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Two-Dimensional Modeling of Ion Implantation
Induced Point Defects

GERHARD HOBLER, STUDENT MEMBER, IEEE, AND SIEGFRIED SELBERHERR, SENIOR MEMBER, IEEE

Abstract—We present an analytical model for the description of ion
p induced d profiles. The model is based on extensive
Monte Carlo simulations of B-, P-, As-, and Sb-implantations in Si.
One-dimensional profiles are described by a Gaussian function and an
exponential function joined together continuously with continuous first
derivatives. The two-dimensional model has previously been developed
by the authors for dopant profiles and is demonstrated to apply well to
point defect distributions. Parameters have been obtained for the four
ions by fitting the model to the Monte Carlo results, and they are pro-
vided by tables for the energy range of 10-300 keV (for the 1D model
1-300 keV ). The Monte Carlo simulations are based on the binary col-
lision approximation, the ption of a random target, and the va-
lidity of the linear collision cascade theory. We point out the impor-
tance of energy transport by recoils.

ion

[. INTRODUCTION

HE STRONG influence of point defects on the diffu-

sion behavior of dopants in silicon is well known, and
is taken into account in today’s simulation programs. A
good example is oxidation enhanced diffusion: It has been
shown [1] that enhanced diffusion of dopants during ther-
mal oxidation is caused by the generation of interstitials
at the oxide-silicon interface. There is general agreement
that adequate simulation of oxidation enhanced diffusion
requires the solution of diffusion equations for the point
defects [2], [3].

On the other hand, it is known that a great amount of
defects is produced during ion implantation. However, no
attempt has been made until now to consider these defects
in diffusion programs in order to study their influence on
the subsequent annealing process. In fact, there is exper-
imental evidence that—in the case of boron implantations
in silicon—diffusion is enhanced during the initial stage
of rapid thermal annealing, and there are strong indica-
tions that the enhancement is due to implantation damage
[4]. (It should be noted that the situation is not so clear
for other ion species like arsenic [5].)

There are various approaches to calculate the spatial
distribution of point defects [6]-[10], which are based on
the so-called collision cascade model: In close collisions,
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the ions set target atoms into motion, which travel some
distance in the target (they are called ‘recoils’’). On their
way, they may generate other recoils, these may again
generate recoils and so on. It is assumed that the recoils
leave behind a vacancy when they are produced, and form
an interstitial when they come to rest.

However, introducing damage profiles from one of the
theories [6]-[10] into diffusion programs, one will prob-
ably face some difficulties. The main problem is that these
theories give no information, whether the displaced atoms
form separated point defects or cluster to extended de-
fects. Experiments and theoretical considerations indicate
that light ions mainly produce point defects, whereas
heavy ions produce small amorphous zones along their
paths {11], [12]. In the case of extended defects one
should know, how they dissolve and emit point defects
during the annealing process.

Another problem is that absolute defect concentrations
are not very well predicted by the collision cascade model.
One reason is that temperature is ignored by theory, al-
though it has been observed that defect production is re-
duced by a factor of about 10 at room temperature as com-
pared with, say, 77 K [13]. On the other side, this is partly
outweighed for heavy ions by an underestimate of defects
at low temperature, which is thought to be due to nonlin-
earities in connection with the formation of amorphous
zones along the ion paths [12]. In any case, one cannot
expect from theory defect concentrations with an accu-
racy better than an order of magnitude.

In contrast, theories predict well the range of damage,
even in two dimensions. This has been shown by Krimmel
et al. [14], who investigated the two-dimensional damage
distribution near a mask edge by transmission electron
microscopy and found good agreement with the theoreti-
cal predictions of Matsumura and Furukawa [7].

In spite of the difficulties mentioned above, a simple
and accurate description of defect distributions as they are
obtained by the present theories is certainly useful for fur-
ther investigations. Moreover, apart from the challenging
task of explaining anomalous diffusion during rapid ther-
mal annealing, there is still the ‘‘traditional’’ application
of predicting, the range of amorphous zones for high-dose
implantations. The practical relevance of this problem
arises from the fact that after regrowth of the amorphous
layer heavy damage remains at the former amorphous/
crystalline interface. So it is important that this interface
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is not located in a critical region of the later semiconduc-
tor device [15]. :

We will continue in Section II with a description of the
Monte Carlo simulation of defect production. In particu-
lar we point out the importance of the finite range of the
recoils for the case of heavy ions. This has been known
in principle for a long time, but is still sometimes ne-
glected for the sake of saving computer time [16]. In Sec-
tion III a simple and very accurate analytical model to
describe the Monte Carlo distributions is presented. The
two-dimensional model has actually been developed for
dopant profiles [17], but it turned out to be perfectly suited
to describe also point defect distributions with their great
variation of lateral standard deviation and sometimes large
values of lateral kurtosis. All parameters of the model will
be given by tables, for the ions boron, phosphorus, ar-
senic, and antimony implanted in silicon, for energies up
to 300 keV.

