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Abstract 

The discretization of the semiconductor equations in three-dimensional device 
simulators leads to very large sparse linear systems of equations. While the solution 
of the Poisson equation - e.g. by the conjugate gradient method- is straightforward, 
the iterative solution of the carrier continuity equations is nontrivial due to both 
the non-symmetry and the poor conditioning of the coefficient matrices. As a 
consequence we have investigated conjugate gradient-like iterative methods such 
as conjugate gradients applied to the normal equations, a symmetrized conjugate 
gradient method, ORTHOMIN, GMRES and three squared hiconjugate gradient 
algorithms. All these methods were implemented in conjunction with incomplete 
factorization preconditioners, since the large condition number of the coefficient 
matrices makes preconditioning indispensable. We demonstrate the effectiveness of 
our implementation on vector and vector-concurrent supercomputers, such as the 
Fujitsu VP200, Cray-2 and on minisupercomputers, such as the ALLIANT /FX40 
and VAX 6260. 

1 Introduction 

In this paper the computational 'number-crunching' aspect of the numerical solution of 
the three-dimensional stationary semiconductor equations on a rectangular domain is 

considered. This nonlinear boundary value problem (BVP) is usually tackled by either a 
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damped (and possibly inexact) Newton technique [3][6], or by the well-known Gummel­
algorithm [8], a nonlinear block Gauss-Seidel scheme. While the first method exhibits 
superlinear local convergence, the latter proves superior stability independent from a pos­
sibly poor initial guess. No Jacobi matrix is required thus keeping memory requirements 
low contrary to the Newt.on method. The locally linear convergence of Gummel's algo­
rithm, often considered as its major drawback, can be improved by nonlinear convergence 
acceleration [15]. In the sequel we shall deal exclusively with the latter method. 
The decoupled and appropriately discretized equations produce very large sparse systems 
of equations the solution time of which dominates program execution. In the case of 
Gummel's algorithm the discretization of the linearized Poisson equation for the electro­
static potential 'ljJ leads to a. symmetric positive definite coefficient matrix, which, under 
favourable assumptions on the grid, is well conditioned. 
For the carrier continuity equations however the situation is different (see e.g. [2]). The 
coefficient ma.trices of the discretized carrier continuity equations a.re nonsymmet.ric due 
to the usual exponential (Scharfetter-Gummel) interpolation scheme. Unlike the Poisson 
equation the continuity equation can be conditioned poorly, especially in the case of high 
terminal bias including substantial impact ionization. 
Iterative solvers for the linear systems appear to be the most suitable linear solution 
methods in the three-dimensional case. The solution of the Poisson equation by the pre­
conditioned conjugate gradient method is straightforward [16]. For the nonsymmetric 
continuity equations rapidly convergent and numerically stable solvers are sought. Con­
jugate gradient-like methods turn out to be the most suitable choice [14]. Convergence 
(and thus reliability) of the applied iterative method depends quite critically on the pre­
conditioner. The high quality of preconditioners based upon incomplete LU factorization 
(IL U) is firmly established in numerical analysis, thus we used adaptive fill-in IL U pre­
conditioning throughout our investigations. 
The recursion operations in the backsubstitution process of the triangular L,U factors con­
stitute the main computational bottleneck on a vector computer. We have implemented 
the triangular solvers using the well-known list vector technique [1 J resulting in a 130 
megaflop throughput for the triangular solves on the VP200 supercomputer. The main 
result of this paper is that the execution time of our three-dimensional device simulator 
on a vector-supercomputer is comparable to the execution time of the two-dimensional 
program version on a common minicomputer or workstation. 
The paper is organized as follows: Chapter 2 gives a brief overview of the basic partial 
differential equations and Chapter 3 treats the discretization and the iterative solution of 
the nonlinear system of equations. Chapter 4 deals with some important algebraic prop-



3 

erties of the nonsymmetric coefficient matrices. In Chapter .5 a number of methods for 
the iterative solution of nonsymmetric linear systems are reviewed and compared against 
some new iterative methods. Chapter 6 gives theoretical and Chapter 7 implementational 
notes on the used preconditioners. Chapter 8 concludes with numerical results. 

