
HIGH PERFORMANCE PRECONDITIONING ON SUPERCOMPUTERS
FOR THE 3D DEVICE SIMULATOR MINIMOS

K. P. Tram and W. Mader

SIEMENS AG 6sterreich, Electronic Development,
Gudrunstr. 11, A-1101 Vienna, Austria

Abstract

Discretisation and iterative solution of the semiconductor
equations in a three-dimensional rectangular region lead to
very large sparse linear systems. Nevertheless, design en-
gineers and scientists of device physics need reliable results
in short time in order to draw the best advantage out of
computer simulation when designing new technologies and
advanced devices. This goal can be achieved by use of pre-
conditioned iterative methods for the solution of the linear
equations on powerfnf computers as vector and concurrent
supercomputers. To achieve optimum performance of such
methods special algoritluns and coding techniques have to
be used in order to allow vectori5ation and parallelkation
of the inherent recurrence relations. We have investigated
Jacobi and incomplete LU-factorhation methods along with
various hand tuning options with special emphasis on appli-
cation on a SIEMENS/Fujitsu VP200. Results are compared
with those obtained on a Cray-2 and an ALLIANT/FX40
minisupercompu ter.

Introduction

Rapid development in very large scale integration (VLSI)
technology has lead to submicron semiconductor devices. In
the eighties twcdmensional simulators were able to predict
device performance accurately enough to give valuable aid
in successful chip design. Further shrinking in the device di-
mensions make fully three-dimensional simulation necessary.

However, the threshold to use a 3D-simulator for scientists
in device physics as well as for design engineers lies in the
performance of the simulation program. Generally speaking,
systems of partial differential equations with highly nonlinear
coefficients have to be solved within the time of the order of
one minute for a given set of boundary values.

CH2916-5/90/0000/0224&01 .OO (9 IEEE

0. Heinreichsberger, S. Selberherr,
and MStiftinger

Institut fiir Mikroelektronilr, TU-Vienna,
Gdlhausstrasse 27-29, A-1040 Vienna, Austria

In the past decade MINIMOS has proven to be a very pow-
erful tool in 2D-simulation of MOS devices [l]. Recently, a
3D version of the program has been made [2]. However, time
and memory consumption were rather intensive for the very
first version. Therefore, much effort has been undertaken to
design faster solvers for the large sparse linear systems aris-
ing from the semiconductor equations. Preconditioned iter-
ative methods turned out to be the best choice to achieve
both stability and high performance especially for the solu-
tion of the nonlinear systems resulting from the continuity
equations [3]. To optimally exploit the resources of super-
computers special algorithms and coding techniques have to
be used to allow vectorbation and/or parallelbation of the
recurrence relations inherent in such methods. Our main
task was to optimiee the performance of 3D-MINIMOS on a
SIEMENS/Fhjitsu VP200.

The Problem and the Solution Method

The Basic Partial Differential Equations

The classical partial differential equations (PDE) of semicon-
ductor devices in the stationary state [4] are Poisson equa-
tion (1) and carrier continuity equations for electrons (2) and
holes (3) and are given as follows:

4 is the electrostatic potential, the permitivity is denoted
by e, q denotes the elementary charge, CT is net doping,
n and p are electron and hole concentrations, k denotes the

2%

Boltzmann constant, and T, and Tp denote the absolute tem-
perature of electrons and holes, respectively. The mobilities
of the carriers are denoted by p,, and p,,, R denotes the net
recombination/generation rate.

To solve this set of coupled differential equations of the un-
knowns $, n and p with MINIMOS it is discretized in a
three-dimensional rectangular domain by finite differences
and boundary conditions are specified. At the terminal con-
tacts, which (in general) are assumed to be ideally ohmic, the
boundary conditions are of Dirichlet type. Homogenous Neu-
mann boundary conditions are used for the artificial inter-
faces in the deep bulk and inhomogenous Neumann bound-
ary conditions are applied in case of non-vanishing interface
charge and interface recombination velocity.

Due to huge variations of the distributions of the carrier
concentrations and the potential in small subareas of the
simulation domain, a non-dorm grid is used. The solu-
tion of this system of PDEs in MINIMOS is obtained using
a block-nonlinear iterative algorithm frequently called Gum-
mel's method [5].

