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Abstract 
We summarize our experience in solving the three-dimensional carrier continuity equations in our 

MOS/MES-FET simulator MINIMOS S. First we give a brief overview of the algebraic properties of the 
coefficient matrices. We show that the matrices are symmetrizable and can be solved by the symmetrized 
preconditioned CG algorithm. Since the symmetrization matrices are computationally infeasible due to 
their enormous dynamical range, we turn our focus to various iterative accelerated methods for nonsym­
metric matrices. Of these methods the BICGS algorithm together with (unmodified) ILU preconditioning 
exhibits an optimum of reliability, convergence speed and memory consumption. A controllable level 
of fill-in during factorization can handle the badly conditioned systems which we frequently find in our 
simulations. 

1 The Basic Partial Differential Equations 

In our MOS/MES-FET simulator MINIMOS 5 the static semiconductor equations are solved self-consistently 
on a three-dimensional rectangular domain using finite difference discretization. The static semiconductor 
equations (18] for the variables ( ,,P, n,p) consist of the Poisson equation 

div {f · grad,,P) = -p 

with the space charge p = q · (p - n + Njj - N;_ ), and of the carrier continuity equations 

divJ: = q · R 

divJ; = -q · R 

where the carrier transport is modelled by an extended drift--<liffusion approach 

1: = q · µn · n · (grad,,P +~·grad ( n · k·i")) 
1; = q · µP · p · (grad,,P - } ·grad (P · k ·~,)) 

Let Fn ,p denote the effective driving forces for electrons and holes that depend on the local carrier temper­
atures Tn ,p [3][19] 

Fn ::: lgradtjJ - ~ · grad ( k·:" · n) I 
Fp ::: lgrad,,P + ~ ·grad ('"~• · p) I 
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Carrier heating is modelled by a carrier temperature depending mobility µ~.~SF 

LISF 2µ~~S µ -
n,p - 1 + ( 1 + Cµ*l~f n••) On")~ 

with O'n = 2,a,, = 1, where µ~~s denotes the zero field mobility due to lattice-, impurity- and surface 
scattering [19)[20]. The carrier temperatures Tn,p are formulated as 

T. T, 2 q ( •at)2 ( 1 1 ) 
n,p = 0 + 3. k. Tn,p. Vn,p • µLISF - µLIS 

n,p n,p 

The expression Ron the right hand side of the transport equations represents the sum of the impact ionization 
rate, the Shockley-Read-Hall and Auger recombination rates 

R=RII +RSRH +RAU 

Impact ionization is modelled by [18] 

Rll =-an . p:.1 _a,, .11;1 
q q 

in which the an,p depend exponentially on the local absolute electric field 

- ( fJn,p) O'.n,p - O'.n,p . exp -TEf 
The SRH recombination rate is expressed by 

SRH (n ·p-nl) R = ~~----'-~~~-'--~~ 
Tp (n + ni) + Tn (p + P1) 

and the Auger recombination rate is given by 

2 Discretization and Iterative Solution of the Nonlinear System 
of Equations 

In MINIMOS the set of equations described in the previous section is discretized on a threedimensional 
rectangular domain together with appropriate boundary conditions. For the idealized ohmic contacts we have 
Dirichlet boundary conditions. For the artificial interfaces in the deep bulk homogenous Neumann boundary 
conditions are applied, whereas for the case of non-vanishing interface charge and interface recombination 
velocity we have non-homogenous Neumann boundary conditions. We note that the boundary conditions 
may be given implicitly. For example in the case of the Schottky contact in a MESFET simulation with 
MINIMOS, the boundary condition is given by the current densities at the Schottky contact [11] 

Jn -q · Vn · (n - no) 

J,, q · vp · (p - Po) 

no n; ·exp (- ~;) 

Po n; · exp ( t: ) 
where 1/J. is the (fixed) surface potential on the Schottky contact. The nonlinear system of equations is 
solved by decoupling the three partial differential equations (Gummel's algorithm [l]). A tensor product 
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grid, strongly nonuniform due to the rapid variation of the carrier concentrations, is used . MINIM OS f'J is 
capable of handling non-planar interfaces . This is achieved via the well known box integration concept . 
The nonlinear Poisson equation is linearized by a one-step Newton iteration . Using finite difference di s­
cretization, the resulting system of linear equations is symmetric, positive definite and has property A. 
The carrier continuity equations are nonlinear as well, due to the dependence of µn,p on the driving forces 
and of the right hand side Ron t/;, n and p. 