2 The Basic Partial Differential Equations 

We consider the time-invariant case of the semiconductor equations only. In the transient 
case additional terms increase the diagonal dominance of the discretized equations and 
therefore improve their condition number, if an implicit backward time difference scheme 
is used. The semiconductor equations [23] in the variables ('I/;, n, p) consist of the Poisson 
equation and the carrier continuity equations. Poisson's equation for the electrostatic 
potential 'I/; reads 

div (c · grad'I/;) = -p (1) 

with the space charge p = q·(p - n + C), where C denotes the net doping concentration, n 

the hole, p the electron concentrations and q the elementary charge. The carrier continuity 

equations for the electron and hole current densities l:,p read 

q·R 

-q·R 

where R denotes the carrier generation and recombination rate. 
The current densities l:,p 

(2) 

(3) 

(4) 

(5) 

are assumed to be proportional to the driving forces Fn,p' proportionality being deter­
mined by the carrier mobilities µn,p· Solid state thermodynamical statistics confirm the 
applicability of an extended drift-diffusion approach for the driving forces [11] 

-q ( grad'lj; - ~ ·grad ( k ·qTn · n)) (6) 

-q ( grad'I/; + ~ ·grad ( k ·qTP · p)) (7) 
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where earner heating is modeled by carrier temperatures Tn,p· Approximations for the 
carrier temperatures Tn,p can be derived by a series expansion of the energy conservation 
equations 

2 q € ( sat) 2 ( 1 1 ) 
Tn,p =To+ 3 · k · Tn,p · vn,p · µLISF - µLIS 

n,p n,p 

(8) 

with the Boltzmann constant k, the ambient temperature T0 and the energy relaxation 

times T~,p· The superscripts of µn,p denote the mobilities due to lattice (L), impurity (I), 
and surface (S) scattering and their decrease due to carrier heating (F). 

The carrier generation and recombination rate R on the right hand side of the carrier 
continuity equations represents the sum of the impact ionization rate Rn, the Shockley­
Read-Hall recombination rate RSRH and the Auger recombination rate RAU 

(9) 

3 Iterative Solution of the Nonlinear System of Equations 

We use finite difference discretization in a rectangular spatial domain to treat the semicon­

ductor equations numerically. At the idealized ohmic terminal contacts Dirichlet boundary 
conditions hold, at artificial interfaces in the deep bulk homogenous Neumann boundary 

conditions have to be applied. Inhomogenous Neumann boundary conditions are valid 

in case of interface charges for the electrostatic potential and in case of non-vanishing 
interface charge and interface recombination velocity for the carrier concentrations. 
The nonlinearity of the discretized coupled system of equations can be treated in different 
ways: Classical Newton or quasi Newton schemes make a simultaneous solution of the 
three semiconductor equations necessary and have a locally quadratic convergence behav­

ior. We restrict ourselves to the block iterative Gummel's algorithm [8], which allows a 
sequential solution of the three equations within one outer iteration. It is less sensitive 

to the initial guess than Newton methods but has the disadvantage of even sublinear 

convergence behavior in the case of high current simulations. The nonlinear Gummel 

modification of Poisson's equation is linearized by a first order series expansion. The non­
linearities in the carrier mobilities and carrier temperatures are neglected, the derivatives 
of RII with respect to n and p are updated in a superimposed impact ionization subcycle 
and can therefore be neglected, too. Both aR::H and a~:H increase the diagonal domi-

nance in the resulting coefficient matrices and are therefore taken into account. a~:u and 

a~;u do not necessarily have such a stabilizing effect. Negative contributions to the main 
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diagonal of the coefficient matrices are therefore discarded. The resulting scheme reads 

div 1: ( 1fk+1' l+1) 

divJ: ( 1fk+1, nk+1) 