A special feature of MINIMOS 5 is the capability of handling
non-planar interfaces using the well known box integration
method. For more details on the program features see refer-
ence [6].

Discretization and Iterative Solution

F'rom the numerical point of view the properties of the lin-
ear systems resulting from discretization and linearization in
the Gummel cycles are of interest: The nonlinear Gummel
modification of the Poisson equation is linearized by a one-
step Newton iteration and the resulting matrix is symmetric,
positive definite and has property A.

For the nonlinear carrier continuity equations the terms R
and p have to be further investigated. p depends on the
driving forces, but this fact is neglected in MINIMOS during
the nonlinear iteration. The net recombination R consists of
three parts, namely Shockley-Read-Hall, Auger, and Impact
Ionization. Whereas Impact Ionization is only updated in the
generation subcycles and therefore is assumed to be constant
during the Gummel cydes, the derivatives of RSER and RA'
with respect to n and p are accounted for. Whereas the
derivatives of RSRa allways increase diagonal dominance, the
contributions of RAu may decrease it and may even destroy
definiteness of the system. These negative contributions have
to be discarded during iteration.

Using a modified Scharfetter-Gummel interpolation scheme
[7] to allow for carrier temperature dependent mobilities [8]

the box integration scheme leads to nonsymmetric system
matrices with property A.

After discretization the matrices resulting from the Poisson
equation and the carrier continuity equations can be viewed
as block tridiagonal matrices with the off-diagonal dements
being diagonal matrices responsible for the coupling between
planes (points with constant k). The diagonal blocks may
again be viewed as block tridiagonal systems with the off-
diagonal blocks being diagonal matrices, now responsible for
the coupling between lines in a plane. The remaining diago-
nal blocks are tridiagonal systems which define the relations
between the unknowns in a line.

In the 2D-simulator the symmetric systems are solved by a
cyclic Jacobian conjugate gradient (CJCG) method and the
nonsymmetric ones by Gaussian elimination. These solvers
have proven to be very effective in the past. However, for
3D problems Gaussian elimination will both need to much
memory for most of the operational environments and be
rather slow. Well chosen iterative methods can cope with
both problems.

Iterative Methods and Preconditioning

Various methods for the solution of a linear system Ax = b
with seven star discretization have been reported [9], the
most promising of them for our purposes are conjugate gra-
dients (CG) [lo], [U] for symmetric positive definite prob-
lems and projection-type methods such as ORTHODIR, OR-
THOMIN, and ORTHORES [12], GMRES [13], LSQR [14],
Bi-CG [15], and CGS [16] for nonsymmetric ones. As the ap-
plications for the simulator may have various Merent levels
of complexity it was important to find solvers which are fast
and stable for all the different simulation problems. For sim-
plicity of installation and use we decided to chose only two
solvers for one MINIMOS-3D installation, one for the Pois-
son equation and one for both carrier continuity equations.

It turned out that preconditioning of iterative solvers is in-
evitable to fulfill the stability requirements. Generally,pre-
conditioning can be viewed as finding a system BZ = b in-
stead of Ax = b, where B has better spectral properties
than A with respect to the acceleration method yed . This
can be achieved by defining 5 by P R ~ = x and b = PLb,
where B = PLAPR and PRPL can be viewed as approximate
inverse to A. For the cases we have studied intensively, the
product Pi'Pil reads either

indicating a line Jacobi preconditioner or

K = P-'P-' = (S + X) X - l (X + T)

(4)

(5)

225

indicating incomplete factorization methods.

In this paper we focus on cases where X in (5) is a diagonal
matrix corresponding to a point preconditioner. We have
also used a plane Jacobi preconditioner as well as an incom-
plete line LU preconditioner and compared our FORTRAN
production code with the NSPCG (171 package. b u l t s ob-
tained are presented in 131.

In the symmetric case (for S = TT) when a conjugate
gradient (CG) accelerator is used and when S = L (L is
the strictly lower triangular part of A) we obtain the well
known ICCG[O]-algorithm for diag(K) = diag(A) and it's
modified variant, the MICCG[O]-algorithm for rowsum(K) =
rowsum(A) [19]. In both cases K has the same sparsity pat-
tern as A (no additional fill-in occurs, which is expressed by
the suffix [O]) .

