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Monte Carlo Simulation of Ion Implantation into
Two- and Three-Dimensional Structures

GERHARD HOBLER AnD SIEGFRIED SELBERHERR, SENIOR MEMBER, IEEE

Abstract—Until now, rigorous Monte Carlo simulations of ion im-
plantation into 3-D structures have been prohibited by the large amount
of computer time required. Also 2-D simulations have been restricted
to simple structures like linear mask edges or rectangular trenches. In
this work methods are presented which make 2-D simulations with ar-
bitrary geometries feasible as well as 3-D simulations with simple ge-
ometries. First, an auxiliary grid is used to reduce the time required
to check whether an ion crosses a boundary. Second, each ion trajec-
tory is used several times to determine the history of ions entering the
target at different positions. The methods are demonstrated by 3 ex-
amples: implantation into a rectangular 2-D trench, implantation into
a 2-D trench with non-planar sidewalls, and implantation into a 3-D
trench with quadratic cross section.

I. INTRODUCTION

N MOST process simulators, 2-D simulation of ion im-

plantation is based on the point-response approach [1],
[2]. In this model the response to a punctiform beam is
calculated, assuming an infinite or semi-infinite target.
The point response is then moved along the surface and
superposed to obtain the total dopant distribution. Multi-
layer targets are treated by calculating point responses in
infinite targets of any of the materials, and using these
responses to construct the point response at a given point
along the surface depending on the local thickness of the
layers [3].

Problems arise when steep surface contours have to be
handled. Also the models for multilayer targets are only
approximate, especially if the difference between the
stopping powers in the materials is large [4], or if the
interfaces between the layers are not nearly perpendicular
to the initial beam direction.

The problems with steep surfaces shall be illustrated by
two examples. In the first example (Fig. 1) a boron im-
plantation at 100 keV is performed around a vertical mask
edge. The results of the point-response approach are
shown in Fig. 1(a), the results of a full Monte Carlo sim-
ulation in Fig. 1(b). The dopant distribution differs at
shallow depths near the mask edge. The additional con-
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Fig. 1. Boron implantation ( 100 keV) by a vertical mask edge. The con-
tour lines represent the logarithm of the dopant concentration divided by
the dose (cm™'). (a) Simple point response approach. (b) Full Monte
Carlo simulation.

centration in Fig. 1(b) originates from ions which enter
the oxide near the edge, leave the mask laterally and reen-
ter the target in the bulk region.

A second example is shown in Fig. 2: 25 keV boron
ions are implanted at a tilt angle of 7° into a rectangular
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Fig. 2. Boron implantation (25 keV, tilt angle 7°) into an ideal trench.
The contour lines represent the logarithm of the dopant concentration
divided by the dose (cm™'). (a) Simple point response approach. (b)
Full Monte Carlo simulation.

trench. According to the point-response approach (Fig.
2(a)) no ions are found on the shady (left) sidewall of the
trench, whereas a considerable dopant concentration oc-
curs there according to the full Monte Carlo results (Fig.
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2(b)). This extra amount of dopants on the shady side
originates mainly from ions which hit the sunny sidewall,
are reflected there, and cross the trench to enter the shady
side. The history of these ions is substantially different
from the history of ions in an infinite target. Therefore the
simple point-response approach cannot produce correct
results. Full 2-D simulations can be performed by either
solving a Boltzmann Transport Equation [5] or using the
Monte Carlo method [6], [7]. The Boltzmann Transport
approach requires the discretization of a 5-D space. If dis-
cretization is not critical, the Boltzmann Transport method
offers a computation speed advantage over the Monte
Carlo method. The Monte Carlo method, on the other
hand, is considered the most rigorous approach to ion im-
plantation modeling, but it suffers from large computation
times. A major part of the CPU-time is due to the evalu-
ation of scattering angles, whereas the other part is pro-
portional to the complexity of the geometry. The latter
might be the reason why so far only results on simple
geometries have been published [6]. 3-D Monte Carlo or
Boltzmann Transport simulations have not been reported
in the literature.

