Two-Dimensional Modeling of Ion Implantation Induced Point Defects

GERHARD HOBLER, STUDENT MEMBER, IEEE, AND SIEGFRIED SELBERHERR, SENIOR MEMBER, IEEE

Abstract—We present an analytical model for the description of ion implantation induced damage profiles. The model is based on extensive Monte Carlo simulations of Be, P, As, and Sb-implantations in Si. One-dimensional profiles are described by a Gaussian function and an exponential function joined together continuously with continuous first derivatives. The two-dimensional model has previously been developed by the authors for dopant profiles and is demonstrated to apply well to point defect distributions. Parameters have been obtained for the four ions by fitting the model to the Monte Carlo results, and they are provided by tables for the energy range of 10–300 keV (for the 1D model 1–300 keV). The Monte Carlo simulations are based on the binary collision approximation, the assumption of a random target, and the validity of the linear collision cascade theory. We point out the importance of energy transport by recoils.

I. INTRODUCTION

THE STRONG influence of point defects on the diffusion behavior of dopants in silicon is well known, and is taken into account in today’s simulation programs. A good example is oxidation enhanced diffusion: It has been shown [1] that enhanced diffusion of dopants during thermal oxidation is caused by the generation of interstitials at the oxide–silicon interface. There is general agreement that adequate simulation of oxidation enhanced diffusion requires the solution of diffusion equations for the point defects [2], [3].

On the other hand, it is known that a great amount of defects is produced during ion implantation. However, no attempt has been made until now to consider these defects in diffusion programs in order to study their influence on the subsequent annealing process. In fact, there is experimental evidence that—in the case of boron implantations in silicon—diffusion is enhanced during the initial stage of rapid thermal annealing, and there are strong indications that the enhancement is due to implantation damage [4]. (It should be noted that the situation is not so clear for other ion species like arsenic [5].)

There are various approaches to calculate the spatial distribution of point defects [6]–[10], which are based on the so-called collision cascade model: In close collisions, the ions set target atoms into motion, which travel some distance in the target (they are called “recoils”). On their way, they may generate other recoils, these may again generate recoils and so on. It is assumed that the recoils leave behind a vacancy when they are produced, and form an interstitial when they come to rest.

However, introducing damage profiles from one of the theories [6]–[10] into diffusion programs, one will probably face some difficulties. The main problem is that these theories give no information, whether the displaced atoms form separated point defects or cluster to extended defects. Experiments and theoretical considerations indicate that light ions mainly produce point defects, whereas heavy ions produce small amorphous zones along their paths [11], [12]. In the case of extended defects one should know, how they dissolve and emit point defects during the annealing process.

Another problem is that absolute defect concentrations are not very well predicted by the collision cascade model. One reason is that temperature is ignored by theory, although it has been observed that defect production is reduced by a factor of about 10 at room temperature as compared with, say, 77 K [13]. On the other side, this is partly outweighed for heavy ions by an underestimate of defects at low temperature, which is thought to be due to nonlinearities in connection with the formation of amorphous zones along the ion paths [12]. In any case, one cannot expect from theory defect concentrations with an accuracy better than an order of magnitude.

In contrast, theories predict well the range of damage, even in two dimensions. This has been shown by Krimmel et al. [14], who investigated the two-dimensional damage distribution near a mask edge by transmission electron microscopy and found good agreement with the theoretical predictions of Matsumura and Farukawaw [7].

In spite of the difficulties mentioned above, a simple and accurate description of defect distributions as they are obtained by the present theories is certainly useful for further investigations. Moreover, apart from the challenging task of explaining anomalous diffusion during rapid thermal annealing, there is still the “traditional” application of predicting the range of amorphous zones for high-dose implantations. The practical relevance of this problem arises from the fact that after regrowth of the amorphous layer heavy damage remains at the former amorphous/crystalline interface. So it is important that this interface
is not located in a critical region of the later semiconductor device [15].