-~ (8(p-a~+c)" (,p>+>-,p') j-p'-n'+c) 

-q. R (1fk+1,nk,l+1) 

q. R ( 1/ik+1, nk+1, pk+1) 

(10) 

(11) 

(12) 

In order to cope with the exponential dependence of the carrier densities on the elec­
trostatic potential and in order to allow carrier temperature dependent mobilities a mod­
ified Scharfetter-Gummel interpolation scheme [22] for the carrier concentrations is used. 
Nonplanar interfaces are discretized by the well-known box integration method. 

4 Algebraic Properties of the Coefficient Matrices 

The linear interpolation of the electrostatic potential between adjacent gridlines and the 
modification by Gummel's algorithm leads to a symmetric, positive definite, 2-cyclic coef­
ficient matrix of the discretized Poisson equation. The solution can easily be achieved by 
the standard preconditioned conjugate gradient algorithm. The exponential Scharfetter­
Gurnmel interpolation scheme in the discretization of the carrier continuity equations 
produces nonsymmetric, 2-cyclic coefficient matrices A. The diagonal dominance is guar­
anteed by the derivatives of Shockley-Reed-Hall and Auger recombination with respect 
to the carrier concentrations. In the absence of recombination terms the main diagonal 
elements equal the rowsum of the off diagonal elements. This implies at least semidefinite­
ness of A. 
From the exponential interpolation scheme it can easily be seen, that A can be transformed 
to a symmetric, positive definite matrix A [4] 

- -1 
A = Wn,p · A · Wn,p (13) 

by a diagonal matrix W with positive elements Wi· The Wi are given by 

( 1/ii ) 
Wi,p = exp 2 . Ut (14) 

for electrons and holes. Ut = k·T denotes the thermal voltage. The enormous number 
q 

range of the Wi,n,p inhibits an explicit symmetrization and a solution of the resulting sym-
metric linear system by conjugate gradients. For a maximum electrostatic potential of 5 
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Volts and a minimum temperature of 77K (liq nid nitrogen temperature) exponents of the 
order log10 ( Wi,rnax) = 164 arise. 
The symmetrizability guarantees a positive rea.l spectrum of A. Therefore iterative meth­
ods are safely applicable. 

5 Selected Iterative Methods for the Linear Systems 

We have selected some basic projection-type iterative methods [20] for the nonsymrnetric 
linear systems. In the following chapter some theoretical aspects and the practical ap­
plicability will be discussed. All of these methods are preconditioned by incomplete LU 
factorization. 

5.1 CGNR 

This algorithm applies conjugate gradients to the normal equations. It solves the sym­
metric, positive definite problem 

(15) 

by the classical conjugate gradient algorithm. It is clear, that the matrix-product AT A is 
never built explicitly. It constructs a unique sequence of vectors 

T ( T ) T ( T ) k-l T Xk E xo +(A ro, A A A ro, ... , A A A ro) (16) 

where l/rkJJ = min, which is equal to the orthogonality condition 

T ( T)2 ( T)k rk l_ (AA ro, AA ro, ... , AA ro). (17) 

Because of this minimization property the convergence behavior is strictly monotonic but 
it is determined by the squares of the singular values of A [25]. Therefore it can be 
expected that the convergence behavior is rather poor. Numerical experiments confirm, 
that this algorithm cannot satisfy our requirements. 