The purpose of this paper is to present a 2-D simulator
for targets with arbitrary geometries as well as a 3-D sim-
ulator for simple geometries. Basic features of these sim-
ulators are described in Section II, methods which reduce
computation times in Section III. The discussion will con-
centrate on the 2-D case, as the extension of all methods
to 3-D is straightforward. Some simulation results on the
sidewall doping of trenches are presented in Section I'V.

II. Basic FEATURES

2.1. Ion-Target Interaction

In our simulations we assume amorphous targets. De-
viations from actual implantation profiles in crystalline
targets are known [8]. However, apart from difficulties in
accurately modeling ion implantation in crystalline tar-
gets, simulation times would increase by orders of mag-
nitude.

In the Monte Carlo approach individual ion trajectories
are simulated. Each ion is followed as it interacts with
target atoms and electrons. Interaction with target atoms
is modeled as binary collisions separated by free flight
paths. The length of the free flight paths is a function of
the ion energy and is evaluated by an analytical formula
[9]. Scattering angle and energy loss in each nuclear col-
lision are evaluated by a table look-up procedure [7] which
is considerably faster than the analytical formula given by
Biersack [10]. To describe the ion-target atom interac-
tion, the Ziegler-Biersack (‘‘Universal’’) potential is
used, which is reported to agree well with experimental
data [11]. Electronic stopping is considered as a dragging
force along the free flight paths. The electronic stopping
power is determined by interpolation in a table which is
computed based on the modified Brandt-Kitagawa theory
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[9]. All features described above, except for the table
look-up procedure for nuclear scattering, agree with [9].

2.2. Geometry

Simulations that are 2- or 3-D require that at least two
regions with different physical properties be present, one
of them possibly free space (vacuum). When an ion is
followed during slowing down, it is always necessary to
know in which region the ion is located. The material will
influence nuclear scattering and electronic energy loss as
well as the length of the free flight path. A special treat-
ment is required for free space: The free flight path has
to be extended to the next point of entrance into the target
or to the point where the simulation area is left, without
any change of energy.

In order to determine in which region an ion is located,
we distinguish two cases: convex and arbitrary (i.e., pos-
sibly concave) regions. We restrict ourselves to regions
bounded by polygons (plane faces in 3-D). Convex po-
lygonal areas can be considered as intersection of proper
half-planes (Fig. 3). Therefore, in case of convex re-
gions, we check after every free flight path if the ion is
inside all of the half-planes:

>0 or

a,--x+b,~z+c,{ ,

<0

i=1---n (1)
where x and z are the coordinates of the ion and n the
number of boundary lines. a;, b,, ¢;, and the *“>"" or
‘<’ sign determine the half-planes. The computational
expense is two floating point operations and one compar-
1son for each boundary line.

Concave regions could be subdivided into convex re-
gions. But this would introduce new boundary lines and
would increase the number of regions to be handled. We
want to avoid this mainly because we use an auxiliary grid
for every region (see Section 3.1) and the memory re-
quired increases with the number of grids.

There are a number of methods for concave regions.
We prefer to intersect the free flight path under consid-
eration with all boundary lines of the region where the last
collision has taken place. If no intersection point is found,
the ion remains in the same region. In the other case we
have to determine the new region. For that purpose we
have initialized an array which assigns each boundary line
of each region the adjoining neighbour region. Thus if we
know which boundary line is crossed we immediately
know the new region.

Intersecting two straight lines (free flight path and
boundary line) mathematically means to solve a system of
two linear equations:

Y+ N (X0 —X)=p,+p- - (Pisy— D). (2)
Xj, X;4 delimit the free flight path and p;, p;., the
boundary line. In addition it must be checked if

O=A<1,0=<u<l. (3)

This procedure requires between five and eight floating-
point operations and one to four comparisons. Special care
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Fig. 3. Convex polygonal region considered as intersection of half-planes.

must be taken to avoid rounding errors because grazing
angles cannot be ruled out and a crossing event not de-
tected will in general lead to a completely wrong ion tra-
jectory. So we need up to six other floating-point opera-
tions and up to two other comparisons. Like in the case
of convex regions the expense is proportional to the num-
ber of boundary lines, but the expense per line is larger.

From the description above it should be plausible that
for complicated geometries with many boundary lines the
computation time is dominated by geometry checks. This
is the motivation for the method presented in Section 3.1.