We will continue in Section II with a description of the Monte Carlo simulation of defect production. In particular we point out the importance of the finite range of the recoils for the case of heavy ions. This has been known in principle for a long time, but is still sometimes neglected for the sake of saving computer time [16]. In Section III a simple and very accurate analytical model to describe the Monte Carlo distributions is presented. The two-dimensional model has actually been developed for dopant profiles [17], but it turned out to be perfectly suited to describe also point defect distributions with their great variation of lateral standard deviation and sometimes large values of lateral kurtosis. All parameters of the model will be given by tables, for the ions boron, phosphorus, arsenic, and antimony implanted in silicon, for energies up to 300 keV.

II. Monte Carlo Simulation

Implantation damage has traditionally been calculated by approaches similar to LSS-Theory (e.g., [6]), by solving Boltzmann Transport Equations [8], or by Monte Carlo methods [9], [10]. We have chosen the Monte Carlo method, because it is the most flexible and accurate approach, although it requires large computer times.

In the Monte Carlo approach a large number of ion trajectories is simulated, and the dopant profile is made up by the end points of the trajectories. For calculating defect distributions, the recoil motion may be simulated just in the same way. A recoil is assumed to be generated, if the incoming atom transfers an energy to the target atom which is greater than the displacement energy $E_d = 15$ eV. A vacancy is produced at the location of the collision, unless the energy of the incoming atom drops below the displacement energy. In this case the incoming atom is assumed to replace the recoiled atom. Analogously, an interstitial is produced at the end of the recoil trajectory, unless it ends up in a replacement collision. The calculation procedure is similar to that of the program “TRIM.CASC” as described in [10]. The only (slight) difference is the treatment of the end of the recoil trajectories. In [10] the trajectory is terminated, if the recoil energy drops below a value E_{min}, which corresponds to a mean recoil range less than the grid spacing of the calculated histogram. The number of point defects N_{point} which would be produced on the remaining part of the trajectory is calculated by the modified Kinchin–Pease model and recorded at the point where the recoil has dropped below E_{min}. In contrast, we have precalculated the mean damage range $R_d(E)$ and the number of point defects $N_{\text{point}}(E)$ as a function of energy by Monte Carlo method (with $E_{\text{min}} = E_d$), and record the number of point defects N_{point} at a distance R_d from the location where the recoil energy has dropped below E_{min}. Concerning physical parameters for nuclear and electronic stopping, we refer to our previous paper [17].

![Fig. 1. Simulated trajectories of a boron ion (bold line) and of all recoils with energies above 100 eV (thin lines). Implantation energy: 30 keV.](image1)

Considering that every ion produces on the order of 100 to 1000 recoils, one can imagine that detailed simulation of collision cascades takes a lot of computer time. For that reason, in some codes [16] the recoils are not followed explicitly. Instead, the modified Kinchin–Pease model [18]–[20] is applied to the primary recoils, i.e., the number of point defects is calculated by an analytical formula from the energy transferred in the ion–target atom collision, and is recorded at the location of the collision.

Obviously, this is only justified, if the collision cascades are small. Figs. 1 and 2 show one simulated ion trajectory for the case of boron and antimony implantations in silicon, respectively (bold lines), and all trajectories of recoils with energies above 100 eV (thin lines). It can be seen that collision cascades are very small in the case of boron (Fig. 1), so that Kinchin–Pease model may be applied. But the opposite is true for antimony (Fig. 2). In the left part of Fig. 2 a recoil can be seen which has even a greater range than the ion itself. Applying Kinchin–Pease model would mean that this recoil and all other recoils produced in this collision cascade would be recorded at the generation point of the primary recoil, which is obviously erroneous.

The impact on the one-dimensional damage profiles can be seen in Figs. 3 and 4, where profiles calculated by the modified Kinchin–Pease model and by detailed simulation
of collision cascades are compared. As expected, the two profiles are very close to each other in the case of boron, but there is a great difference for antimony. In the latter case the profile has a long tail, which is caused by energy transport of recoils into the target. The same effect can be observed in the lateral direction. Figs. 5 and 6 show the dopant and the damage distribution (full lines and dotted lines, respectively) for an arsenic implantation by a vertical mask edge. In all cases the contour lines correspond to 0.9, 0.3, 0.1, 0.03, and 0.01 of the maximum concentration. The distribution due to Kinchin–Pease model (Fig. 6) does not extend not far enough into the bulk, but also not far enough below the mask edge (cf. Fig. 5).