More general methods allow for fill-in resulting in the
[M]ICCG[q] algorithms with q = I, 2,. . ., indicating that
fill-in for q non-zero patterns is included in matrix K and
S and T are no longer the lower and upper triangular parts
of A. The number of iterations is reduced for these meth-
ods and the stability is improved, however, memory require-
ments and time per iteration are enlarged. Due to the good
performance of the [M]ICCG[O] method we saw no needs to
investigate these methods in more detail.

Similar methods are applied to the nonsymmetric case re-
sulting in the ILU[q] algorithms. We have introduced a
modified ILU algorithm (MILU) using the foUo+ng anal-
ogy: In the symmetric case (Poisson equation) &j L: &;
holds for the row sum. As in the nonsymmetric case (car-
rier continuity equations) the similar relation C'Aj < Ajj
holds for the column s u m we use a preconditioner with
columnsum(K) = columnsum(A) resulting in the MILU[q]
algorithm.

We have selected the CGS method which has proven to be
the best choice for nonsymmetric systems [3] for application
with [MIILU preconditioning. As in the symmetric case a
modification parameter w in the range (0,1] is introduced to
tune the modification. Unlike in the symmetric case, where
the number of iterations can be reduced by a factor of about
two for a well chosen w of about 0.95, we observed that in
the nonsymmetric case the reduction of iterations seems to
depend strongly on the given problem. For P-channel MOS
transistors the overall performance of the simulator can be
enhanced by about 20 % for w = 0.8 (see Table 1). Sym-
metric (two-sided) and nonsymmetric preconditioning were
used together with the Eisenstat tricks reviewed in the next
chapter.

However, the dependence of the overall performance on the

Table 1: Comparison of ILU and MILU preconditioned
CGS solvers.

CPU-time/s of MINIMOS run for NMOSFET example on
VAX 8800 (one processor).

two-sided: 2273.3 2083.4

modification parameter w has to be further investigated.

Implementation and Vectorization

The basic components of all methods described above are op-
erations like vector updates, inner products, and sparse ma-
trix vector products, which are quite easily implementable
and lead to high performance codes on vector computers.
However, those components containing recurrence relations
do not vectorize or parallelize when coded in a straightfor-
ward manner. For the Jacobi methods we have to deal with
a first order linear recursion. For the preconditioning with
incomplete factorization linear recursions of several orders
appear.

During the last few years many authors have suggested vec-
torisable alternatives to the above mentioned problem [18]-
(251. They showed how the problem can be solved in princi-
ple. The sucess of these methods highly depends on the type
of supercomputer used. As the SIEMENS/Fujitsu VP200
has a rather slow scalar unit and it's vector unit operates on
very long vectors as compared to other supercomputers (rill?
is rather large (211, (261 it is especially important to optimize
both the vectorization rate to avoid scalar operations and
the vector speed by using vectors as long as possible.

All efforts to improve performance of the dotproduct and
the SAXPYs on VP200 (compiler FORT77/VP VlOL03.031)
and ALLIANT FX40 (fortran/& 4.2.40) by improving the
coding were not very successful gaining at maximum a few
percent, thus showing that present day compilers let a user
focus on the algorithmic aspects of vectorization.

Efficient Implementation of PL A PR v

For the following we use the identity A = L + D + U, with L
and U being the strictly lower and upper triangular parts of
A, respectively, and D being the main diagonal of A. Scaled

matrices are indicated by a tilde, a bar denotes matrices of
the preconditioner.

The above mentioned [M]ILU[O] preconditioner allows for
right (PL = I), left (PR = I) and two-sided precondition-
ing (PL = (~ ' 1 ' + x- ' /~L)- ' , PR = (~ ' 1 ' + X-'/' U)-').
For the last case the scaling d = X-'/'AX-'/* is recom-
mended (X-'/' exists for cases where A is positive definite)
leading to a preconditioner (L + I) (I + U) = L U .

Eisenstat [27) has pointed out that the computation of the
vector fi-' A E-' V; can be implemented efficiently using the
identity

whereW=(f i -21)andt=Ui - 'v ; .

In a similar manner one can recast the expression (U +

D-l A E-' U; = t + L-'(v; - W t) (6)

X)-' X (X + L)-' AV; to

where now M = (0 + X-' D - 2I), = (X- l U + I) , and
L = (X-1 L + I) .