5.2 Symmetrized CG 

The similarity of the coefficient matrices to symmetric, positive definite (SPD) matrices 
can be exploited by a symmetrized conjugate gradient method, which avoids the explicit 
symmetrization of A [12]. The cumbersome symmetrization matrix W is only required 
for the computation of the iteration parameters, where it appears in the nominator and 
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denominator. This allows efficient scaling in order to avoid floating point under- or 
overflow. This algorithm constructs a unique sequence of vectors 

(18) 

The following orthogonality condition for the residuals holds 

J_ (w2 wzA w2Ak-1 . ) Tk r 0 , r0 , ... , 1 0 . (19) 

I 

This algorithm minimizes the [W2 A]2-norm of the error vector. In our applications this 
algorithm can only be applied in low voltage simulations, for which the number range of 
the symmetrization matrix W fits into the number range of the computer used. 

5.3 ORTHOMIN 

This algorithm [20] constructs a unique sequence of vectors 

(20) 

so that llrk II 
holds: 

min. Therefore the following orthogonality condition for the residuals 

(21) 

ORTHOMIN converges monotonically. The minimization property of this algorithm is 
guaranteed by explicit A2-orthogonalization of the kth search direction Pk to all previous 
search directions p 0 , p1, ... , Pk-I. This requires the storage of all previous search directions 
and the computation of k inner products per iteration. This is not possible in practice, 
so we use a truncated version of the ORTHOMIN algorithm. Only the last m (where m 
is a constant) search-direction vectors are kept. This restricts the storage requirements 
and the arithmetic work per iteration, but the ORTHOMIN algorithm loses its optimal­
ity properties. About the truncated version few theoretical results are available. Our 
implementation includes the GCR (generalized conjugate gradient) algorithm. 

5.4 GMRES 

Similar to ORTHOMIN this algorithm [21] mm1rmzes llrkll 2 • Xk belongs to the same 
Krylov subspace as with ORTHOMIN, but a unique sequence of vectors 

(22) 
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is built my means of an Arnoldi construction of an orthogonal basis. Assuming that the 
procedure has converged in k steps ( llrk II < E ), a k + 1 x k upper Hessenberg least squares 
problem has to be solved, so that Xk is the best approximation to the true solution. 
The minimization property of GMRES is equal to the orthogonality condition 

(23) 

and guarantees monotonic convergence. 
Full orthogonalization requires the storage of k "back"-vectors and the calculation of 
k + 1 inner products at the kth iteration. To limit storage requirements we use a restarted 
version of GMRES. The GMRES algorithm is restarted after m (where mis a constant) 
iterations, if it has not yet converged. The approximation to the solution at the end of 
every m iterations is used is initial value for the next m iterations. 
The least squares problem is solved by QR factorization using Householder transformation. 
The QR factorization of the upper Hessenberg matrix in addition provides the residual 
for no extra cost. As the QR factorization is updated for every iteration the residual is 
always known and the algorithm can immediately be stopped, when the required accuracy 
is reached. 
The truncated version of course loses optimality but restarting preserves monotonicity in 
the residual-norm. 

5.5 BIOMIN2 (CGS), BIORES 2
, BIODIR2 

They are built by squaring the Lanczos biorthogonalization algorithms BIO MIN, BIO RES, 
and BIODIR [10](24]. From the computational point of view they are more efficient than 
the original procedures. BIOMIN 2 (CGS) and BIORES 2 do not involve the matrix-vector 
multiplication AT v. This can be important, if the matrix-elements are stored in a general 
data structure. All three squared algorithms produce the same iterates for the same initial 
guess (as do the non-squared ones). 
In contrast to ORTHOMIN and GMRES the storage requirements of BIOMIN 2 (CGS), 
BIORES 2

, and BIODIR2 (also of CGNR and of the symmetrized CG) do not increase 
during the iteration process. 
The Xk belong to the Krylov subspace 

Xk E Xo + (ro,Aro, ... ,Ak-lr0 ). (24) 

For the residuals a biorthogonality condition holds: 

