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Simulation of ULSI Processes and Devices
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Devices with feature sizes less than a micrometer are required for monolithic ULSI circuits. These
devices can only be efliciently developed with the aid of computer simulation. This contribution is
intended to review the state of the art in process and device simulation for these ULSI devices.

1 Introduction

Simulation has become indispensable for the devel-
opment and redesign of devices in the area of ULSI.

Process simulation is necessary to understand the im-
pact of successive process steps on doping distribution
and wafer topography. We intend to review the state of
the art in modeling ion-implantation, annealing, diffu-
sion and thermal oxidation.

As to device simulation, the physical assumptions
which are required to describe carrier transport are dis-
cussed. Particular emphasis is put on the extension of
the classical drift-diffusion approach in order to meet ac-
curately the requirements of ULSI device analysis.

2 Process Simulation

The device fabrication processes can in principle be
categorized into two groups. Lithographic processes
which build up the wafer topography, and doping pro-
cesses which determine the electrical properties of the
intended device for a given structure. The first group
consists of deposition and etching with spatial selectiv-
ity in order to enable structuring. The second group is
composed of ion-implantation, annealing, diffusion, ther-
mal oxidation and epitaxy.

2.1 Ion-Implantation

Ion-implantation has developed into the most impor-
tant doping technique for integrated circuits.

To describe ion-implantation profiles methods based
on distribution functions together with spatial moments
have been used widely in the last two decades. In princi-
ple these methods assume a functional type for the dis-
tribution function and calculate its free parameters from

its spatial moments. The spatial moments may be ob-
tained either by experiments [57] or by theory [20, 36, 79].

The above sketched methods are based on point-
responses in (semi-)infinite targets [56] and suffer in ac-
curacy for complex targets [58]. As a review on these
problems [59, 68] can be recommended.

To overcome these drawbacks more sophisticated
models based on Boltzmann transport equations {21, 70]
or Monte Carlo simulation [9, 38) have to be applied.
The Monte Carlo method can be extended to the simula-
tion of recoil cascades and defect production [25, 28, 74].
Recently major efforts have succeeded in increasing com-
putational efficiency [25, 26, 62].

Present investigations focus on channeling effects in
order to explain the deeper penetration of ions implanted
in channeling direction [27, 39, 44]. It has been shown
that the electronic stopping power is significantly re-
duced for channeled ions. In Fig. 1 a profile of boron
implanted in channeling direction is compared with sim-
ulations [27]. It shows that the experimental data can
only be reproduced by simulations using a model for the
electronic stopping power which depends on the impact
parameter (Oen-Robinson [46]).

2.2 Diffusion

Diffusion is the physical mechanism which is responsi-
ble for the redistribution of impurity atoms. As a review
on this problem [5] can be recommended. The diffusion
of dopants is assumed to follow the two laws of Fick.

J:7D~(gradC’tf;-E%~C'a~grad'zﬁ> (1)
¢,
aTHLdivJ:o (2)
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Fig. 1: Boron implanted in <11I1> Si
150 keV, in channeling direction

For any dopant C; is the total concentration, C, is
the electrically active part of the concentration, z is the
charge state, and i the electrostatic potential.

Up to now, the determination of the nature of the ef-
fective diffusivity D has accounted for most of the work
in modeling. It is commonly assumed that dopants in sil-
icon diffuse by interaction with point defects (vacancies,
interstitials) in various charge states [13].

The first well-established model has been proposed
by Fair [17]. The diffusion via vacancies in each charge
state is proportional to the concentration of the respec-
tive vacancy species.

D = D°+ D Cy+D=Cy + DYCY (3)

The existence of vacancies of just four charge states (neu-
tral o, single negative —, double negative = and posi-
tive +) has been shown by Watkins [78]. The tempera-
ture dependencies of the individual diffusivities in (3) are
modeled with Arrhenius laws. The normalized vacancy
concentrations can be obtained by a simple mass action
law [66].