In the 3D case the matrix vector product for a heptadiagonal
system needs about 13 x N flops. For two-sided precondi-
tioning this amount is replaced by only about 3 x N flops
using the Eisenstat trick thus saving 10 x N flops. The mod-
ified trick for the one-sided preconditioning explained above
saves about 3 x N flops.

The one-sided preconditioning (we have used the left-sided
one) converges faster but requires approximately 7 x N flops
more per iteration than the two-sided one. However, we have
observed that two-sided Preconditioning is favourable for our
applications (see Table 1).

Vectorized Solution of nidiagonal Systems

Vectorizable solution for tridiagonal systems may be ob-
tained by different methods like recursive doubling, cyclic
reduction [21], and the partition method [22], [25].

The most efficient solver for the VP200 as well as for the
ALLIANT FX40 (with two processors) was that one factor-
izing the tridiagonal system into two bidiagonal ones and
solving them by the partition method. Using the fact that
the tridiagonal matrix is blockdiagonal due to the finite dif-
ference discretization no fill-in occurs and the solution of the
bidiagonal system further simplifies to:

DO 1 I=Z,HX
DO I J=I,NY*IZ

1 X (I , J) = ~ (1 . ~ 1 - A(I,J)*x(I-I.J)

In Table 2 we show cpu-time results on VP200 for test matri-
ces obtained during MINIMOS runs. Unless stated otherwise
all the tests used matrices obtained from the NMOSFET ex-
ample described in Section 4. Speed-up gives the relation
between the straightforwardly coded, autovectorixd version
and the vectorized partition method. As Poisson solver we
used a cyclic Jacobi CG accelerated method, the continuity
equations were solved using a line Jacobi BiCG.

Table 2: Comparison of Jacobi Solvers on VP200 (d u e s
given are CPU-time/s, It. is the iteration count).

0.014

Minorities: 0.773 0.177 4.36

Vectorized Solution of Triangular Systems

In the following we wil l label the unknowns of the linear
system A z = b with a triple of indices (i, j, I C) corresponding
to the grid coordinates of the three spatial dimensions.

The recurrence relation to be solved for the 3D problem with
finite differences discretization reads:

The simplest way to achieve vectorizable codes in the re-
currence relation is to accumulate all contributions to the
vector z from an already computed plane k - 1 to the right
hand side of the equation:

This is a vector operation of length O (N X * NY), N X and
N Y being the number of grid points in z- and y-direction,
respectively. In MINIMOS this yields vector lengths of about
400 up to 3600 and good performance is achievable.

One can proceed in a similar manner now to accumulate the
contributions to z in a fixed plane from an already computed
line j - 1. This yields vector operations of length O (N X) ,

221

typically between 20 and 60 for MINIMOS. This is not to
bad for a CRAY or for our supermini ALLIANT FX40, but
the VP200 due to the large nl/, is far off the performance
limits.

grid-diagonal

hyperplane

To end up one has to solve the remaining first order recur-
rence. Due to the short vector length it is no use to try
vectorbable coding for this recursion, 80 it is executed at a
poor speed on the W 2 0 0 and the overall gain due to vector-
iration is low. Note however, that by unrolling the loop for
the bidiagonal system on ALLIANT FX40 the performance
of this operation gains by about a factor of 2.

A vectorizable alternative to equation (8) has been suggested
by van der Vorst and is called the truncated Neumann
series approach [28]. Typically one has to compute:

0.064 0.337 2.84 5.52

0.020 0.093 2.07 3.97

which can be combined with the accumulation of lines men-
tioned above. However, for our applications the results for
this method were disappointing.

The next variant to be discussed is one which uses the (ef-
fective) accumulation for the planes and solves by a grid-
diagonal approach. A grid-diagonal is defined by the set of
all grid points (i , j , k), for which i + j = const, for a fixed
k. Unknowns in a diagonal can be computed in vector mode
now from already computed quantities of the previous grid-
diagonal.

High computational speed for the solution of Lz = y is re-
ported for the so-called hyperplane method [18], [23], [29].
A hyperplane H,,, is now defined by all triples (i,j, k) for
which i + j + k = n. All unknowns belonging to H, can be
computed independently from those belonging to the previ-
ous plane H,,,-l.