The dependence of the mobilities µn ,p on n and p, respectively, is neglected. The influence of the der iva­
tives of the impact ionization rate with respect to the carrier concentrations is neglected, too. This seems 
justified, since this quantity is not updated at every nonlinear iteration but in a generation subcycle. For the 
recombination rates RSRH and RAU, however, the derivatives with respect to the carrier concentrations are 
computed for the following reason . It can easily be seen that the derivatives of RSRH with respect to n or p 
always increase the diagonal dominance in the linear system of equations, a welcome effect . Unfortunately, 
the derivatives of RAU with respect ton or p, may decrease the diagonal dominance. Such a negative contri­
bution to the main diagonal can possibly destroy the definiteness of the resulting linear system. Therefore 
the negative contributions to the main diagonal are discarded in Gummel's algorithm. 
The discretization of the carrier continuity equations has to be done very carefully due to the layer-like 
behaviour of the variations of the carrier concentrations. In MINIMOS, the Scharfetter-Gummel interpo­
lation scheme [17], modified for the carrier temperature dependent mobilities, is used . The box integration 
scheme assuming constant R within a box produces an nonsymmetric, but positive definite system of linear 
equations, again with property A. 
For a vanishing derivative of R with respect to the carrier concentration n or p, respectively, only semidefi­
niteness of the equations is guaranteed, since each column sum of the offdiagonal elements equates the main 
diagonal element for all variables . Since we assume our problem to be well-posed, a zero eigenvalue and 
hence a singular system is unlikely to occur. 
The solution of the nonsymmetric linear systems in the two-dimensional version of MINIM OS is performed 
by Gaussian elimination. This is due to the fact that the number of the mesh points is sufficiently small (for 
most simulations) to outperform any iterative solver. Moreover , there is the argument of the guaranteed 
stability of the LU decomposition. For the three-dimensional case this is no longer true. An optimized sparse 
matrix solver for the three-dimensional carrier would allocate roughly (N X ::; NY ::; NZ) 

(NXY)2 . NZ -1 
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words, the corresponding flops would be greater than 

NXYZ · (14 + NXY (5 + 0.5 · NXY)) 

These numbers are prohibitive for computers without very large primary and secondary storage space. Thus, 
iterative solution methods have to be used. 

3 Symmetrization of the Coefficient Matrices 

The coefficient matrices of the linear systems arising from the discretized transport equations are similar 
to symmetric positive definite matrices. This can be shown as follows. The nonsymmetry in the coefficient 
matrices is introduced by a different sign in the Bernoulli weights of two corresponding coefficients in the 
Scharfetter-Gummel (17] interpolation scheme. For two consecutive points in the naturally ordered scheme, 
e.g. the east coefficient of point i, A(i), and the west coefficient of point i + 1, B(i + 1), we have, for the 
electrons as carriers, ignoring equal factors for both coefficients: 

where B denotes the Bernoulli function 

A( i) = E ( iJ!;+u;"'' ) 
B(i + 1) = B ( "1; -u~;+• ) 

B(x ) - x 
- exp(x ) - 1 
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j,F'rom these relations one can see immediately that the matrix A 

A =W- 1 ·A·W 

with wjj = e:i:p ( !.&.-) is symmetric, hence w- 1 is a symmetrization matrix. The definiteness of A follows 

from the definiteness of A. For the hole transport equation the symmetrization matrix is W. 
The problem with these matrices is their enormous dynamical range. The maximum allowed scaled absolute 
bias voltage at room temperature in MINIMOS is 20 ~,0118 = 775. An algorithm using the symmetriza­
tion matrix would have to compute inner products of the form (W:i:, Wy) and (W- 1:i:, w- 1y) over the 
previously sketched number range. Though there is the possibility to scale the symmetrization matrix ap­
propriately, the unavoidable truncation error causes severe convergence problems on computers with only 
a medium exponent range. This strong dependence on the machine hardware has led us to the conclusion 
that the symmetrizability of the semiconductor transport equations is difficult to exploit and therefore only 
of restricted practical interest. 
For scientific purposes we have implemented the symmetrized line CJ-CG [4] method and the ILU precon­
ditionend RF -CG method (ORTHORES) acceleration. On the conference, we shall present numerical results, 
carried out in quad-precision on a VAX 8800 computer. 