Basically, the electrostatic potential i is to be ob-
tained by solving the Poisson equation, though in almost
all cases the zero space charge approximation can be ap-

plied [32].

At high dopant concentrations not all dopant atoms
are ionized due to clustering and precipitation. The elec-
trically active part C, of the concentration must be es-
timated either by static relations [22] or the solution of
appropriate differential equations [32, 75].

Unfortunately Fair’s model (3) cannot be applied
when anomalous diffusion effects associated with surface
injection of defects are considered. Oxidation, nitrida-
tion and oxinitridation are all well known to perturb the
defect concentrations and therefore the dopant diffusivi-
ties [1, 15, 41, 71].

To account better for the point defect concentrations,
the diffusion coeflicient is usually split into a vacancy and
an interstitial contribution in the form [4]

D:Di-<fi'oi;’q+(1—fi)-%) (@)

with the diffusivity under inert and intrinsic conditions
D;, and the interstitial and vacancy concentrations C}
and Cvy, respectively., The factor f; characterizes the
contribution of interstitials to the diffusivity. The super-
script eq denotes equilibrium conditions. The interstitial
and vacancy concentration can be achieved by solving
standard continuity equations.

C
%tl = div(Drgrad Cr) — ky - (C1Cv — CF2C5)  (5)
8Cy . eq veq
w5 = div(Dy grad Cv) — ky - (C1Cy — C{CY)  (6)

Dy, Dy, and k; are the diffusivities for interstitials and
vacancies, and the bulk reaction constant, respectively.
The reported values for the diffusivities and the equi-
librium concentrations cover a range of several orders of
magnitude {11, 71, 72], and there are many open ques-
tions regarding the bulk reaction constant and the for-
mulation of the boundary conditions [35].

Clertain anomalous diffusion effects, such as the kink
in phosphorus profiles and the enhanced tail diffusion in
boron and phosphorus profiles become more pronounced
at low temperatures [16, 48]. As an example Fig. 2 shows
the simulation of phosphorus diffusion {51]. During rapid
thermal processing [40], a transient diffusion enhance-
ment has been reported. The recent approaches in mod-
eling these effects are'based on point defect and pair for-
mation kinetics. Related simulations use a pair-diffusion
model, consisting of 5 equations for interstitials, va-
cancies, substitutional dopants, dopant-interstitial pairs,
and dopant-vacancy pairs.
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Fig. 2: Simulation of phosphorus diffusion
at 1000°C compared to experimental data
(+ 60 min, © 250 min)

Although simulations using a pair-diffusion model
have been successfully fitted to experimental data {12,
43,47, 51}, further investigations are definitely necessary
to determine the numerous parameters in a physically
sound manner. New experiments will have to be cleverly
designed in order to isolate the various overlapping and
compensating effects.

2.3 Oxidation

The oxidation of silicon is a thermal process by which
the oxidizing species diffuse through an existing oxide
layer and react with the silicon atoms. The chemical
reaction is accompanied by a volume expansion (125 %
for the 5i-510; complex) so that the existing oxide is
forced away by the newly formed oxide layer, and a visco-
elastic flow of the oxide film. As a review on the whole
subject {42, 52} can be recommended.

The simulation of the growth has been based for
many years on the work of Deal and Grove [14]. In
their paper they have assumed the fluxes across the am-
bient/oxide interface, through the oxide and at the ox-
ide/silicon interface to be equal. Thereby one obtains
the following relationship for the oxide thickness d.,.