(25) 
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The biorthogonalizat.ion algorithms have no minimization properties. Therefore the resid­
ual does not decrease monotonically. Very often an erratic convergence behavior can be 
observed. This may increase the influence of roundoff errors, an effect which has always 
to be kept in mind because of the enormous number range of the coefficient matrices of 
the linear systems we have to deal with. 
The biorthogonalization algorithms may break down by division by zero, if certain inner 
products vanish. A breakdown is likely to occur, if r 0 and/or r0 are chosen inappropri­
ately, but was never observed in our examples. 
A comparison of the squared Lanczos algorithms shows, that BIOMIN 2 (CGS) needs less 
computational work per iteration than BIORES 2 and BIODIR2

• Roundoff errors cause 
the iterates of the three biorthogonalization algorithms to differ from each other during 
the iteration process. BIOMIN 2 (CGS) proves to be numerically most stable as illustrated 
by an example in Chapter 8. 

A comparison of all tested algorithms has shown that BIOMIN 2 (CGS) performs best 
for our applications in the sense of minimizing the overall computational work and storage 

requirements. This is remarkable, because it is· the only algorithm out of those we have 
tested, which has no minimization property. 

6 Preconditioning 

Due to the large condition number of the coefficient matrices of the discretized continuity 
equations efficient preconditioning is necessary in order to guarantee fast and reliable 
convergence of the chosen iterative methods for all of our different simulation problems. 
We are searching for easily invertible approximations to the matrix A which allow a 
transformation of the linear system Ax = b to the system Bx = b with superior spectral 

properties. The matrix Bis of course never formed explicitly. In addition to every matrix 
vector Av multiplication the linear system p-1w has to be solved where w = Av and P 
is the preconditioning matrix. This system must be solvable much easier than A-1b. 
We have implemented a block Jacobi preconditioner 

(26) 

where D is the tridiagonal part of A and incomplete LU (IL U) factorization precondi­
tioner [16] 

(27) 
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where Land U are strictly lower and upper triangular matrices and Dis a diagonal matrix. 
In the symmetric case lT = U holds and the preconditioner is the usual incomplete 
Cholesky decomposition (IC) preconditioner. 
For the Jacobi preconditioner left preconditioning has been chosen 

for the ILU preconditioners left and split preconditioning has been implemented 

PJi. 1 PJ;1 Ax = Bnu1• 1tx 

PJ; 1 APJi.1 PRx = Bnu.piitx 

p-1 p-lb - b 
R L = ILU1eft 

PJ;
1
b = bnu.piit 

(28) 

(29) 

(30) 

For the split IL U preconditioner x has to be unscaled at the end of the iterative process: 
P -1-

x = RX. 

It can be shown that stationary iterative methods based on the IL U splitting converge 
at least as fast as methods based on a Jacobi splitting. It can be expected that the ac­
celerators we have discussed in Chapter 5 behave in a similar way. On the other hand 
the computational work for the Jacobi preconditioner is smaller and as there are only 
first order recurrences vectorization and/or parallelization is more straightforward than 
for the ILU preconditioners. But there are a few disadvantages: As can be expected 
from theory the Jacobi preconditioner causes worse convergence behavior for all tested 

accelerators (see Chapter 5) than ILU preconditioners. For high bias simulations where 
the drift term dominates in the the current relations ( 6) and ( 7) unpleasant numerical 
effects can be observed, such as convergence stagnation or near breakdown in the Lanc­
zos process at the beginning of the iteration. Another point of distress is the sensitivity 
of the Jacobi preconditioner to the orientation of x, y, and z in the three-dimensional 
simulation domain. "Swapping" the coefficient matrix in the most favourable· direction 
causes computational overhead. The main disadvantage is that this direction is not the 
same for all our examples and sometimes changes during the outer iteration process of 
one example. As an efficient algorithm to detect the best preconditioning direction could 
not be established, we do not recommend this type of preconditioner for general use. 
The second class of preconditioners we tested extensively are the incomplete LU precon­
ditioners with allowable fill-in denoted by ILU(k) [1][5][13]. For k = 0 the matrices L 
and U are equal to the strictly lower and upper matrices L and U of A. The sparsity 
pattern of the triangular factors ( L + iJ) + iJ-1 + ( U + iJ) therefore is the same as for 
A. For an exact LU factorization of A the sp1a.rsity pattern of the triangular factors would 

