On Preconditioning Nonsymmetric Matrix Iterations

O. Heinreichsberger, S. Selberherr, M. Stiftinger

Technical University Vienna
Institute for Microelectronics
Vienna (Austria)

K.P. Traar

SIEMENS AG Austria
Vienna (Austria)

Fast iterative solution methods for large, sparse, but not necessarily symmetric
positive definite linear equations Az = b usually use the Chebyshev or the con-
jugate gradient method, or, more generally, a residual minimization method to
accelerate the convergence of a basic stationary iterative scheme. Such schemes

are obtained by a regular [6] splitting of the coefficent matrix A

A=Q—-(Q-A) (1.1)
and setting
Qarn = (@-Azatd .. (12)
or equivalently
Zop1 = (1= Q7 A)z, + Q7' (1.3)

The convergence of the stationary matrix iterative method (1.3) starting with
some initial approximation zo will converge the faster, the better the product
Q~!A approximates the unity matrix.

The splitting matrix @, which can be viewed as an easily invertible approximate
to A, is also termed the left preconditioning matrix. Conversely, setting y, = Qzn,

one obtains the right preconditioned iterative scheme based on the same splitting

ynr1 = (I = AQ™) ya +b (1.4)
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The product AQ~! is the right preconditioning matrix. If Q can be factored
eg. @ = Q1Q:2 then a split preconditioned iteration may be constructed with
Yn = Q2%x

ynr1 = (I — Q7 AQ;") ya + Q7' (1.5)
Since these preconditioning variants base on the same matrix splitting, the iter-

ation matrix G has the same spectral radius in all three cases
p(G)=p(I-QA)=p(I-AQ7") =p(I-Q'4Q;")  (16)

and hence the convergence rate is the same in exact arithmetic. For certain matrix
structures the split preconditioning (1.5) has algorithmic advantages. In this work
we present a comparison of preconditioning matrices @) applied to the solution of
drift—diffusion type equations arising in semiconductor device simulators.

The selection of a specific Q is guided by the following imperatives:

1. @ should approximate the spectrum of A.
2. @ should easily be computable.

3. Computing e.g. ¢ = Q~'Ap ,¢ = AQ " 'p or ¢ = Q7' AQ;'p should be com-
putationally feasible. Since the basic linear operations ("BLAS’) in iterative
solvers such as matrix-vector multiplies, vector updates and dotproducts
can be executed very fast on vector computers, also preconditioning back-

solves should be vectorizable, a requirement that is often not easy to meet.
The following preconditioners will be discussed [2](3]:

1. @ = I the null preconditioner. In this case (1.3) is the Richardson method.

2. Q = D the (block) Jacobi preconditioner. D is the (block) tridiagonal part
of A.

G- (o) (o-r) o

the SSOR preconditioner. L,U are the stricly upper and lower triangular

parts of A, and w is the overrelaxation parameter in the interval [1,2].
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4. Q = (D + I:) D1 (D + U) the incomplete LU factorization (ILU) precon-
ditioner. L and U are strictly lower and upper triangular matrices and D
is (block) diagonal. A prescribed sparsity pattern for the triangular factors
allow an approximation of A of different levels. The diagonal matrix D is
constructed such that certain algebraic properties of the linear operator are

preserved, most important of which is the requirement [5]:
diag (Q) = diag (A) (1.8)
or alternatively Gustafsson’s modification [4]:

columnsum (Q) = columnsum (A) (1.9)

or a parametrized combination of both.

It will be shown on representative test examples taken from the three-dimensional
device simulator MINIMOS, that the incomplete factorization preconditioners of
level 1 exhibit a computational optimum, concerning storage requirements and
arithmetic work for the incomplete factorization at the beginning of the iteration
and the particular backsolves at every iteration.

We present implementations on vector supercomputers [1] such as the CRAY-2,
the FUJITSU VP200, vector-concurrent mini-supercomputers such as the AL-
LIANT FX40, and a 6-processor parallel DIGITAL VAX 6260 computer.
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