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SUMMARY 

Automatic grid control for finite differences meshes is a difficult task 
because only very few mathematically founded criteria for adaptive 
grid refinement can be given which may be implemented in a computer 
program with reasonable effort. Especially for the solution of the semi­
conductor equations, a coupled system of nonlinear partial differential 
equations, most strategies for fully automatic both time and space grid 
control are heuristic or based on physical considerations. 

We present some criteria for the construction of initial space grids, for 
adaptive space grid refinement and fully automatic time step control 
which are implemented in our two-dimensional transient device simu­
lation program BAMBI. 

1. INTRODUCTION 

For the numerical solution of partial differential equations fully self­
adaptive grids are well suited to optimize the ratio between the num­
ber of unknowns and the accuracy of the solution. In device simulation 
a time dependent coupled system of three nonlinear partial differential 
equations has to be solved: 

div grad 1/J = ~ · (n - p - C) 
E 

(1) Poisson equation 

... an 
div Jn - q · -- = q · R (2) Continuity equation for electrons at 

... ap 
div Jp + q · at = -q · R (3) Continuity equation for holes 
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where t/J, n, p denote the three independent unknown functions for the 
electrostatic potential and the concentrations of electrons and holes, re-
spectively. ln,p denotes the current densities for electron and hole cur­
rent. q is the elementary charge, E stands for the absolute permittivity 
of the semiconductor material, C for the net doping concentration, R 
denotes the net generation/recombination. Further information about 
this problem can be found in [ 1 ]. 

For the discrete formulation of (1)-(3) the Scharfetter-Gummel ap­
proach has been choosen in many programs. This formulation can 
be found thoroughly discussed in [ 1 ]. In [ 2 ] some basic ideas about 
grid design in process and device simulation have been presented. We 
discuss some strategies in detail for fully self-adaptive both time and 
space grid control in device simulation. They are illustrated by ex­
amples which have been comf uted with our two-dimensional transient 
device simulator BAMBI [ 3 . The solution is computed on a general­
ized finite differences grid, a so called 'Finite Boxes' grid. 

2. SELF-ADAPTIVE SPACE GRID 

2.1. Initial Space Grid 

The design of an initial space grid is a very important task since the 
number of grid points required in the adaptive process and the conver­
gence behaviour are very sensitive to the construction of a start grid. 
Usually it is based on an analysis of the doping profile C. A popular 
strategy is the evaluation of the gradients of the doping profile in order 
to resolve p-n junctions in a proper way. However, this strategy fails, if 
abrupt junctions occur or if a constant doping is assumed (e.g. MES­
FET's). In the latter case additional information is often given by the 
geometry of the device: At points with a change of the boundary con­
ditions a singularity in the electric field has to be regarded (e.g. change 
from a contact (Dirichlet) to a Neumann boundary, origin of a cylin­
drically symmetric coordinate system, reentrant corners). By using 
this information to define the initial grid difficulties for start meshes 
which do not account for singular points can be avoided. Therefore we 
introduce new grid points near these singular points. 

In Fig. 1 a,b the geometry and the meshes of final accuracy of a simple 
resistor with a constant doping (potential problem) can be seen. In (a) 
the knowledge of the singularity was not taken into account, while in 
(b) three lines close to the singularity have been introduced. It should 
be mentioned that all other lines result from criteria for the regularity 
and for the quasi-uniformity of the grid. 

2.2. Self-Adaptive Space Grid 

Fully self-adaptive space grid control is usually based on the equidis­
tribution of a suitably choosen function over the integration domain 
[ 4 ]. In device simulation the local discretization error of the Poisson 
equation 

div grad t/J = !!_ = 2 · (n - p - C) 
E E 

(4) 



is considered where p denotes the space charge. Mathematical tools fail 
in treating the whole system or the numerical effort will be too great. 

<}__t/J_ - o an -

!li!_ - 0 an -

?!± - 0 an -
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Fig. la Geometry and mesh of a resistor without knowledge of sin­
gularity 

Fig. lb Mesh of a resistor with knowledge of singularity 

The discrete Poisson equation obtained by applying conventional finite 
differences has a local truncation error linearly proportional to the mesh 
spacing and the third partial derivatives of the electrostatic potential on 
a non-uniform mesh. By applying Scharfetter-Gummel finite differences 
we get for the discrete continuity equations a local truncation error 
linearly proportional to the mesh spacing and the sum of the first and 
second partial derivatives of the current density components (for the 
considered equation). 