2.3. Number of Particles

To perform an actual simulation, we have to equidis-
tribute all particles over the width of the simulation area.
Two options are possible: First, we can randomly choose
the initial lateral position of each ion. This method is cor-
rect from a probabilistic point of view. But it introduces
additional fluctuations in the results due to fluctuations in
the distribution of the initial points. Secondly, we can let
the ions start at equidistant lateral positions. As we sim-
ulate a large number of particles, the distance between
neighbouring ions will be much smaller than any detail of
the geometry. Therefore we do not introduce considerable
correlations between trajectories (this would be the case,
e.g., if the surface had a periodicity corresponding to the
distance between neighboring ions). We use this method.

The number of particles to be simulated is a major con-
cern as the simulation time will be proportional to this
quantity. It will depend on the desired accuracy, on the
concentration range of interest (i.e., the ratio between
maximum concentration and lowest concentration of in-
terest), and on the desired spatial resolution. The spatial
resolution is determined by the size of the histogram boxes
which, in turn, has to be correlated with a characteristic
length of profile variation. Such a characteristic length is
the lateral standard deviation of a corresponding point re-
sponse. Assuming that we need a fixed number of histo-
gram boxes per lateral standard deviation, we may roughly
say that the number of particles required is proportional
to the number of lateral standard deviations which fit into
the width of the simulation area. Correspondingly, in 3-D
the number of particles has to be proportional to the num-
ber of squares with an edge length of the lateral standard
deviation which fit into the surface area exposed to the
computational beam.

For reasonable results, about 10*-10° particles per lat-
eral standard deviation are required. In the trench exam-
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ple of Fig. 2, 50 standard deviations fit into the simulation
width. Thus, taking 40000 ions per lateral standard de-
viation, a total of 50 + 40000 = 2 x 10° particles is re-
quired. For a corresponding 3-D trench with quadratic
cross section 2500 + 40000 = 10® particles would be re-
quired. On a VAX 8800 this would take about 1 CPU-
day and 2 CPU-months, respectively, which is obviously
impractical.

III. ApbvANCED FEATURES
3.1. Auxiliary Grid

The idea behind the auxiliary grid shall be demon-
strated by Fig. 4. An ion is implanted into a rectangular
region, starting in the middle of the top boundary line.
Note that the length of all free flight paths is much smaller
than any detail which can be seen. It is modeled as a
unique function of the ion energy and decreases when the
ion slows down. We have to ask after every free flight
path, if the ion has left the region. According to the sec-
ond method of Section 2.2, we have to check if the free
flight path intersects any of the 4 boundary lines. How-
ever, using the simple grid shown in Fig. 4, most of these
checks can be avoided. For instance, if the ion is located
inside grid element 2, we know that it cannot cross any
boundary but the top boundary line within a single free
flight path, because any point inside grid element 2 has a
larger distance from all other boundary lines than the free
flight path. Analogously, if we know that the ion is lo-
cated in element 5, we need not do any checks at all,
because the distance of element 5 from all boundaries is
larger than the free flight path.

To implement the auxiliary grid in the program, the fol-
lowing has to be done: During the initialization phase (1)
the grid has to be generated. Details are discussed below.
(2) for every grid element (indexes i,, i.) the minimum
distance d(i,, i.) of any point inside the element from the
boundaries is calculated. (3) for every grid element those
boundary lines are determined which lie within a distance
L.« from the element, where L,,,, is an upper limit to all
possible free flight paths. As the length of the free flight
paths always decreases during slowing down, L,,,, can be
set to the length of the first free flight path. We obtain an
array of logical values, each indicating if a particular
boundary line is within a distance L,,,, from the grid ele-
ment. As many computers do not store logical variables
efficiently, we encode the information in one or more in-
teger words. These are denoted by near (i, i.).

During the simulation we have to determine, (1) in
which grid element (i, i.) the ion is located, (2) whether
the length of the free flight path L is larger than d(i,, i.),
and if this is the case, (3) which boundary lines are within
a distance Ly, from the grid element, by decoding
near (i, i.). Then we have to check these boundary lines
on possible intersection points with the free flight path.
On the other hand, if L is smaller than d (i, i.), we know
that the ion will not cross a boundary during the next d (i,
i.)/L free flight paths. Therefore we may skip all geom-
etry checks on the next d(i,, i.) /L free flight paths.
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Fig. 4. Implantation of an ion into a rectangular simulation area. A simple
grid with 9 mesh elements is used.