The error introduced by using the Kinchin–Pease model does not depend very much on the implantation energy, but it depends critically on the ion mass. For light ions such as boron (relative atomic mass $M = 11$) the ion range is large and the recoil range is small. For heavy ions, such as arsenic ($M = 75$) and antimony ($M = 121$), the ion range is small, and there are large collision cascades. Phosphorus ($M = 31$) lies somewhere between arsenic and boron, the error is roughly half as large as for arsenic.

Finally, we would like to mention that our code is capable of producing different profiles for vacancies and interstitials. One would expect that interstitial profiles are deeper than vacancy profiles, because recoils move mainly towards the bulk of the target. However, in histograms we have never observed any difference, and in the mean damage range there was only a very small difference: Interstitials are on an average only 1–2 Å deeper than vacancies. The reason is that in spite of few recoils which may travel a long distance in the target, most recoils have only a very small range.
III. Analytical Model

3.1. One-Dimensional Model

Analytical models for the description of one-dimensional profiles usually involve spatial moments. One criterion for these models is that the parameters for the analytical distribution function should be easily computed from the moments. For example, in the case of the widely used Pearson IV function the parameters may be calculated from the first four moments by simple analytical formulas. However, these formulas are derived under the assumption that the Pearson IV function describes the dopant concentration everywhere \((-\infty < z < +\infty)\), i.e., also in the vacuum \((z < 0)\). \((z)\) denotes the spatial coordinate perpendicular to the surface.) Since the dopant concentration is zero in the vacuum, the formulas are only valid, if the Pearson IV function is sufficiently small for \(z < 0\). This is the case, if the dopant concentration at the surface is very small, what is usually true for dopant profiles.

Unfortunately, this is not true for point defect profiles (cf. Figs. 3, 4, 7, and 8). For this reason, a moment method seems not feasible. Instead, we propose the following model, which comprises a Gaussian function and an exponential function joined together continuously with continuous first derivatives \((f(z)\) denotes the point defect concentration as a function of depth).

- For the light ion species boron and phosphorus we take

\[
f(z) = \begin{cases}
C_1 \cdot \exp \left(\frac{z}{a_1} \right), & z \leq z_0 \\
C_2 \cdot \exp \left[-\frac{(z - a_2)^2}{2 \cdot a_3^2} \right], & z \geq z_0
\end{cases}
\]

(1)

The joining point \(z_0\) is simply calculated by

\[
z_0 = a_2 - \frac{a_3^2}{a_1}.
\]

(2)

The parameters \(C_1\) and \(C_2\) can be evaluated analytically by

\[
C_1 = N_d \cdot N_{\text{vac}} \cdot c_1 \hspace{1cm} (3a)
\]

\[
C_2 = N_d \cdot N_{\text{vac}} \cdot c_2 \hspace{1cm} (3b)
\]

where \(N_d\) denotes the implantation dose and \(N_{\text{vac}}\) the number of point defects per ion. (This formula assumes that the damage concentration is proportional to the implantation dose, what is valid within the frame outlined in Section I, until the point defect concentration approaches the atomic density of the target.) \(c_1\) and \(c_2\) are given by

\[
c_1 = \left\{ a_1 \cdot \left[\exp \left(\frac{z_0}{a_1} \right) - 1 \right] + a_3 \cdot \sqrt{2 \pi} \cdot \exp \left(\frac{z_1}{a_1} \right) \cdot \text{erfc} \left(\frac{z_0 - a_2}{\sqrt{2} \cdot a_3} \right) \right\}^{-1} \hspace{1cm} (4a)
\]

\[
c_2 = c_1 \cdot \exp \left(\frac{z_1}{a_1} \right) \hspace{1cm} (4b)
\]

with

\[
z_1 = a_2 - \frac{a_3^2}{2 \cdot a_1}.
\]

(5)