&yt A dy =B (t+1,) (7

B and B/A are the parabolic and linear oxidation
rate, respectively. f, accounts for an eventually exist-
ing initial oxide. This formula is well suited to describe
the oxide growth for wet oxidation. For dry oxidation
deviations from (7) have been observed, and several au-
thors [29, 52, 73] modified (7) to take the rapid initial
oxidation into account. Recently some papers [45, 80]
have been published, predicting a power law in the form
doe = ath

For two- and three-dimensional oxidation no well es-
tablished theory is available today, cf. [33]. The first
successful attempt to simulate the lateral oxidation near
a mask edge (bird’s beak) dates back to Penumalli [49],
predicting the oxide shape a-priori in a parametric form.
More realistic models for the moving Si — 570, inter-
face are based on a steady-state oxidant diffusion, and
visco-elastic flow of the oxide {60, 63, 76]. For temper-
atures above 950°C, incompressible creeping flow equa-
tions are commonly used, e.g. {33, 77]. Considerable ef-
fort has been spent on analyzing the influence of mechan-
ical stress on the kinetic parameters of oxidation [53, 69],
and on models for the interface conditions which describe
the point defect generation and recombination [35].

Further studies are evidently needed to clarify in suf-
ficient detail the physics underlying oxidation.

3 Device Simulation

Device Modeling based on the self-consistent solu-
tion of the basic semiconductor equations dates back to
the famous work of Gummel in 1964 [23]. Since then
numerical device modeling has been applied to nearly
all important devices. The current relations which are
the most complex equations out of the set of the basic
semiconductor equations have been frequently subject of
discussions, in particular in view of their applicability to
submicron devices. Methods how to overcome the lim-
itations of the classical drift diffusion approach will be
discussed in the following.

3.1 Drift Diffusion Model

The classical semiconductor equations [64] for the
variables (¢,7, p) consist ‘of Poisson’s equation

div(e - grad ) = —p (8)

with the space charge p = g-(p —n+ N — N}, and of
the carrier continuity equations

divly =¢- R, divly=—¢-R. (9)
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The drift-diffusion approximation for the current den-
sity utilizes a simplified form of the momentum conser-
vation equation.

Jn = ~qUnn- (gradd)— 71—1 - grad (EZ—" n>> (10)

1 kT
Jp = —qppp- (grad¢+ ; - grad (*q—" -p>) (11)

Commonly it is assumed that the carrier temperatures
T, and T, are equal to the lattice temperature, and that
the gradients of the carrier temperatures are zero. The
current relations include the mobilities of electrons and
holes, which have to be appropriately modeled to de-
scribe correctly the various scattering phenomena. A
great variety of scattering mechanisms has to be taken
into account. Most important are lattice scattering, ion-
ized impurity scattering, velocity saturation, and surface
scattering. A review of many models can be found in [64];
the evolution of one particular model for MOS devices is
presented in [65].

3.2 Classical Monte Carlo Method

The principle of the Monte Carlo method as applied
to device simulation is to simulate the motion of a car-
rier in the state space. This motion consists of an al-
ternating sequence of drift in the electric field and scat-
tering events. The drift time of the electron, the type
of scattering and the final state are random quantities
with probability distributions depending on the underly-
ing semiconductor model. The duration of the free flight
is chosen randomly according to the cumulative proba-
bility [18]

P(t) = 1 — exp (- /Ot A(k(t’),t’)dt’) . (2

where A(k,t') denotes the total scattering rate, which
is the sum of all individual scattering rates. Usually
fictitious “self scattering” is introduced to simplify the
free flight time calculation [54, 55].

In time invariant simulations the quantities of interest
are obtained as steady state averages over the carrier
ensemble which can be efficiently calculated by

_ Y Ak )M (kys)
2 Alkei) ™"
where the sum covers all electron free flights; ki, indi-

cates the wave vector at the end of the free flight imme-
diately before the i-th scattering event (50, 61].

< A(k) > ) (13)

3.3 Quantum effects

When the potential gradients approach very high val-
ues, the resulting quantum effects cause differences from
the drift diffusion model in both carrier concentration
and transport. Surfaces, heterojunctions, and other lo-
cations where the physical parameters of the materials
change have therefore to be taken into special considera-
tion. Although the influence of these phenomena seems
to be drastic at first glance, experience which has been
recently gathered proves that many problems with sur-
face and interface effects can be accounted for by simple
adaptions of the simulation parameters near the surface.