For the numerical treatment the righthand side of (4) is expanded in a 



Taylor series around the point ( x + hi, y + kj): 

p(x +hi, y + kj) = p(x, y)+ 

+ hiPx(x, y) + kjPy(x, y)+ 

h2 h·k· k·h· k~ (5) 
+ 

2
i Pxx(x, Y) + ~ J Pxy(x, y) + TPyx(x, Y) + ; Pyy(x, y)+ 

3 Ill 

+ O(gi,j)P 

where Yi,j = ma:x(hi, kj), Px = ~ and Py = ~ and /' derivatives of p 
of order 3 and higher. 

In the discretized fomulation of (1)-(3) only the first term p(x, y) is 
considered. The truncation error of (5) after the first term will be in­
tegrated over a rectangular domain around each point thus providing 
the following simple formula for a first order approximation of the local 
discretization error. 

k;/2 hi/2 

6.,p= J J (p(x+~,Y+'l)-p(x,y)) d~df]= 
-k;-i/2 -hi_if2 

1 1 
A· (4 (hi - hi-dPx + 4·(kj - kj_i)py+ 

1 2 2 1 
24 

(hi - hihi-1 + hi-1)Pxx + 
32 

(hi - hi-1)(kj - kj-1)Pxy+ 

1 1 2 2 

3
2 (kj - kj-1)(hi - hi-1)Pyx + 24 (kj - kjkj-1 + kj_ 1)Pyy) 

h ·+~ 1 k·+k · 1 A = ' 2 - · • 2 •- denotes the integration area, Px stands for the 
partial derivative of p with respect to the x-direction. 

n 

Fig. 2 Geometry and doping of a diode 



In Fig. 2 the geometry and the doping of a diode is given. In Fig. 3 
the distribution of the local discretization error of this diode can be 
seen (0.3V in backward direction). The values have been scaled to 
unity therefore it gives no information about the quantity of the error. 
As it could be expected the error is concentrated at the location of 
the singularity in the electric field while the error over the remaining 
device area is neglegible. An extension of our program in order to 
isolate these singularities by a special treatment in grid processing is 
under investigation. 

Fig. 3 Distribution of local discretization error of diode 

Various numerical experiments have shown that the equidistribution of 
the local discretization error does not provide the optimal grid. There­
fore some additional considerations have to be taken into account in 
order both to improve the ratio between the number of mesh points 
and the accuracy of the solution and to reduce numerical difficulties. 

In the simulation of high voltage devices an additional criterion is ap­
plicable: The coupling of the discretized equations (1)-(3) is mainly 
determined by the Bernoulli function B(x) = e"':._l which is introduced 
by the discretization based on the Scharfetter-Gummel approach. x 
denotes the difference of the electrostatic potential at two neighbouring 
grid points divided by the thermal voltage Ur. A local decoupling of 
the equations because of vanishing values of B may lead to numerical 
difficulties. At low temperatures this effect becomes even worse. 

Limiting B is in fact a restriction to 1/; under equithermal conditions. 
It is well known that a rigorous restriction to the electrostatic potential 
is too strong because the local truncation error of Poisson's equation is 
linear proportional to the mesh spacing and the third partial derivatives 
of 1/;. This means that in the case of no changes in the space charge 
the differences of the potential values do not affect the computational 
error. On the other hand the magnitude of B is of fundamental impor-



tance for elliptic and mixed problems where the solution is determined 
by the boundary conditions. This means that especially at Dirichlet 
boundaries (i.e. contacts) and in regions with varying space charge a 
local decoupling because of vanishing values of B has to be avoided by 
inserting new lines. 

Another more physical criterion has to be taken into account. Particu­
larly in high voltage breakdown simulations the net generation/recom­
bination R gives good information for placing new points in the grid. It 
has turned out that in areas with IRI > 1022 cm-3 s-1 new points have 
to be inserted because otherwise not all physical effects in the device can 
be observed. As minimum grid distance the mean free path of electrons 
in silicon (about 60 · 10-8cm) should be taken. Furthermore by using 
this refinement criterion convergence speed of the Newton linearization 
scheme is significantly increased [ 5 ] . 