- For arsenic and antimony the exponential tail is towards the bulk:

\[
f(z) = \begin{cases}
C_2 \cdot \exp \left[-\frac{(z - a_2)^2}{2 \cdot a_3^2} \right], & z \leq z_0 \\
C_1 \cdot \exp \left(\frac{z}{a_1} \right), & z \geq z_0
\end{cases}
\]

(6)

Equation (2)-(5) are still valid, except for (4), which is replaced by

\[
c_2 = \left\{ -a_1 \cdot \exp \left(\frac{z_0 - z_1}{a_1} \right) + a_3 \cdot \sqrt{2 \pi} \cdot \left[2 - \text{erfc} \left(\frac{a_2}{\sqrt{2} \cdot a_3} \right) \right]^{-1} \right\} \cdot \text{erfc} \left(\frac{z_0 - a_2}{\sqrt{2} \cdot a_3} \right) \hspace{1cm} (7a)
\]

\[
c_1 = c_2 \cdot \exp \left(-\frac{z_1}{a_1} \right) \hspace{1cm} (7b)
\]

- In some cases a single Gaussian function is best. Then \(c_2\) is given by

\[
c_3 = \left\{ a_3 \cdot \sqrt{2 \pi} \cdot \text{erfc} \left(-\frac{a_2}{\sqrt{2} \cdot a_3} \right) \right\}^{-1} \hspace{1cm} (8)
\]

In this model the four parameters \(a_1, a_2, a_3,\) and \(N_{\text{vac}}\) are required, which correspond to the decay length of the exponential function, to peak position and standard deviation of the Gaussian function, and to the number of point defects per ion, respectively. They have been obtained for 21 energies between 1 and 300 keV by fitting the analytical function \(f(z)\) to Monte Carlo results. The parameters as a function of energy have in turn been fitted by the following formula:

\[
a_i = \begin{cases}
(a \cdot E + b \cdot E^3 + c \cdot E^3) \cdot E, & E \leq E_0 \\
(d \cdot E^p + e), & E \geq E_0
\end{cases}
\]

(9)

\(a_i\) represents \(a_1, a_2, a_3,\) or \(N_{\text{vac}}.\) \(b, c, d, p,\) and \(E_0\) are listed in Tables I-IV. \(a\) and \(e\) are calculated from continuity and continuity of the first derivative in \(E_0:\)

\[
a = d \cdot p \cdot E_0^{p-1} - 2 \cdot b \cdot E_0 - 3 \cdot c \cdot E_0^3 \hspace{1cm} (10a)
\]

\[
e = a \cdot E_0 + b \cdot E_0^3 + c \cdot E_0^3 - d \cdot E_0^p \hspace{1cm} (10b)
\]

The units for lengths are angstroms, the units for energy kelectronvolts. A single Gaussian function is to be used
used for boron at energies $E < 20$ keV, phosphorus at $E < 55$ keV, and arsenic at $E > 170$ keV. In these cases a_1 must be ignored.

The root mean square error for fitting a_1, a_2, a_3, and N_{vac} is about 1 percent. But it is not clear, if this error is due to bad approximation or to fluctuations in the Monte Carlo results. The quality of the analytical model is demonstrated in Figs. 7 and 8. In Fig. 7 the analytical distribution function for a boron implantation at 100 keV is compared with the corresponding Monte Carlo results. In Fig. 8 this is done for an arsenic implantation at 100 keV.

3.2. Two-Dimensional Model

Two-dimensional distributions may be constructed from point responses [21], [22] for dopant profiles as well as for damage profiles. So we will deal in this section only with point responses.

A natural way of extending the moments method to the two-dimensional case is to construct the distribution function from vertical, lateral, and cross moments. The cross moments describe the correlation between the vertical and the lateral profile. Such a model has recently been presented by Winterbon [23], however, the results are not fully convincing.