II. MoNTE CARLO SIMULATION

Implantation damage has traditionally been calculated
by approaches similar to LSS-Theory (e.g., [6]), by solv-
ing Boltzmann Transport Equations [8], or by Monte
Carlo method [9], [10]. We have chosen the Monte Carlo
method, because it is the most flexible and accurate ap-
proach, although it requires large computer times.

In the Monte Carlo approach a large number of ion tra-
jectories is simulated, and the dopant profile is made up
by the end points of the trajectories. For calculating de-
fect distributions, the recoil motion may be simulated just
in the same way. A recoil is assumed to be generated, if
the incoming atom transfers an energy to the target atom
which is greater than the displacement energy E, = 15
eV. A vacancy is produced at the location of the collision,
unless the energy of the incoming atom drops below the
displacement energy. In this case the incoming atom is
assumed to replace the recoiled atom. Analogously, an
interstitial is produced at the end of the recoil trajectory,
unless it ends up in a replacement collision. The calcu-
lation procedure is similar to that of the program
“TRIM.CASC”’ as described in [10]. The only (slight)
difference is the treatment of the end of the recoil trajec-
tories. In [10] the trajectory is terminated, if the recoil
energy drops below a value E;,, which corresponds to a
mean recoil range less than the grid spacing of the cal-
culated histogram. The number of point defects N,,, which
would be produced on the remaining part of the trajectory
is calculated by the modified Kinchin-Pease model and
recorded at the point where the recoil has dropped below
E,.,- In contrast, we have precalculated the mean damage
range R,(E ) and the number of point defects N,,.(E) as
a function of energy by Monte Carlo method (with E,;,
= E,), and record the number of point defects N, at a
distance R, from the location where the recoil energy has
dropped below E,;,. Concerning physical parameters for
nuclear and electronic stopping, we refer to our previous

paper [17].
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Fig. 1. Simulated trajectories of a boron ion (bolt line) and of all recoils
with energies above 100 eV (thin lines). Implantation energy: 30 keV.
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Fig. 2. Simulated trajectories of an antimony ion (bolt line) and of all re-
coils with energies above 100 eV (thin lines). Implantation energy: 30
keV.

Considering that every ion produces on the order of 100
to 1000 recoils, one can imagine that detailed simulation
of collision cascades takes a lot of computer time. For that
reason, in some codes [16] the recoils are not followed
explicitly. Instead, the modified Kinchin-Pease model
[18]-[20] is applied to the primary recoils, i.e., the num-
ber of point defects is calculated by an analytical formula
from the energy transferred in the ion-target atom colli-
sion, and is recorded at the location of the collision.

Obviously, this is only justified, if the collision cas-
cades are small. Figs. 1 and 2 show one simulated ion
trajectory for the case of boron and antimony implanta-
tions in silicon, respectively (bolt lines), and all trajec-
tories of recoils with energies above 100 eV (thin lines).
It can be seen that collision cascades are very small in the
case of boron (Fig. 1), so that Kinchin-Pease model may
be applied. But the opposite is true for antimony (Fig. 2).
In the left part of Fig. 2 a recoil can be seen which has
even a greater range than the ion itself. Applying Kin-
chin-Pease model would mean that this recoil and all other
recoils produced in this collision cascade would be re-
corded at the generation point of the primary recoil, which
is obviously erroneous.

The impact on the one-dimensional damage profiles can
be seen in Figs. 3 and 4, where profiles calculated by the
modified Kinchin-Pease model and by detailed simulation
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Fig. 3. Monte Carlo damage profiles due to Kinchin-Pease model (full
line) and detailed simulation of collision cascades (dotted line). Boron
implanted in silicon at 30 keV.
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Fig. 4. Monte Carlo damage profiles due to Kinchin-Pease model (full
line) and detailed simulation of collision cascades (dotted line). Anti-
mony implanted in silicon at 30 keV.