In general, simple grids already reduce CPU-times con-
siderably. Further improvement can be achieved when the
grid is refined at the boundaries. Then in case of small
free flight paths the ion will earlier enter a grid element
which has a larger distance from the boundaries than L.
In order not to waste computer memory, the grid should
be coarse in the middle, i.e., it should be non-equidistant.
At the same time we have to take care that the computa-
tion of the mesh index from the ion coordinates remains
simple, as the method is not reasonable unless the com-
putation of the mesh index is much faster than the ge-
ometry checks.

For easy index computation we demand that the grid be
part of an equidistant grid, i.e., the grid can be con-
structed from an equidistant grid by leaving lines away.
Then we can first calculate the indices of the equidistant
grid j,, j. from the ion coordinates x, z (compare Fig. 5)

(4)

. X = Xp.

. LT 2
I Ax

Az

s

and then look in a table, which indices of the actual grid
iy, i, correspond to j,, j.:

The table for the indexes in x-direction of Fig. 5 would
read

i(1) =1

i(2) =2
i(3)=2
i(4) = 3. (6)

The following algorithm is used to decide which lines of
the equidistant grid be removed: First every grid element
is assigned the information whether the minimum distance
between any point inside the element and the boundaries
is larger than the smaller one of the horizontal and vertical
grid spacing, min (Ax, Az). In Fig. 6(a) these elements
are hatched. Then we consider the grid lines one by one.
We look at all pairs of grid elements which are lined up
along the grid line, each having one element on the one
side and one element on the other side of the line. For
each of these pairs we compare the information assigned
to the two elements. If we find the same information in
either element, these elements may merge. If this is the
case for all pairs along the line, it is removed, otherwise
it is maintained. The result of this procedure is shown in
Fig. 6(b).
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Fig. 5. Mesh indices for a simple grid.

(b)
Fig. 6. Design of an auxiliary grid (b) from an equidistant grid with given
grid spacings (a).

This grid is best for free flight paths L slightly smaller
than min (Ax, Az). If L is larger than min (Ax, Az),
many of the inner elements are not farther from the
boundaries than L so that geometry checks are necessary
for ions inside these elements. On the other hand, if L is
much smaller than min (Ax, Az), it will take the ion a
large number of collisions after entering the region to en-
ter an inner element where no checks have to be per-
formed. For that reason we compose our actual grid from
grids with different mesh spacings of the underlying equi-
distant grid. It is convenient to take 2" X 2" grids, n = 2

* Nmax. This is shown for the example of Fig. 6 with
nn. = 4 in Fig. 7. This procedure has the side-effect that
for small free flight paths the inner grid elements are many
free flight paths away from the boundaries so that geom-
etry checks (including index computation) need only
rarely be carried out for ions inside these elements.

Typical maximum dimensions are 1024 X 1024 for the
equidistant grid and a total of 8000 mesh elements for the
actual grid. The code generates grids from 2" X 2" equi-
distant grids, starting with n = 2, until one of these limits
is reached. Some examples of grids, using these maxi-
mum dimensions, are shown in Fig. 8.

3.2. Superposition Method

The auxiliary grid described in the previous section
eliminates most of the CPU-time spent on geometry
checks. In this section we try to reduce the time required
for the evaluation of the ion-target interaction. The idea
is to use each ion trajectory several times to determine the
history of ions entering the target at different points. In
this way quantities like scattering angles need only be cal-
culated once for a set of trajectories. To justify the
method, we make use of the superposition law.

The superposition law holds if the history of all ions
are independent from each other. This is the case for
amorphous targets. One formulation of the superposition

N

PN S S A AT S ST BT B {

y

Fig. 7. Superposition of grids based on 2” x 2" equidistant grids, n = 2,
3,4.