A straightforward implementation of this algorithm would
consist of three nested loops, the outermost one for all hy-
perplanes, one for all planes, and the innermost one for all
diagonals of this plane. The two inner loops can be exe-
cuted in vector mode. However, the FORT77 compiler of
the VP200 denies to vectorbe multiple loops with variable
loop lengths. Because of it’s large nllI it is very important
for the VP200 to gain advantage from the fact that the num-
ber of unknowns in the hyperplanes is rather large - up to
O (N X * NZ/2). This is done by forming a vector out of all
the unknowns of each hyperplane by putting the addresses
of the unknowns to be processed in a list vector and marking
the beginnings of the individual hyperplanes before starting
the iterations. By this way the two inner loops are combined
to one, which now can be totally vectorbed.

Inherent to this method is the need for indirect addressing.
There is still another problem to be solved: What about the
unknowns on the boundary of the simulation domain? Van
der Vorst [23] has suggested to accumulate the contributions
of the different sub-diagonals in one hyperplane by individ-
ual loops. This however introduces considerable loop over-
head. Other possibilities are to calculate those unknowns
outside the loop or to avoid unallowed addressing by use of
IF-statements. We have obtained best results by extending
the arrays of the unknowns at the lower and upper ends by
an amount of the number of elements in one plane and fdl
them with zeros. The algorithm then reads:

DO I L=i,WX+NY+NZ-2
DO 1 M=HPT(L-l)+I.HPT(L)
I-LIST (M)

I X(1) Y(1) - A(I)*X(I-l) - B(I)*X(I-PX)
& - C(I)*X(I-BX*BY)

Note that almost all vectorizable algorithms discussed can
be used to vectorize the factorization in a similiar manner.

In Table 3 we show the cpu-time requirements for the
merent variants to solve triangular systems using ILU-
preconditioners. The methods explained above are com-
pared to the straightforward (autovectorized) implementa-
tion. MICCG[O] was used for the Poisson equation test m%
trix (NMOSFET example) and ILU[O]-CGS for the continu-
ity equation (minorities).

Table 3: Comparison of Triangular System Solvers
(cpu-time/s).

VP200 ALLIANT

autovect or

In Figure 1 we show the gain of the different vectorbation
measures as compared to unvectorized straightforward elim-
ination coding. Also shown are the effects of further hand
tuning measures, like unrolling the outer loop or o p t e h g
the vector register file for the SIEMENS version. We have

228

also tried reordering to avoid indirect addressing of the co-
efficients. This resulted in a 10 % gain for the ALLIANT
only.

Figure 1: Effects of tuning methods to enhance
vectorization on VP200:

hyperplane with IF-statements, with extended arrays,
additional loop unrolling, and additionally optimized

vector register file, compared to
autovectorized straightforward implementation.

10 I

0
ON
>
Z 0

w 0

T
B
t
w P

[
w U

4.5

7.5

6.7

m
Autovettor HP (IF) Hp ert or HP unr HP opt VRf

For preconditioning allowing for Win (i.e. ILU[q], q =
1,2,. . .) the definition of the hyperplane H, must be ex-
tended to the set of mesh points sufficing the relation

i + (q + l)(j + I C) = m

where q denotes the degree of fl-in. For the lower triangular
system the unknowns in H, can be cdculated independently
from those of Hm-l, for the upper triangular system from
those of Hm+l. Implementation by the above mentioned list
vector method is straightforward.

In Table 4 we compare vector performance of hyperplane
preconditioners with different degrees of fill-in and the stan-
dard non-vectorizable recursions (autovector). We have
used ILU[O], ILU[l], and ILU[2] together with the CGS-
accelerator on different machines. The matrices for the linear
system were obtained by discretizing the Laplace equation on
a rectangular grid with 40' grid points.

The results of Table 5 were computed using MINIMOS test
matrices (minority continuity equation) of the NMOSFET
example.

Table 4: Comparison of ILU(q)-CGS Solvers with q = 0,1,2
with Standard and Hyperplane Method (values given are

CPU-time/s, It. is the iteration count).

Table 5: Comparison of Hyperplane ILU[q]-CGS Solvers.

Note, that the main advantage of fill-in preconditioners is
not speed but stability.

The ILU[O]-CGS needs two inner products (in the perfor-
mance limit of 350 Mflops on the VP200 [19], [26], seven
vector updates (250 Mflops), and six matrix vector prod-
ucts. Using the Eisenstat trick this results in 48 N flops
per iteration [3]. Taking into account the flops needed by
the factorization and for computing the norms we measured
about 150 MflopsontheVP200 and about 40 Mflops onthe
CRAY-2. For ILU[1] and ILU[2] slightly lower performance
rates are obtained.