result in banded matrices where the bandwidth is given by the distance N X · NY of 
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the outermost diagonals (denoting the coupling between the planes) from the main di­
agonal in the coefficient matrix A ( N X, NY, and NZ denote the number of gridlines in 

x-, y-, and z-direction). Fork = 1 the fill-in caused by the ILU(O) nonzero pattern is 
taken into account, for k = 2 the fill-in caused by the ILU(l) sparsity pattern and so on 
(ILU(NX ·NY) would be the exact LU factorization of A). It is easy to see that a higher 

degree of fill-in reduces the number of iterations which are necessary to solve the linear 
system but increases the work per iteration and the storage requirements. 
For the incomplete LU precondition er D can be computed such that diag ( Pnu) = 
diag (A) or alternatively such that Pnu - A has zero column sums, which leads to mod­
ified incomplete factorization type preconditioners (MIL U) originated by Gustafsson [9] 
for Poisson type equations (in the symmetric case this is equal to row sum ( Prc) = 
rowsum (A)). For the symmetric and positive definite Poisson equation the modulus 
of the main diagonal is greater or equal than the off diagonal elements of the very row (or 
column). For the coefficient matrices of the discretized carrier continuity equations an 
analogous relationship for the columns holds. A modification factor a in the interval [O, 1] 
is usually introduced to smoothly sweep between IL U and MIL U factorization. Our re­

sults concerning the choice of such a modification factor do not admit a clear statement. 

It seems that a = 1 always decreases the performance with respect to a = 0 slightly. 
We found a number of device examples where a choice of a = 0.5 yields a performance 
enhancement of about 103 to 303 concerning the iteration count. However, this gain is 

partly compensated by the higher arithmetic work for the factorization. This is rather 

disappointing, as for the symmetric Poisson equation a modification factor of a = 0.95 
reduces the iteration count up to 503. 
The (M)IL U(O) preconditioners can be implemented very efficiently. For the left (M)IL U(O) 
preconditioner we scale the coefficient matrix from the left side by b. The scaled matrix 

A .. 1.,t = DA can be written as a sum of a strictly lower, a diagonal, and a strictly up­

per matrix: A .. left = L .. left + D S/eft + u .. left. using this scaling the matrix vector product 
B ILUi.tt v can be simplified to 

An analogous simplification for the split (M)ILU(O) preconditioner is well known as Eisen­
stat's trick [7]. The coefficient matrix A is scaled symmetrically by iJ~ : A ... ptit = iJ~ AD~. 
Then Bnu 1.tv can also be written as •p. 

(32) 
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with 
(33) 

The split (M)ILU(O) preconditioner requires two additional scratch vectors, but only 
vector scalar multiplications and vector updates have to be performed, whereas the left 
(M)IL U(O) needs no extra storage but a triangular matrix vector multiply. We are not 
aware of analogous tricks for higher fill-in preconditioners. 
There are a number of other preconditioners such as the SSOR [1], least squares polyno­
mial, Neumann polynomial and their line and/or block variants. Numerical experiments 
carried out with the NSPCG software package [18] identified none of them competitive 
with ILU. 

