45]. 

4. THE PHYSICAL MODEL 

Five basic equations as given first by Van Roosbroeck [62] are primarily used 
to describe current flow in silicon.* These are the Poisson equation (1), the 
continuity equations for electrons (2) and holes (3) and the current relations for 
electrons (4) and holes (5). The principles for the derivation of these equations 
can be found in, e.g., [57]. 

div grad 'I/;= !l..(n - p - C) 
E 

. ~ ap 
div Jp + q· iii = -q·R 

JP = -q·µp·(p·grad 'I/;+ grad (Utp·p)) 
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These equations include a couple of so-called physical parameters for which ap­
propriate physical models have to be given. The dependent unknowns are 'I/;, n, p 
which are the electrostatic potential, the concentration of electrons and the con­
centration of holes. 

The Poisson equation (1) requires the net doping concentration C which is prob­
ably the most prominent parameter of the whole model in order to be complete. 
To obtain qualitatively and quantitatively the net doping concentration for a 

* Physically more sophisticated techniques like Monte Carlo methods will not be discussed 



particular device configuration is an art on its own. The subject process simula­
tion has therefore attained significant relevance in recent years. An overview and 
an impression how difficult the treatment of this subject is can be found in the 
reports [38], [48], [49], [50] of the very famous groups at the Stanford University. 
q and E denote the elementary charge and the permittivity constant, respectively. 

The current continuity equations (2) and (3) show the net generation/recombina­
tion rate Ras physical parameter. This parameter has been introduced by a quite 
artificial procedure, c.f.: [56] and, therefore, particular care must be devoted to 
model this quantity appropriately. A concise review can be found in [4]; [20], 
[56]. 

The current relations ( 4) and (5) are the most complex equations out of the set 
of the basic semiconductor device equations. Their derivation from more funda­
mental physical principles is not at all straightforward. They appear therefore 
with all sorts of slight variations in the specialized literature and a vast number 
of papers has been published where with some of their subtleties is dealt with. 
The interested reader is refered to, e.g., [3], [5], [24], [14], [57]. 

µn and µP, the mobilities of electrons and holes, respectively, and Utn and Utp, 
the electronic voltages of electrons and holes, respectively, are the physical pa­
rameters in my particular formulation of (4) and (5). These quantities have again 
to be appropriately modeled in order to be able to compute practically useful 
results with the basic semiconductor equations, e.g., [4], [56]. A selfconsistent 
derivation of my form of the current relations ( 4) and (5) has been presented in 
[28] where also their superiority has been tried to be explained. Some additional 
discussion can be found in [58]. 

5. THE MATHEMATICAL MODEL 

The basic semiconductor equations (1) to (5) together with appropriate bound­
ary conditions and models for the involved physical parameters constitute a 
nonlinear system of mixed elliptic - parabolic partial differential equations. Of 
particular concern for such a 'Complex mathematical model are therefore ques­
tions of existence, uniqueness and qualitative structure of solutions. This is not 
only interesting from a theoretical point of view, but also very important in the 
practical context, since knowledge of the properties of the mathematical model 
is an essential prerequisite for the selection of suitable and efficient numerical 
algorithms. Furthermore, destructive and/or missing results from mathemati­
cal analysis often indicate that some error has been introduced in the physical 
model by, for instance, oversimplifying assumptions. The mathematical analysis 
thus can serve as an independent strategy to falsify improper physical reasoning 
(Remember that one rarely can verify physical models). However, it remains 
to state that the mathematical analysis of the basic semiconductor equations 



did contribute prominently in recent years to the enhancement of efficiency and 
applicability of numerical device simulation codes, though the novice engineer 
in this field might have more "important" interests. Nevertheless, the best texts 
to serve as a substantial introduction are the monographs by Mock [44] and 
Markowich [37]. 

6. THE NUMERICAL MODEL 

In order to numerically solve the basic semiconductor equations three funda­
mental steps have to be carried out. First, the mathematical domain which 
constitutes a semiconductor device has to be appropriately partitioned into suf­
ficiently small subdomains. Secondly, consistent approximations to the partial 
differential equations must be seeked by assuming a particular functional (usu­
ally algebraic) behavior of their solutions for each subdomain. Thereby, one 
obtains a corresponding (usually algebraic) system of nonlinear equations which, 
thirdly, has to be solved. This system of nonlinear equations has usually only 
point values of the solution functions as discrete unknowns. These point values 
give together with the assumed functional behavior of the second step an approx­
imation to the exact solutiori of the analytically posed problem, the accuracy of 
which depends on the quality of the partitioning of the entire simulation domain 
into subdomains. 