4 The NSPCG Package 

A large number of algorithms for the solution of general nonsymmetric linear systems have been published 
in the last few years. In our application, all of these methods are, as far as we have investigated, applicable 
only with an effective preconditioner. An existing effective preconditioner brings many distinct methods to 
convergence in reasonable time and is thus crucial for the application of iterative accelerators to the transport 
equations. 
A fine tool to study the applicability of various iterative schemes together with a number of established 
preconditioners on a certain application is the NSPCG package [12], included in the ITPACK2C package 
from the Center of Numerical Analysis at the university of Texas in Austin [9][8]. 
In the following section we present results obtained from the NSPCG package which was installed together 
with MINIMOS 5. The NSPCG allows both a large number of preconditioners together with many accel­
erators. Testing all combinations would be a very tedious task. Moreover, it has to be stated that a large 
variety of MINIMOS test problems have to be solved in a sufficient manner. Finding the best pair (precon­
ditioner, accelerator) over a given set of model problems is a two-dimensional discrete optimization problem. 
Fortunately, it turns out that only a few combinations of those possibilities meet our requirements as will 
be outlined in the following. 

5 Selecting an Efficient Preconditioner 

At the beginning of our development, a block-Jacobi preconditioner was used, either as a line or as a plane 
preconditioner. This choice was motivated by our Poisson equation solver, the line CJ-CG method [5]. Un­
fortunately, this precondititioner was not stable for all our test examples. Especially at high bias voltages, 
the method failed and was sensitive to the selection of the starting vector. Moreover, the usual direction 
sensitivity due to the line or plane elimination process is most inconvenient and forces the swapping of the 
matrix to the most favourable direction, which was in most cases a plane orthogonal to the main current 
flow. We believe that the block Jacobi preconditioners are safely applicable only for low to medium biased 
device simulations. 
Fortunately, a most favourable preconditioner was found in the incomplete LU factorization technique [7], 
denoted by IC(k). 

The index k denotes a. controllable sparsity pattern along the matrix diagonals, k=O denoting no fill-in except 
the original matrix nonzero pattern, k=1 allows fill-in caused by the original nonzero pattern but no further 
and so on . As expected, a higher degree of fill-in reduces the iteration count at the same time increasing 
the number of operations per iterations and the memory requirements . Obviously, the parameter k poses an 
optimization problem, namely choosing the appropriate degree of fill-in in order to minimize the flop count 
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per iteration. This problem is addressed in the next section. 
One closely related preconditioner is the modified incomplete factorization denoted by MIC(k) [2] . Here the 
diagonal pivots of the factorization are adjusted such that Q-A has zero row sums, where Q is the inverse of 
the preconditioning matrix. We observed that none of the modified incomplete factorizations including the 
block versions behaved satisfactorily. However, choosing the diagonal pivots such that Q-A has zero column 
sums produced roughly the same iteration count as the unmodified incomplete factorization. Selecting a 
modification factor w in the interval (0, 1) in order to tune the modification, we observed a decrease in the 
iteration count of up to 20 percent at w = 0.8. 
There are a number of other preconditioners such as the SSOR, least squares polynomial, Neumann polyno­
mial and their line and/or block variants. None of them is in our opinion competitive with the mere ILU 
factorization. 