of collision cascades are compared. As expected, the two
profiles are very close to each other in the case of boron,
but there is a great difference for antimony. In the latter
case the profile has a long tail, which is caused by energy
transport of recoils into the target. The same effect can be
observed in the lateral direction. Figs. 5 and 6 show the
dopant and the damage distribution (full lines and dotted
lines, respectively) for an arsenic implantation by a ver-
tical mask edge. In all cases the contour lines correspond
t0 0.9, 0.3, 0.1, 0.03, and 0.01 of the maximum concen-
tration. The distribution due to Kinchin-Pease model (Fig.
6) does not only extend not far enough into the bulk, but
also not far enough below the mask edge (cf. Fig. 5).
The error introduced by using the Kinchin-Pease model
does not depend very much on the implantation energy,
but it depends critically on the ion mass. For light ions
such as boron (relative atomic mass M = 11) the ion
range is large and the recoil range is small. For heavy
ions, such as arsenic (M = 75) and antimony (M = 121),
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Fig. 5. Monte Carlo simulation of an arsenic implantation at 100 keV by
a vertical mask edge, considering collision cascades. Contour lines for
the dopant distribution (full lines) and for the point defect distribution
(dotted lines).

mask

i As: 100 keV

depth [pm]

impurities
+ vocancies (Kinchin-Pense}

.18

089 -BB6 -093 -89 005 @86 B89
latersl [pm]

Fig. 6. Monte Carlo simulation of an arsenic implantation at 100 keV by
a vertical mask edge, using Kinchin-Pease model. Contour lines for the
dopant distribution (full lines) and of the point defect distribution (dotted
lines).

the ion range is small, and there are large collision cas-
cades. Phosphorus (M = 31) lies somewhere between ar-
senic and boron, the error is roughly half as large as for
arsenic.

Finally, we would like to mention that our code is ca-
pable of producing different profiles for vacancies and in-
terstitials. One would expect that interstitial profiles are
deeper than vacancy profiles, because recoils move mainly
towards the bulk of the target. However, in histograms
we have never observed any difference, and in the mean
damage range there was only a very small difference: In-
terstitials are on an average only 1-2 A deeper than va-
cancies. The reason is that in spite of few recoils which
may travel a long distance in the target, most recoils have
only a very small range.
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III. ANALYTICAL MODEL
3.1. One-Dimensional Model

Analytical models for the description of one-dimen-
sional profiles usually involve spatial moments. One cri-
terion for these models is that the parameters for the an-
alytical distribution function should be easily computed
from the moments. For example, in the case of the widely
used Pearson IV function the parameters may be calcu-
lated from the first four moments by simple analytical for-
mulas. However, these formulas are derived under the as-
sumption that the Pearson IV function describes the dopant
concentration everywhere (—o < z < + ), i.e., also
in the vacuum (z < 0). (z denotes the spatial coordinate
perpendicular to the surface.) Since the dopant concen-
tration is zero in the vacuum, the formulas are only valid,
if the Pearson IV function is sufficiently small for z < 0.
This is the case, if the dopant concentration at the surface
is very small, what is usually true for dopant profiles.

Unfortunately, this is not true for point defect profiles
(cf. Figs. 3, 4, 7, and 8). For this reason, a moments
method seems not feasible. Instead, we propose the fol-
lowing model, which comprises a Gaussian function and
an exponential function joined together continuously with
continuous first derivatives ( f(z) denotes the point defect
concentration as a function of depth).

¢ For the light ion species boron and phosphorus we

take
2
e (2), e=x
1
f(z) =«
( ) ! . (Z _ 112)2 -
l\ 2 €Xp - 5. a§ 5 =2
(1)
The joining point zq is simply calculated by
2
a
2 = a4y — -3, (2)
a;

The parameters C, and C, can be evaluated ana-
lytically by

Cl = Nd ) Nvac Y (33)

C =N, (3b)
where N, denotes the implantation dose and N,, the
number of point defects per ion. (This formula as-
sumes that the damage concentration is proportional
to the implantation dose, what is valid within the
frame outlined in Section I, until the point defect
concentration approaches the atomic density of the
target.) ¢, and ¢, are given by

(&)
exp | —
a

oo [ow ()] i
e (372)] o

Nvac S

3

= ¢ " exp <§> (4b)

a3

2 a, )
¢ For arsenic and antimony the exponential tail is to-
wards the bulk:

(5)

21 = a; —

[ - _ 2
f(z) = i G, - exp [JZZ—Z%)—
{

E z
| Cy~exp|{— ], =7z
. p<a1> ’ (6)

Equation (2)-(5) are still valid, except for (4), which
is replaced by

20 —
o3
T a,
+ay |7 |2 —erfc
? \/; ]: <ﬁ'a3>
-1
0~ 4
—erfc | —=—— }
<‘/5'(13> }
(-3)
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a

