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Our device simulator MINIMOS 5, capable of 3D MOSFET/MESFET simulation,
uses Gummel’s algorithm to solve the nonlinear system of discretized semicon-
ductor equations. Using finite difference discretization matrix ranks of order 10°
of the sparse linear systems are produced. In this paper we compare the conver-
gence properties of various accelerators for the iterative solution of the discretized
carrier continuity equations, the coefficient matrices of which are nonsymmetric
but symmetrizable by a diagonal matrix W. All algorithms are preconditioned
by incomplete LU factorization.

We begin with the CGNR-algorithm, which solves the symmetric, positive defi-
nite (SPD) problem AT Az = ATb. The convergence of this algorithm is governed
by the singular values of the preconditioned matrix A [3], is strictly monotonic
but cannot satisfy our requirements (Fig. 1).

For the symmetrized CG-method the symmetrization matrix W is required for
the computation of the inner products in order to calculate the iteration pa-
rameters [2]. As w;, = exp (2,%) for the continuity equation for electrons and
w;,, = exp (——%‘:) for that of holes, the w; can have an enormous number range,
so that scaling of the inner products is necessary. Nevertheless, we found this
method only applicable for low voltage simulations, as scaling very often causes
loss of significance (underflow) when computing the iteration parameters. Ex-
plicit symmetrization of the coefficient matrix A is possible as well, but restricts
applicability of the CG-algorithm to even lower voltages, because scaling cannot
be performed as efliciently as in our implementation.

ORTHOMIN [4] minimizes the 2-norm of the residual at each iteration step. Full

orthogonalization at iteration n requires the storage of n vectors, which is not
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possible in practice, so that a truncated version ORTHOMIN(m) is used, where
only m backvectors have to be stored. Losing optimal convergence speed is the
price.

GMRES [5] has the same minimization property as ORTHOMIN, but an or-
thonormal basis is built by an Arnoldi process. We also use a truncated version
GMRES(m), for which above mentioned restrictions are valid also.

Squaring classical Lanczos methods leads to BIOMIN? (CGS), BIORES?, and
BIODIR? [1][6]. The Lanczos methods use a biorthogonality condition to the
transposed system instead of an orthogonality condition to backvectors in or-
der to build a basis. The residual decreases not monotonically, hence subtle
stopping criteria are required. Breakdown by vanishing of certain inner products,
which cannot be excluded totally, never occurred in our applications. These three
squared Lanczos methods produce the same iterates in exact arithmetic, but in
practice BIOMIN? (CGS) is the numerically most stable.

We found that for our applications BIOMIN? (CGS) minimizes both overall arith-
metic work and storage consumption. CPU time per iteration times the average
number of iteration is much lower than for the other algorithms.

Figure 1 shows a comparison of the convergence behavior of the above men-
tioned methods. The test problem is from MINIMOS (n-channel silicon MOSFET
with 1.5um channel length, Us = Ug = 0V, Ug = 1V, Up = 3V, mesh size:
29 x 31 x 35). e, = ||T — zn||o is the infinity norm of the difference of the iterates

z, and the “true” solution T which was obtained by Gaussian elimination.
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Figure 1

Convergence properties of accelerators
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