For the autovectorized version we have 24 N flops for the
non-vectorizable 3-term recursion (6) performing at about
6 Mflops, thus we can estimate the performance to be about
48/24 x 6 = 12 Mflops on VP200 (assuming very high per-
formance for the vectorized components), which agrees rea-
sonably with the measured 12.6 Mflops.

Conclusions

For the discretized Poisson equation a line Cyclic Jacobi-
CG (CJ-CG) solver and [MIILU preconditioned CG (called

229

[M]ICCG[O]) solvers were used. The CJ-CG solver is very
fast and stable and for low size problems even beats the
MICCG[O] method. However, for medium and large size ex-
amples MICCG[O] is the best choice. Therefore, for the 2D
case we still use the CJ-CG solver.

For the carrier continuity equations the best solvers of each
class were investigated with respect to their vectorization po-
tential: line/plane CJ-BiCG, ILU-BiCG and [MIILU-CGS.
For small size problems (e.g. the 2D case), the line CJ-BiCG
ist the fastest and for this type of problems stable enough
as well. However, for larger size examples it is not stable,
therefore it cannot be used for 3D MINIMOS. The plane
CJ-BiCG is stable but slow. For 3D problems the fastest
solvers turned out to be of CGS type [3]. We have inves-
tigated and compared different preconditioning methods for
CGS, including ILU[O] to ILU[2] and MILU[O].

The performance of various solvers on the VP200 as com-
pared to Gaussian elimination is shown in Figure 2.

Figure 2: Performance on VP200 of several solvers for
nonsymmetric matrices relative to Gaussian elimination.

0
8
>
z

Gaurs line U-BEG ILU ECG ILU CGS

Tuning programs is an infinite sink, and though progress is
still possible the gain saturates. Moreover, the MINIMOS
program is tailored to solve specific problems of device simu-
lation for design engineers and we have to look how the over-
all performance has improved. For demonstration we have
selected two examples of rather low complexity (see Table 6).
One N-channel MOSFET with channel length and width of
about one micron and a gate oxide thickness of 0.0150 mi-
crons and one P-channel MOSFET with simil.ar dimensions,
but a gate oxide thickness of 0.08 microns. Bias conditions
were U = 3V for the NMOSFET example and = U

Uos = -1V, UQS = -4V, and Uss = 2V for the PMOSFET
example. Test matrices obtained by the NMOSFET exam-
ple had a total of 22 x 36 x 19 grid points for the Poisson
equation and 22 x 21 x 19 for the continuity equations.

Table 6: CPU-Time/s for one Bias Condition on Different
Computers.

The highly satisfactory result is that one bias condition can
be simulated in half a minute on the VP200. Thus it is
possible to turn ones focus to really complex problems in
the near future.

Usually the gain achieved by vectorization is expressed in
terms of the speed-up. For the VP200 the speed-up for the
NMOSFET-Example is 13, the overall vectorization rate is
96 %.

A straightforward analysis of the CPU time consumption
shows that tuning the solvers further only has little influ-
ence on the total performance. For our low complexity ex-
ample a gain of 2 for the nonsymmetric solver would lead to
a total performance gain of only about 5 %. For highly com-
plex examples the performance gain will be better aa long
as swapping memory out of core (either done by a virtual
operation system or the virtual memory package distributed
with MINIMOS) will not become too time consuming, when
memory requirements due to large grids increase.

Acknowledgement

We are indebted to H. Dietrich, G. Koessl, and H. Wiktorin
of the Computer Services of Cooperate Research and Devel-
opment, SIEMENS AG Munich, for valuable help in gaining
access to the VP200 and to M. Schubert and H.-P. M e n -
burger for their aid on performing tests on the CRAY-2 at
the RUS Stuttgart.

References

[l] S. Selberherr, “The Status of MINIMOS,” in: Simula-
tion of Semiconductor Devices and Processes, edited by:
K. Board, D.R.J. Owen, ISBN 0-906674-59-X, pp. 2-15,
1986.