¢ In some cases a single Gaussian function is best.
Then c, is given by

ofor oo ()]

In this model the four parameters a;, a,, a;, and N, are
required, which correspond to the decay length of the ex-
ponential function, to peak position and standard devia-
tion of the Gaussian function, and to the number of point
defects per ion, respectively. They have been obtained for
21 energies between 1 and 300 keV by fitting the analyt-
ical function f (z) to Monte Carlo results. The parameters
as a function of energy have in turn been fitted by the
following formula:

{a-E+b~E2+c'
a d-E° +e,

} =2

(72)

(7b)

E} E<E

E = E, ®)

a; represents a,, ay, a3, of Ny.. b, ¢, d, p, and E, are
listed in Tables I-1V, a and e are calculated from conti-

nuity and continuity of the first derivative in Ey:
a=d-p-Ey ' —2-b-E —3-c-Ej (10a)

(10b)

e=a-Ey+b-E}+c-E}—d-E}

The units for lengths are angstroms, the units for energy
kiloelectronvolts. A single Gaussian function is to be used
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TABLE 1
Decay LENGTH a,
B P As Sb
b 1.21 0.174 0.0833 0.808
c ~0.0161 0.00213 0.00051 —0.0435
d 7850 188 —-14.5 —6.54
P 0.0852 0.571 0.529 0.660
Ey 417 44.2 7.34 9.10
TABLE 11
PEAK POSITION a,
B P As Sb
b 0.166 —0.131 ~2.40 —2.68
c —0.00118 0.00148 0.153 0.176
d 219 8.97 4.75 4.48
) 0.643 1.04 0.971 0.913
Ey 77.9 56.9 5.21 5.01
TABLE III
STANDARD DEVIATION a,
B R A Sb _
-0.395 -0.372 —0.931 -1.93
c 0.00251 0.00710 0.0448 0.147
d 92.58 414 3.14 3.06
P 0.272 0.217 0.985 0.917
Ey 51.2 27.2 6.89 4.34
TABLE IV
NUMBER OF VACANCIES PER ION N,,.
B P As Sb
b —0.341 -0.169 —0.0489 -0.0560
< 0.00270 0.00083 —0.00033 0.00020
d 130 418 52.9 58.8
P 0.307 0.364 0.765 0.768
Ey 38.6 746 28.2 46.8

used for boron at energies E < 20 keV, phosphorus at E
< 55 keV, and arsenic at E > 170 keV. In these cases
a; must be ignored.

The root mean square error for fitting a,, a,, as, and
N, is about 1 percent. But it is not clear, if this error is
due to bad approximation or to fluctuations in the Monte
Carlo results. The quality of the analytical model is dem-
onstrated in Figs. 7 and 8. In Fig. 7 the analytical distri-
bution function for a boron implantation at 100 keV is
compared with the corresponding Monte Carlo results. In
Fig. 8 this is done for an arsenic implantation at 100 keV.

3.2. Two-Dimensional Model

Two-dimensional distributions may be constructed from
point responses [21], [22] for dopant profiles as well as
for damage profiles. So we will deal in this section only
with point responses.

A natural way of extending the moments method to the
two-dimensional case is to construct the distribution func-
tion from vertical, lateral, and cross moments. The cross
moments describe the correlation between the vertical and
the lateral profile. Such a model has recently been pre-
sented by Winterbon [23], however, the results are not
fully convincing.

We have previously presented another model, which is
based on the concept of depth dependent lateral moments
[17]. Apart from a summary of this model, we show here
that it applies well to damage distributions, and we give
tables for the parameters. The model in its general form
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Fig. 7. Comparison of the analytical model (dashed line) with the under-
lying Monte Carlo results (full line) for a boron implantation at 100 keV.
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Fig. 8. Comparison of the analytical model (dashed line) with the under-
lying Monte Carlo results (full line) for an arsenic implantation at 100
keV.

reads

F(20%) = fnl@) * fulrs 2) (11)

with

+ oo

S wf,m(x, z)dx = 1. (12)
The point response f (z, x) is obtained by multiplying the
vertical distribution function f,.. (), e.g. as obtained from
Section 3.1, with a lateral distribution function fi, (x, 2),
which depends on the depth. The depth dependence of f;,,
is introduced by the depth dependence of the lateral mo-
ments. Take for instance a Gaussian function:

1 x?
gauss(x) = . - exp <—2 - 02>. (13)

If we allow the standard deviation g, to vary with z, the
whole lateral distribution function will depend on z. The
advantage of this model is that we need not care about the

depth dependence of the lateral moments when we derive
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Fig. 9. Lateral profile of a point response to a 100-keV arsenic beam at a
depth of 0.016 um. Full line: Monte Carlo results, dashed line: analyt-
ical model.

formulas for the calculation of the parameters of the dis-
tribution function.