7 Implementation of IL U and IC preconditioners on Vector 
and Vector-Concurrent Computers 

Since the solution of the linear systems consumes most of the overall CPU-time in a device 
simulator, it is important to implement the linear solvers as efficiently as possible. Using 
the iterative methods we have discussed in Chapter 5 all vector operations except for the 
backsolves of tridiagonal systems that are introduced by the incomplete 1 U (or Cholesky) 
factorization preconditioners can be vectorized and/or parallelized straightforwardly. Our 
goal was to find an implementation of those backsubstitutions for vector computers which 
is as generally applicable as possible and efficient on most of the modern vector and vector­
concurrent computers. On the other hand we concentrated on vectorization techniques 
that are unlikely to degrade the performance of the incomplete factorization precondition­
ers, hence we do not consider multicolor orderings [19]. We further excluded computers 
that permit only unity-stride vector operations such as the CYBER 205 and did not care 
of decrease of the performance due to possible memory bank conflicts on some machines. 
As for some vector computers good performance can only be achieved for long vector 
length this was also an aim developing our vectorizable linear solver code. 
A data dependence analysis shows that there exist diagonal planes, so called hyperplanes 
or computational wavefronts Hm in which the unknowns are only dependent on the un­
knowns in the hyperplane Hm-l for the lower triangular matrix or on those in the hyper­
plane Hm+l for the upper triangular system [1][26]. If the matrix elements are denoted 
by the indices ( il, i2, i3) in the three spatial directions, the equation 

il + (k + l)(i2 + i3) = m (34) 



is valid for the indices of all mesh points in the hyperplane Hm. k denotes the degree 
of fill-in, m is a constant. This allows a independent calculation of all unknowns in one 
hyperplane. The hyperplanes of course have to be treated sequentially. It is obvious that 
the number of points in one hyperplane first increases from one up to CJ ( N X * NZ) /2 
and then decreases to one provided that NY > MAX ( N X, NZ) (otherwise permute 
the unknowns appropriately). The main problem lies in the fact that the unknowns 
and the matrix entries have either to be reordered or addressed indirectly. As explicitly 
reordering the matrix entries requires a great amount of additional storage for higher 
fill-in preconditioners we chose the second approach and compute a list vector MASK which 
the addresses of the unknowns in hyperplane-ordering are written in at the begin of the 
iteration process. A second list vector LIST contains the addresses of the elements of 
the first list vector at which new hyperplanes begin. This leads to the following source 
code for the backward substitution of the lower triangular preconditioning matrix of the 
ILU(O) preconditioner (the main diagonal is unity): 

X(1)=R(1) 

DD 1 L=2,NX+NY+NZ-2 

DO 1 M=LIST(L-1)+1,LIST(L) 

I=MASK(M) 

1 X(I)=R(I)-B(I)*X(I-1)-D(I)*X(I-NX)-F(I)*X(I-NX*NY) 

R denotes the right hand side and B, D, F the strictly lower triangular part of A.. The 
inner loop is vectorizable. For the ILU(l) preconditioner the upper bound of the outer 
loop equals NX+2*(NY+NZ-2) and the calculation of X(I) requires taking into account 
the fill-in terms -01 (L) *X (L-NX+1) and -F1(L) *X (L-NX*NY+1). Analogously the up­
per bound for the ILU(2) preconditioner is NX+3*(NY+NZ-2) and the additional terms 
-D2(L)*X(L-NX+2) and -F2(L)*X(L-NX*NY+2) must be taken into account. The above 
described approach is used in a similar manner to vectorize the IL U factorization at the 
beginning of the iteration. A vectorization of the MIL U preconditioner by this approach 
is only possible for no fill-in (k = 0) preconditioners. 

8 Numerical Results and Conclusions 

At first the convergence of several iterative methods which have been treated in Chap­
ter 5 is examined. As test matrix serves the coefficient matrix of the electron continuity 
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Figure 1: Convergence of accelerators 

II Solver II Ax I ( x' y) j x + y j ax II 
CGNR 2 2 4 10 
Symm. CG 1 3 4 10 
ORTHOMIN 3 m+2 m+2 m+2 
GMRES 1 ~ + 1 m ~ + 1 