ITTSERETETT]

law says that we may subdivide the area exposed to the
ion beam into subwindows, calculate the results of im-
plantations through each subwindow, and superpose the
concentrations. This can be written in 2-D (compare Fig.
9):

C(x, z) = 2 c(x, 7 &, AE;) (7)

x, z denote the coordinates of the point where the concen-
tration C is to be calculated, £; and A&, are the lateral
position and the width of the subwindows, respectively,
and c is the concentration resulting from the implantation
through a subwindow. In the following we assume that all
AE; be equal (“*AE’). If we let A — 0, we obtain an
equivalent formulation with point responses. In this for-
mulation the point response depends on the point of en-
trance of the punctiform beam into the target. If this de-
pendence is neglected and the point response of an
implantation into a semi-infinite target is used, the method
is obtained which has been critically discussed in the in-
troduction of this paper.

Equation (7) says that if we have correct results of im-
plantations through subwindows, c(x, z; &;, A¢), we ob-
tain the correct concentration C(x, z) by superposing all
c(x, z; &, Af). Note that we need less particles to cal-
culate c(x, z; &;, A£) with the same accuracy as C(x, z),
because the particles scatter over a smaller range and are
distributed in a smaller number of histogram boxes. This
seems to be outweighed by the fact that we have to cal-
culate several responses c(x, z; &;, A£). But (7) does not
say how the c(x, z; &;, A) be obtained. Therefore, it is
not necessary that particles used to calculate one c(x, z;
&;, A¢) are independent from the particles used to calcu-
late another ¢ (x, z; §;, A£). In most cases this fact can
be used to save a large part of the CPU-time.

The following method is justified by the superposition
law: (1) Subdivide the width of the simulation area into
Ny subwindows. A convenient value of Ny is such that
the width of the subwindows is about the lateral standard
deviation. (2) In order to simulate the kth particle, cal-
culate a ‘‘physical’’ ion trajectory in an infinite target. (3)
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Fig. 8. Examples of auxiliary grids. (a) Rectangular region. (b) Spacer of
an LDD-MOSFET. (c¢) Ideal trench as discussed in Section 4.1. (d) Non-

ideal trench as discussed in Section 4.2.
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Fig. 9. Response of implantations through subwindows. Only subwin-
dows 2 and 5 are shown.

Fig. 10. Construction of trajectories from one *‘physical’’ ion trajectory.
The width of the subwindows is equal to the width of the trench. Open
circles denote the location of collisions. Note that actual free flight paths
are much smaller than depicted.

Make copies of this trajectory and move them to corre-
sponding points of each subwindow. The ions have to pass
the subwindow at lateral positions & + (k — (1/2))/N
- Ag. If N distinct particles are simulated, all particles
will finally be equidistributed over the width of the sim-
ulation area. The simulation will be approximately equiv-
alent to a conventional simulation with N - Ny, particles.
Obviously, the trajectories must be moved vertically so
that they start at the surface of the target. These copies
may be modified in the next step. (4) Follow each trajec-
tory copy and check if any boundary is crossed. In Fig.
10 the leftmost trajectory never crosses a boundary.
Therefore, its endpoint is valid without further action. The
second trajectory crosses a boundary after the second col-
lision. If a boundary is crossed, we have to distinguish
two cases: (a) the ion enters free space (as in this exam-
ple). Then we have to follow the current direction to see
whether the target is hit again. If so, we have to check,
whether the material is the same as the material assumed
in the first part of the trajectory. If the same material is
found, we can move the rest of the trajectory to the point
of entrance. Otherwise we have to simulate the rest of the
trajectory conventionally, evaluating the ion-target inter-

action. (b) the ion enters a region with another material.
Then we also have to simulate the rest of the trajectory
conventionally. Another situation can occur, when more
than one material is encountered at the surface. This can
be simply handled by calculating ‘‘physical’’ trajectories
for each material. Of course, this will increase the CPU-
time.

The method described is most efficient if the target con-
sists of only one material. Then the ion—target interaction
need only be evaluated for one ‘‘physical’’ trajectory in
order to obtain Ny actual trajectories. In the other case we
have to evaluate the ion-target interaction for parts of
some or all of the Ny, actual trajectories. The method is
most inefficient for targets covered by a thin layer, e.g.,
a thin oxide. Then only a small part of the ‘‘physical’’
trajectory in the infinite target may be used each time.
However, usually thin layers can be replaced by equiva-
lent layers of the underlying material for ion implantation
simulations.