As for the determination of carrier concentrations in
quantum effect devices, such as heterostructures and su-
perlattices, the effective mass approximation is widely
used as a basis to the calculation [3].

In equilibrium, the one-electron approximation pro-
vides a time-independent Schrédinger equation

2
<~ Z?n'A + V(I'y,,)) ¥ =FEY (14)
which can often be reduced to one dimension.

Since the potential energy V. 4,.) depends strongly on
the carrier concentration, the solution must be achieved
self-consistently. Fig. 3 shows as an example the poten-
tial energy in the inversion layer of a MODFET together
with the first 3 wave functions.
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Fig. 3: The first 3 Eigenfunctions of the
Schrédinger equation together with the self-
consistently calculated potential energy in a
MODFET inversion layer (length unit pm,
potential energy unit eV, wave function scale
unit 107 m=92)



Some methods have been suggested how to consider
many-body-eflects and image forces easily by including
additional terms in the potential energy V [67]. Different
types of carriers or different valleys in the energy band
structure are sometimes taken into account by solving a
system of coupled Schrodinger equations (8.

These methods have been successfully used for the
calculations of energy levels and transition energies in
optical devices.

As for the transport in quantum well devices, ef-
forts are currently made to couple the wave functions
with the classical drift-diffusion approximation or Monte
Carlo methods. The aim is to achieve models that are
as straightforward and fast to implement as the drift-
diffusion approximation and fit the quantum effects with
sufficient accuracy.

The deviations between the classical and the
quantum-physical solution {81] depend on the density of
eigenenergies in the energy scale compared to kT, which
decreases when the quantum well width increases, and
on the boundary conditions for the eigenwaves, which
control the wave function shape near interfaces and sur-
faces.

3.4 Extended Drift Diffusion Model

A more complete model for carrier transport is based
on the hydrodynamic equations derived from the Boltz-
mann transport equation, which takes into account en-
ergy and momentum relaxation effects {10]. Improved
simulations can be achieved either by solving the hydro-
dynamic equations selfconsistently or by solving them
under some simplifying assumption. One such approach
vields a model for the carrier temperatures (Ur = kT/q)
which depends only on local quantities [24].

2 1 1
Urnp = Uro + % 7,y (033)° ( - > (15)
» g Te \One) \ ITSE MI;IPS

The energy relaxation times 7; , are in the order of 0.5 ps
and just weakly temperature dependent [6]. The field de-

LISE are modeled more accurately by

graded mobilities y
using carrier spec1ﬁc driving forces instead of the simple
electric field [24] (notation see [64]).

This local mode] for the carrier temperatures allows
a first order treatment of hot carrier effects employing a
drift diffusion based device simulator.

In more recent developments the use of fully nonlocal
transport coefficients is attempted. These coefficients are
in general functionals of the local distribution function
[7]. Therefore in regions with large spatial inhomogene-
ity analytical models become inadequate. However, the
Monte Carlo method is well suited to evaluate these co-

efficients using the following definitions for mobility and
thermal voltage:

| <v>]

T L T
TTRHOw(B) > T T g e (0

<v> is the average parlicle velocity and A, (F) is the
momentum scattering rate. The thermal voltage in its
rigorous form has tensor property. Fig. 4 depicts the
main diagonal temperatures in the arca near the drain

of a quarter micron MOSFET.
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Fig. 4: Lateral (Ty,) and transversal (Ty,)
electron temperatures in a guarter micron

MOSFET (units 1000 K)

4 CONCLUSION

The preceding sections put particular emphasis on
different details in the area of ULSI process and device
simulation. To benefit from the rapid progress in mod-
eling techniques coupling of the various modeling tools
becomes more and more important. The increase in per-
formance of néw computer systems and networks aids
this development. Integrated technology CAD environ-
ments make optimization of technology parameters fea-
sible in an automate manner (31, 34, 37].
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