One more strategy should be mentioned which is of special importance 
for transient computations. For time dependent simulations the grid 
should change because the areas of interest move. In order to mini­
mize the number of grid points for a desired accuracy it is necessary 
to remove points if they are not longer needed. But even in station­
ary computations this may give an advantage because a badly choosen 
initial mesh may be corrected. 

Various tests have shown that removing single points from the grid 
will be very time consuming since the mesh has to be regularized again 
(assumptions about the ratio of the distances between two points a.s.o.). 
For this reason we investigate lines to be taken away. From theory we 
know about linear variation in the potential values and about the linear 
convergence rate. This means that removing a line will about double 
the discretization error in a first estimation. Therefore only lines with 
an error at each point which is less than half the allowed error (given 
by the desired accuracy) may be taken away. 

In Fig. 4 a,b two grids for the stationary computation of the diode 
from Fig. 2 can be seen. For the grid shown in (a) (332 points) only 
the discretization error has been controlled without removing lines from 
the grid, for the grid shown in ( c) ( 317 points) lines have been removed 
according to the mentioned criterion. In both cases the same stopping 
criterion and the same boundary conditions have been settled. It can 
clearly be seen, that the lines which have been inserted during the 
construction of the initial grid because of the gradient in the doping 
profile (particularly at the n-n +-junction) could be removed since they 
are of no importance for this operating point (small voltage in backward 
direction). 

The solution of (1)-(3) is either done by a modified version of Newton's 
algorithm (simultaneous solution of the equations) or by Gummel's al­
gorithm (decoupled solution of the equations). In both cases it may 
occur that the iteration cycle does not converge. 

From our knowledge it is not possible to give a generally applicable 
criterion for grid refinement in this case. A popular strategy is the 
analysis of the residual vector. In regions of the device with large res id-
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Fig. 4a Grid of diode without deletion of lines 

Fig. 4b Grid of diode with deletion of lines 

uals new points are inserted. If the residual norm of the solution is near 
the desired accuracy this often enables convergence, but in other cases 
it sometimes fails. A more reliable method based on the solution of a 
set of Laplace equations is under investigation. 

3. SELF-ADAPTIVE TIME GRID 

In our simulator the implicit backward Euler method is utilized for the 
transient solution of the equations, because it is absolutely stable and 
no conditions for the time steps have to be taken into account. Since the 
orders of the time discretization and of the space discretization should 
be the same a method of linear order is sufficient. 

In transient calculations all considerations about the space grid are 



also applicable. But more than for the space grid it is very difficult to 
derive criteria for a self-adaptive time grid. This means that almost all 
considerations are based on heuristics or on physical properties. 

Because the effects by the dielectric relaxation time are not analyzed 
in our program we take 1/100 of the maximum life time of carriers 
for the initial time step. This value has been established by numerical 
experiments. 

The automatic time step control is almost equivalent to the estimation 
of the time and the space discretization error simultaneously. The space 
discretization error has been discussed in the last paragraph, the time 
discretization error is proportional to the change in the space charge. 
This can be written as 

b..p = llPt+l - Ptll = i!Pt+l - Pt - (nt+l - nt)ll (6) 

Formula (6) can be computed very easily, furthermore it can directly be 
applied to the time grid. The time step is doubled if the change in the 
space charge is less than 10%, otherwise it is kept constant or reduced 
depending on the change in the applied voltages. 

During transient calculations the local space discretization error is con­
trolled only after each three time steps because otherwise this might 
lead to an exploding number of grid points. If an update of the space 
grid is performed, one has to watch the computational error which is 
introduced by the interpolation of the solution at the new points. In 
order to damp this error two quasi-zero time steps are introduced after 
each space grid update. It should be mentioned that the number of 
quasi-zero time steps depends on the order m of the time discretization 
scheme. From theory m intermediate time steps are sufficient, but it 
has turned out in numerical experiments that m + 1 steps give even 
better results [ 6 ). 

4. CONCLUSION 

We have presented strategies for both time and space grid control in 
device simulation illustrated by examples which have been computed 
with our device simulator BAMBI. Furthermore we have shown that 
the conventionally used criteria like limitation of the changes of the in­
dependent variables or equidistribution of the local discretization error 
are not sufficent to optimize the grid. An automatic time step width 
algorithm has been presented. 
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