IV. ExAMPLE: SIDEWALL DOPING OF TRENCHES

Trenches are used in VLSI-circuits as isolation tech-
nique [12] or as capacitors [13]-[15]. In the latter case
the sidewalls have to be doped in order to form one elec-
trode of the capacitor. The doping process is performed
by diffusion or, more recently, by ion implantation [15],
[16]. The implantation has to be done with a tilt angle and
the wafer is usually rotated four times by 90°, so that
trench walls with any orientation are exposed to the beam.
However, due to reflections ions may also hit shady walls.

4.1. Ideal 2-D Trench

Fig. 11 shows the results of a boron implantation (25
keV, tilt angle 7°) into the rectangular trench of Fig. 2.
The upper left edge of the representation corresponds to
the wafer surface. The trench extends in vertical direction
from 0 to 2.5 um and in lateral direction from —0.5 to
0.5 um. A considerable concentration can be seen on the
shady (left) sidewall, which is only about half an order of
magnitude lower than the concentration on the sunny
sidewall. Also it is not constant but increases with depth.
This depth dependence is much more pronounced for
heavy ions like arsenic.

Because of the simple structure, geometry checks can
be made in a very efficient way, although the silicon re-
gion is concave: The ion is inside the target if (z > 0 and
x < —0.5)or(z > 25)or(z > 0and x > 0.5). We
have performed simulations with and without the super-
position method. In both cases a total of 2 X 10° particles
is used. For the superposition method 50 subwindows are
defined, the width of each approximately equal to the lat-
eral standard deviation. Therefore the ion-target interac-
tion is evaluated for 2 x 10°/50 = 40000 trajectories.
The results of the two simulations show no deviations at
high concentrations and the expected statistical deviations
at low concentrations where only few particles are con-
tained in each histogram box. The CPU-times are shown
in the first line of Table I. A speed-up factor of about 40
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Fig. 11. Boron implantation (25 keV, tilt angle 7°) into an ideal trench.
The upper left edge corresponds to the wafer surface. The quantity de-
picted is the logarithm of the dopant concentration divided by the dose
(em™').

TABLE |
CPU-TiMES OF 2-D TRENCH SIMULATIONS ON A VAX 8800
without with
superposition | superposition

* 163 h 25 min

ideal | ithout grid | 25.9h 88h
trench

with grid 175h 50 min

non-ideal | without grid 43.6 h 24.2h

trench with grid 18.6 h 70 min

* using the efficient geometry check method described in
the text

is obtained by the superposition method. As the ion-tar-
get interaction is evaluated only once for every 50 trajec-
tories, it can be concluded that the extra expense as com-
pared with the conventional simulation of 40000 particles
is only 25 percent.

We have also performed these simulations using the ge-
ometry check method for arbitrary regions. Simulation
times are listed in lines 2 and 3 of Table I. The CPU-time
is reduced by 66 percent using the superposition method
alone, by 32 percent using the auxiliary grid alone, and
by 97 percent using both methods together. Note that al-
though each method separately saves large absolute val-
ues of the CPU-time, only both methods together may
change the order of magnitude.

4.2. Non-Ideal 2-D Trench

In this section the effects of nonplanarities of the walls
due to a nonideal etching process are studied. In trenches
the ions hit the sidewalls at grazing angles. Under these
conditions the amount of backscattered particles and,
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Fig. 12. Boron implantation (25 keV, tilt angle 7°) into a trench with non-
planar walls. The upper left edge corresponds to the wafer surface. The
quantity depicted is the logarithm of the dopant concentration divided by
the dose (em™").

therefore, also the amount of particles remaining in the
wall are strongly dependent on the angle of incidence. For
this reason, nonplanarities lead to inhomogeneous doping
profiles at the sunny sidewall.

The geometry of the simulated structure (together with
the auxiliary grid) can be seen in Fig. 8(d). The results
are shown in Fig. 12. At a depth of 0.8 um on the sunny
side a large local reduction of the concentration occurs.
In contrast, the shady side is not severely affected.