There are two tasks to do in this model: First, one has
to construct a lateral distribution function from the lateral
moments. In the simplest case this is done by constructing
a Gaussian function from its standard deviation. In Fig.
9 an example for the lateral distribution function near the
surface is shown. One can see that it is not well repre-
sented by a Gaussian function, since a Gaussian function
would appear as a parabola in this representation. So it is
desirable to take higher moments into account. To include
the lateral kurtosis 8,, we propose a modified Gaussian
function for 8, < 3,

f(x)=a-exp(=|b- x|")

and a Pearson VII function for 3, > 3

(14)

1/2b2

f(x)=c-‘1+12-x2 (15)

by

The calculation of the parameters a, b, p, and C, by, b,,
respectively, from o, and @, is straightforward (for de-
tails, see [17]). In Fig. 9 the Monte Carlo results are com-
pared with a Pearson VII function and the agreement is
very good.

The second task is to specify lateral moments as a func-
tion of depth and favorably as a function of implantation
energy. We do this by the following formulas:

1 16a
UX(Z, E) _ O'Z(E) . [; - In (eal-P1 + eapPz)} ( )
1
1
Bz, E) = — + In (" P + & F) (16b)
a)
with
Pi=a, 7 -E+ay-7 +a,-E+as (17a)

P,=as 7 "E+a; -2 +ag* E+as (17b)

TABLE V
LATERAL STANDARD DEVIATION o,
... . B P _ As . Sb
ay ~7.839 ~8.747 23.28 1.3 -10°
ay —0.0003591 —0.0001638 —0.0004465 0.0000649
asz 0.5335 0.4631 0.2955 0.2298
ag —0.0006606 —0.0004085 —0.001393 —0.0004593
as 0.2204 0.2163 0.3659 0.3869
ag —0.005708 —0.001238 —0.0002071 0.0001246
ar 0.004471 0.09083 0.3434 0.3328
ag 0.006822 0.001224 0.0000031 —0.0004846
ag 0.9171 0.7157 0.2197 0.2369
TABLE V1
LATERAL KURTOSIS 8,
) B P . As Sb
ay 0.03991 0.02170 0.01408 0.005920
az —-0.1492 —0.03615 -0.2277 —0.1892
az —96.65 —127.8 ~191.4 —482.3
ay 0.2045 0.1218 0.2133 0.4105
ag 23.60 —55.71 -136.4 —533.2
ag —0.003087 —0.000510 —0.002097 —0.002816
a7 —0.09187 —0.2583 —-0.6595 —0.9645
ag 0.003051 ~0.000539 0.004463 0.007533
ag 3.059 3.643 5.258 6.276
TABLE VII
PROJIECTED RANGE R,
B P As Sb
a 55.00 11.39 6.14 5.25
az 0.8142 0.9479 0.9419 0.9038
ag -70.56 18.47 23.45 24.00
TABLE VIII
STANDARD DEVIATION 0,
B P As_ . 8b_
ay 52.11 8.848 4.016 3.221
az 0.6580 0.8635 0.9100 0.8880
a3 -79.33 0.94 9.532 9,98 B

and 7z’ the reduced depth

z
' = ——==. 17c
Ry (E) (7o)
The parameters a;-a, have been fitted to the Monte Carlo
results and are given in Tables V and VI.
R, in (17¢) denotes the mean range and o in (16a) the
mean standard deviation of the vertical damage profile.
They have been fitted by

R(E)=a - E® + a3 (18a)

o, (E)=a, - E® + as. (18b)

a,-as are found in Tables VII and VIII.

R, and o, are given in angstroms. To obtain them in
micrometers, divide by 10*. Note that in all formulas
energies must be inserted in kiloelectronvolts. Further-
more, to avoid numerical problems, it might be necessary
to truncate o, and 3, at, e.g., o, = 0,/100 and 8, = 2.
This truncation has no physical meaning as it operates only
for large z where the vertical profile is already negligibly
small. The two-dimensional model is intended to be ap-
plied only to energies between 10 and 300 keV.

Finally, we give an example of a comparison of our
analytical model with the underlying Monte Carlo results.
Fig. 10 shows good agreement between the two distribu-
tions. '
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Fig. 10. Comparison of the two-dimensional analytical model (dotted lines)
with the underlying Monte Carlo results (full lines). Arsenic implanted

into silicon by a vertical mask edge at 100 keV.
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