We have previously presented another model, which is based on the concept of depth dependent lateral moments [17]. Apart from a summary of this model, we show here that it applies well to damage distributions, and we give tables for the parameters. The model in its general form reads

$$ f(z, x) = f_{\text{vert}}(z) \cdot f_{\text{lat}}(x, z) $$

with

$$ \int_{-\infty}^{\infty} f_{\text{lat}}(x, z) \, dx = 1. $$

The point response $f(z, x)$ is obtained by multiplying the vertical distribution function $f_{\text{vert}}(z)$, e.g. as obtained from Section 3.1, with a lateral distribution function $f_{\text{lat}}(x, z)$, which depends on the depth. The depth dependence of f_{lat} is introduced by the depth dependence of the lateral moments. Take for instance a Gaussian function:

$$ \text{gauss}(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma_x} \cdot \exp\left(-\frac{x^2}{2 \cdot \sigma_x^2}\right). \quad (13) $$

If we allow the standard deviation σ_x to vary with z, the whole lateral distribution function will depend on z. The advantage of this model is that we need not care about the depth dependence of the lateral moments when we derive
formulas for the calculation of the parameters of the distribution function.

There are two tasks to do in this model: First, one has to construct a lateral distribution function from the lateral moments. In the simplest case this is done by constructing a Gaussian function from its standard deviation. In Fig. 9 an example for the lateral distribution function near the surface is shown. One can see that it is not well represented by a Gaussian function, since a Gaussian function would appear as a parabola in this representation. So it is desirable to take higher moments into account. To include the lateral kurtosis β_s, we propose a modified Gaussian function for $\beta_s \leq 3$,

$$f(x) = a \cdot \exp \left(-\left| b \cdot x \right|^p \right)$$ \hspace{1cm} (14)

and a Pearson VII function for $\beta_s > 3$

$$f(x) = C \cdot \left[1 + \left(\frac{b_2}{b_0} \cdot x^2 \right)^{1/2b_2} \right].$$ \hspace{1cm} (15)

The calculation of the parameters a, b, p, and C, b_0, b_2, respectively, from σ and β_s is straightforward (for details, see [17]). In Fig. 9 the Monte Carlo results are compared with a Pearson VII function and the agreement is very good.

The second task is to specify lateral moments as a function of depth and favorably as a function of implantation energy. We do this by the following formulas:

$$\sigma_s(z, E) = \sigma_s(E) \cdot \left[\frac{1}{\alpha_1} \cdot \ln \left(e^{P_1} + e^{P_2} \right) \right]$$ \hspace{1cm} (16a)

$$\beta_s(z, E) = \frac{1}{\alpha_1} \cdot \ln \left(e^{P_1} + e^{P_2} \right)$$ \hspace{1cm} (16b)

with

$$P_1 = a_2 \cdot z' \cdot E + a_3 \cdot z'' + a_4 \cdot E + a_5$$ \hspace{1cm} (17a)

$$P_2 = a_6 \cdot z' \cdot E + a_7 \cdot z'' + a_8 \cdot E + a_9$$ \hspace{1cm} (17b)

and z' the reduced depth

$$z' = \frac{z}{R_p(E)}.$$ \hspace{1cm} (17c)

The parameters a_1-a_9 have been fitted to the Monte Carlo results and are given in Tables V and VI.

R_p in (17c) denotes the mean range and σ in (16a) the mean standard deviation of the vertical damage profile. They have been fitted by

$$R_p(E) = a_1 \cdot E^{a_2} + a_3$$ \hspace{1cm} (18a)

$$\sigma(E) = a_1 \cdot E^{a_2} + a_3.$$ \hspace{1cm} (18b)

a_1-a_4 are found in Tables VII and VIII.

R_p and σ are given in angstroms. To obtain them in micrometers, divide by 10^6. Note that in all formulas energies must be inserted in kiloelectronvolts. Furthermore, to avoid numerical problems, it might be necessary to truncate σ and β_s at, e.g., $\sigma_s = \sigma_s/100$ and $\beta_s = 2$. This truncation has no physical meaning as it operates only for large z where the vertical profile is already negligibly small. The two-dimensional model is intended to be applied only to energies between 10 and 300 keV.

Finally, we give an example of a comparison of our analytical model with the underlying Monte Carlo results. Fig. 10 shows good agreement between the two distributions.
ACKNOWLEDGMENT

We are indebted to Professor H. Pötzl for carefully reading the manuscript and to E. Guerrero for many helpful discussions.

REFERENCES