Computation times are shown in the last two lines of
Table 1. Again it is observed that both methods—super-
position method and auxiliary grid—are required to dras-
tically reduce the CPU-time. Comparing this simulation
with the simulation of the ideal trench using the geometry
check method for arbitrary boundaries, we would like to
emphasize one point: Employing both of our advanced
features, in both simulations about 20 min are spent on
the evaluation of the ion-target interaction. Thus in the
ideal case 30 min are spent on geometry checks and in the
nonideal case 50. This is an increase of 66 percent, mainly
due to a worse resolution of the boundaries by the auxil-
iary grid (compare Figs. 8(c) and 8(d)). At the same time
the number of boundary lines is increased from 8 to 25,
i.e., by more than a factor 3. That means that using the
auxiliary grid, the CPU-time is a strongly sublinear func-
tion of the number of boundary lines. Without auxiliary
grid, the time spent on geoniciry checks would be exactly
linear with the L.umber of boundary lines.

4.3. Ideal 3-D Trench

The 2-D simulations of the previous sections corre-
spond to infinitely long trenches (Fig. 13(a)). Now we
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want to investigate a trench with quadratic cross section
(Fig. 13(b)). Again, boron is implanted at 25 keV with a
tilt angle of 7°, parallel to the front and back wall. We
expect that some dopants will be found on the front and
back wall, because ions which are reflected at the sunny
sidewall usually get a velocity component toward the front
or back wall. As these dopants do not reach the shady
side, we expect that the concentration on the shady side
will decrease.

To compare the 3-D with the 2-D results, we make a
cross section in the symmetry plane between front and
back wall. The concentration in this plane is depicted in
Fig. 14. As compared with Fig. 11, no difference is found
on the sunny (right) sidewall. On the shady side the con-
centration at larger depths is reduced by about a factor 2.
Also the concentration is now almost constant with depth.

Finally, we would like to give a global representation
of the doping along the sidewalls. For that purpose we
have integrated for each point of the wall surfaces the
concentration over the direction perpendicular to the wall.
This quantity is depicted in Fig. 15. The axis labeled
“‘lateral’’ covers the lateral coordinate of all four side-
walls as indicated in Fig. 13(b). As expected we find a
large constant concentration on the sunny side and a
lower, almost constant concentration on the shady side.
On the front and back wall the doping is approximately
exponentially decreasing toward the shady side of the
trench. This is because ions reflected by the sunny side-
wall hit the front or back wall near the shady side under
more grazing angles than near the sunny side. Anomalous
peaks are found near the surface (at a depth of about 0.3
pm). They originate from ions which have first entered
the target outside the trench, then left the target through
a trench sidewall, and finally hit another sidewall.

For the 3-D simulation, the ion-target interaction is
again evaluated for 40000 independent trajectories. 2500
square subwindows are defined so that a total of 10® par-
ticles is simulated. The geometry checks are performed
analogously to the ‘‘efficient’’ method of Section 4.1. The
simulation time for this example is 5 h. Most of this time
is spent on geometry checks, as these must be carried out
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Fig. 14. Concentration in the symmetry plane between front wall and back
wall of the trench shown in Fig. 13(b) for a boron implantation (25 keV.
tilt angle 7°). The upper left edge corresponds to the wafer surface. The
quantity depicted is the logarithm of the dopant concentration divided by
the dose (cm™").
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Fig. 15. Concentration integrated over the coordinate perpendicular to the
wall surface. Depicted is the logarithm of this quantity divided by the
dose. For an explanation of the **lateral’* and **depth"" axis refer to Fig.
13(b).

for all 10® particles whereas scattering angles and energy
loss need only be calculated for the 40000 independent
particles.

V. CONCLUSION

Monte Carlo simulation of ion implantation into 2-D
structures can be performed at almost the same expense
as the computation of point responses. A code allowing
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general target structures has been developed and is now
part of our 2-D process simulator PROMIS [17]. Typical
simulation times are 1 h on a VAX 8800. For lower de-
mands regarding statistical fluctuations these times can be
reduced by a factor of about 10. This is especially justi-
fied if profiles are broadened and smoothed by subsequent
diffusion simulations. 3-D simulations have been dem-
onstrated to be feasible with certain restrictions on target
composition and geometry.
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