6 Choice of Accelerator 

With ILU preconditioning of various levels a number of accelerators converges. We categorize the iterative 
methods together with the accelerator implementation as follows: 

- Normal equations (LSQR) 

- Generalized conjugate gradients (ORTHOMIN (l), ORTHORES (l), GMRES(l)) 

- Lanczos methods (LANMIN ,LANRES,BCGS) 

Simulations carried out with the above accelerators result in the following observations. LSQR [13) converges 
monotonically but with extremely low speed due to the bad condition number of the normal equations. For 
high bias voltage simulations, convergence stagnation was observed. 
USYMLQ as well as its counterpart USYMQR[16], two methods working on a quasi Krylov space, converge 
monotonically with significantly higher speed than LSQR. ORTHOMIN(l) and ORTHORES(l), however, converge 
definitely fast. The iteration history of both is quite similar, reflecting their algorithmic closeness in the 
non-symmetric but definite case. The parameter l denotes the number of back vectors to be used in the 
purely truncated algorithm, for which a value of 5 was used in our numerical experiments. 
It is interesting to notice that both ORTHODIR [23] [6) and LANDIR, its Lanczos equivalent, fail to converge. 
The Lanczos methods represented by LANMIN and LANRES are altogether relatively similar in convergence 
and yield roughly the same iteration count as ORTHOMIN and ORTHORES. 
GMRES (l), the general minimum residual method of Saad and Schultz [15], converges monotonically with 
slightly more iterations than the Lanczos methods but with significantly less CPU time per iteration. We 
suggest that the IC ( 1) preconditioned GMRES (5), providing the parameters for the stopping criterion auto­
matically, is the only viable alternative to the IC(1) preconditioned BCGS [21). The BCGS in its polynomial 
formulation computes the square of the corresponding error-reducing polynomial of LANMIN and therefore 
yields significantly faster convergence. In many cases, the speed is slightly less than twice the speed of 
LANMIN . 
To demonstrate the performance as well as the impact of the various degrees of fill-in in- the incomplete 
factorization an example is given below. An n--channel MOSFET simulation is taken with 3V drain and 1 V 
gate bias. The hole carrier transport equation is selected from the first full Gummel iteration. The mesh is 
33 x 33 x 33 in NX, NY and NZ direction. The standard stopping criterion 

with ( = 10-6 was used, where v(n) denotes the current iterate and :zn = Q'j/Q£ 1rn the current pseu­
doresidual. The maximum iteration count was set to 100 and a real workspace limit of 50 · N XY Z was fixed. 
The table below shows the results. 
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The first column denotes the iteration count, the second the consumed CPU time in seconds on one 
processor of a VAX 8800: 

METH ORES GM RES LAN MIN LANRES BCGS 
IC(O) - - - - 72 294 BR BR 40 170 
IC(1) 38 161 37 146 34 172 34 197 21 112 
IC(2) 33 171 31 181 25 198 25 262 16 138 
IC(3) - - - - 21 404 21 420 12 196 

A hyphen denotes that the method, though obviously convergent, failed to converge within the iteration 
limit. For IC(O) all methods except BCGS and LANMIN failed to converge. A breakdown ofLAlfRES is encoun­
tered at a relative accuracy of 10-5 . For IC(3) an excess of memory consumption took place for the first 

, two methods. It can be seen that LANMIN and LANRES, both with the same iteration count, requires slightly 
less than twice the iteration count of BCGS. 
Obviously, the BCGS method with IC(1) preconditioning is a clear winner. For a no-fill vector computer 
implementation, BCGS with IC(O) is recommended. BCGS 

7 Implementations on Scalar, Parallel and Vector Computers 

MINIMOS 5 as well as its solver package is being developed on a VAX 8800 with two processors. Indepen­
dently from the NSPCG package, FORTRAN production code for the point/line/plane Jacobi preconditioner, 
the IC(O), MIC(O), and their line variants were developed. As accelerators we implemented the symmetrized 
CG, LANRES and BCGS. We stress that the iterative results are basically the same as the ISPCG parameters. 
Execution speed of our production code was slightly less than doubled. 
A two-processor implementation of the preconditioned Lanczos algorithms was installed on our VAX. Such 
a parallelization is relatively simple, because the Lanczos Methods use both the original and the transposed 
system. A speedup of almost hundred percent was achieved. 
In cooperation with Siemens-PDS in Vienna, the IC(O) preconditioned BCGS method ior the carrier conti­
nuity equations and the line CJ-CG method for the Poisson equation was recently installed and optimized on 
the Fujitsu VP200 supercomputer at Siemens .Munich. 
More detailed implementational notes including our implementation of the hyperplane ordering method [22] 
for the computation of the IC(O) factorization will be made at the confere nee, together with measuring 
data from the installation on the CRAY-2 supercomputer at the RUS Stuttgart. 
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