2 'l 'l 

BIOMIN2 (CGS) 2 2 7 6 
BIORES 2 2 2 10 16 
BIODIR2 2 2 9 13 

Table 1: Comparison of arithmetic work 
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equation of the first Gummel-iteration of an n- channel silicon MOSFET ( 1.5 micron chan­
nel length) from the device simulator MINIMOS 5. Bias conditions are: Us = UB = OV 
(source, bulk), Uc = lV (gate) and UD = 3V (drain). The mesh size is 29 x 31 x 35 in x, 
y and z direction. As error measure the maximum norm of the error vector en = jx - xnl 

is used. x denotes the solution vector obtained by Gaussian elimination. The tests were 
carried out on a Digital VAX 8800 in double precision arithmetic with precision of 1.0 of 
1.387 .10-11 . 

Figure 1 shows the convergence curves. CGNR and GMRES(2) are certainly not compet­
itive. The convergence behavior of the symmetrized CG, SYMCG, is not satisfactory, too. 
ORTHOMIN(5) and especially GMRES(5) are save, but slow alternatives to BIOMIN 2 

(CGS). The advantage of GMRES(5) is the monotonic convergence behavior. But in all 
our examples BIOMIN 2 (CGS) has proved to be the best choice. This is clear if the arith­
metic work per iteration for the tested accelerators, which is shown in table 1 is taken 
into account. A matrix vector multiplication is the most time-consuming, a scalar vector 
multiplication is the least time-consuming operation. 
In the next figure we want to compare the robustness of the three squared bi orthogonaliza­
tion algorithms BIOMIN 2 (CGS), BIORES 2 and BIODIR2 against roundoff errors. The 
same test problem as before is used and the convergence curves starting from IT = 100 
are displayed in Figure 2. Both BIOMIN 2 (CGS) and BIORES 2 stagnate at a minimum 
error, however BIODIR2 diverges after having run through an error minimum. Obviously 
BIOMIN 2 (CGS) is the most stable algorithm. 
The ILU(k) preconditioners with levels k = 0, 1,2 are compared in Figure 3. As can be 
seen from the non monotonic convergence behavior BIOMIN 2 (CGS) has been chosen as 
accelerator. This figure shows that a higher degree of fill-in really improves the conver­
gence behavior. 
Table 2 compares the performance of the hyperplane ILU(k) implementation on a Fu­
jitsu VP200 (VP), a Cray-2 (C2) and an ALLIANT/FX40 (AL) computer. The tests 
have been carried out on a 40 x 40 x 40 grid and the results are mean values of 100 back­
substitutions. Besides the CPU time for one backsubstitution (B) in milliseconds (ms), 
the overall achieved speed-up over the trivial code in the solution (S) of the triangular 
systems and the megaflop (MFlop) rate (M) are presented. It seems that the code is 
better suitable for the VP200 than for the Cray-2. One reasons is the good performance 
of the Fujitsu vector computer for long vector length. Possible memory bank conflicts on 
the Cray due to the indirect addressing according to the hyperplane-ordering decreases 
the performance of the Cray supercomputer substantially. 
In order to show that our code can also be parallelized on slightly coupled multiprocessor 
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computers to a high extent we carried out tests for the hyperplane backsubstitutions on 
a 6-scalar-processor Digital VAX 6260. Table 3 shows speedups against one processor. 

II FACT II VP: B s MI C2: B s MI AL: B s M II 
ILU(O) 4 13.75 96 14 4.30 27 212 1.34 1.8 

ILU(l) 8 12.12 96 26 4.76 30 327 1.51 2.3 

ILU(2) 8 12.62 128 30 5.93 34 410 1.64 2.5 

Table 2: Hyperplane-IL U( k) on vectorcomputers 

II Processors II 1 2[ 3 5 

MFlops 0.58 1.15 1.64 2.06 2.41 2.65 

Speedup 1.00 1.98 2.82 3.54 4.14 4.56 

Table 3: Parallel hyperplane ILU(O) on VAX 6260 
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Figure 2: Comparison of squared Lanczos methods 
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