For this very general concept exists a variety of choices for the detailed pro­
cedure. Most established are either finite-difference or finite-element methods. 
These classical methods are frequently considered as mutually exclusive from 
their underlying mathematical principles. However, with some distant but def­
initely rigorous view the detailed advantages of one of the procedures can be 
translated into the other. I have personally enjoyed the comments in [18] about 
these questions. Further insight can be gained from the book by Mock [44] and 
a very detailed introduction into this field can be found in [56]. 

7. AN EXAMPLE 

In the following some results calculated with MINIM OS 3 for a realistic n-channel 
MOSFET with O.Sµm effective channel length are presented to serve for the 
novice as a didactical example.* With Fig.1 the geometrical specifications of 
the MOSFET are given for reference. The gateoxide thickness is 12.Snm; the 
substrate doping is 1017cm-3 and a threshold tailoring implant is performed. 

* A similar discussion of this example can be found in !58]. 
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Fig.I: Structure of MOSFET 

One feature of major benefit of device simulation is the fact that physical phe­
nomena can be selectively switched off. This enables the study of detailed device 
behavior in a manner not accessible to experiment. With the following results 
the physical phenomenon "energy relaxation" will be presented with the just 
mentioned strategy. 
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Fig.3: Electron Concentration 7€=0.lps 

In Fig.2 and Fig.3 the electron concentration close to the drain (dashed area in 
Fig.1) is shown for a bias point leading to saturation (SV applied at the drain 
contact). The result in Fig.2 was calculated by assuming a vanishing energy 
relaxation time 7€. For the result in Fig.3 the energy relaxation time 7€=0.lps has 
been taken. One can observe from these figures that the electron concentration 
becomes smoother due to carrier heating. Furthermore, the electrons are pushed 
into the substrate which increases the average distance of the carriers from the 
Si/ Si02 interface. 

In Fig.4 the carrier temperature of the electrons is shown. The carrier tempera­
ture is proportional to the electronic voltage by q/k, i.e., elementary charge over 
Boltzmann's constant. The carrier temperature must not be mixed up with the 
lattice or ambient temperature which is kept constant at 300K for this example. 
Only for cold carriers the carrier temperature and the lattice temperature are 
equal. In our example the maximum of the carrier temperature is about eight 
times the equilibrium value which would have been assumed by neglecting energy 
relaxation. 
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Fig.4: Carrier Temperature of Electrons 

8. DEVICE SIMULATION PROGRAMS 

Over the last two decades a couple of dozens device simulation programs have 
been written all over the world. Table 1 summarizes exactly one dozen out of 
these without any claim that these programs are in any extent superior to the 
many not mentioned because of lack of space. The only intent of the presentation 
of the table is to provide the interested reader with references about actual 
software products. 

The minimum effort to be spent to design and code a new device simulation 
program when building on the available knowledge can be estimated in the order 
of three person years. Any organization starting the development of a new 
program should keep that closely in mind. For instance, for the present state of 



MINIMOS we have spent roughly ten person years and four complete redesigns 
from a software engineering point of view. For BAMBI we have spent roughly 
eight person years and we know that still some non negligible effort will have to 
be spent to make the product totally satisfactory. 

Code Authorship Features Application Reference 

BAMBI VIENNA 2-D,2-Carr.,Tran. arbitrary [22], [23] 
CADDET HITACHI 2-D,2-Carr. planar FET [60] 
FIELDAY IBM 2-D,2-Carr.,Tran. arbitrary [10], [11] 
GALENE AACHEN 2-D,2-Carr.,Tran. planar [35], [36] 
GEMINI STANFORD 2-D,Poiss. arbitrary [25], [26] 
MINIM OS VIENNA 2-D,2-Carr. planar MOS [54], [55] 
PISCES STANFORD 2-D,2-Carr.,Tran. arbitrary [46], [47] 
WATMOS WATERLOO 3-D,Poiss. planar MOS [13], [29] 
*** MICHIGAN 2-D,2-Carr. planar MOS [63] 
*** MITSUBISHI 2-D,2-Carr. planar MOS [32] 
*** NTT 2-D,2-Carr. planar MOS [1] 
*** PHILIPS 2-D 2-Carr. planar [51] , .,. 

Table 1: Device Simulation Programs 
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