230

[2] M. Thurner, P. Lindorfer, S. Selberherr, “Numerical
Treatment of Nonrectangular Field-Oxide for 3D MOS-
FET Simulation,” SISDEP Proc., pp. 375-381, Mont-
pellier, 1988.

[3] 0. Heinreichsberger, S. Selberherr, M. Stiflinger, and
K. Traar, “Fast Iterative Solution of Carrier Continuity
Equations in 3D MOS/MESFET Simulations,” SIAM
J. Sci. Stat. Comput., to be published.

[4] S. Selberherr, “Analysis and Simulation of Semiconduc-
tor Devices,” Springer, Wien, New York, ISBN 3-211-

[5] H. K. Gummel, “A Self-Consistent Iterative Scheme
for One-Dimensional Steady State Transistor Calcula-
tions,” IEEE Trans. Electron. Devices, ED-11, pp. 455-
465, 1964.

[6] S. Selberherr et al., “MINIMOS 5.1 Users Guide,” In-
sjitut f i r Mikroelektronik der Technischen Universitiit
Wien, 1989.

(71 D. L. Scharfetter, H. K. Gummel, “Large-Signal Anal-
ysis of a Silicon Read Diode Oscillator,” IEEE Trans.
Electron. Devices, ED-16, pp. 64-77, 1969.

[8] W. Hiinsch and S. Selberherr, “MINIMOS 3: A MOS-
FET Simulator that Includes Energy Balance,” IEEE
Trans. Electron. Devices, ED-34, pp. 1074-1078, 1987.

[9] L. Hageman, and D. M. Young, “Applied Iterative
Methods,” New York Academic Press Inc., 1981.

[lo] J. A. Meijerink and H. A. van der Vorst, “An Iterative
Solution Method for Linear System of which the Coeffi-
cient Matrix is a Symmetric M-Matrix,” Math. Comp.,

[ll] D. S. Kershaw, “The Incomplete Cholesky-Conjugate
Gradient Method for the Iterative Solution of Sys-
tems of Linear Equations,” in Journal of Computational
Physics, Vol. 26, pp. 43-65.

[12] D. M. Young, and K. C. Jea, “Generalized Conjugate
Gradient Acceleration of Nonsymmetrizable Iterative
Methods,” Linear Algebra and its Applications 34 159-
194 (1980).

[13] Y. Saad and M. H. Schultz, “GMRES: A Generalized
Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems,” SIAM Journal of Scientific and Statis-
tical Computing, Vol. 7, No. 3, pp. 856-869, July 1986.

[14] C. C. Paige, and M. A. Saunders, “LSQR An Algorithm
for Sparse Linear Equations and Sparse Least Squares,”
ACM Transactions on Mathematical Software, Vol. 8,
No. 1, pp. 43-71, March 1982.

81800-6, 1984.

31, pp. 148-162, 1977.

[15] R. Fletcher, “Conjugate Gradient Methods for Indef-
inite Systems,” Lecture Notes in Mathematics, 506,

Springer, Berlin, Heidelberg, New York, pp. 73-89,
1976.

[16] P. Sonneveld, “CGS, A Fast Lanczos-Type Solver for
Nonsymmetric Systems,” SIAM Journal of Sci. Stat.
Computing, Vol. 10, No. 1, pp. 36-52, Jan. 1989.

[17] T. C. Oppe, W. D. Joubert, and D. R. Kincaid,
“NSPCG User’s Guide,” Center of Numerical Analysis,
The University of Texas at Austin.

[18] C. C. Ashcraft, R. G. Grimes, “On Vectorizing Incom-
plete Factorization and SSOR Preconditioners,” SIAM
J. Sci. Stat. Comput., Vol. 9, No. 1, pp. 122-151, 1988.

[19] H. A. van der Vorst, “(M)ICCG for 2D Problems on Vec-
torcomputers,” in Supercomputing, ed. A. Lichnewsky,
C. Saguez, North Holland, pp. 321-333, 1987.

(201 0. Axelson and V. Eijkhout, “Robust Vectorizable Pre-
conditioners for Three-dimensional Elliptic Difference
Equations with Anisotropy,” in Special Topics in Su-
percomputing, Vol. 3, North Holland, 1987.

[21] W. Schonauer, “Scientific Computing on Vector Com-
puters,” Special Topics in Supercomputing, Vol. 2,
North Holland, 1987.

[22] H. A. van der Vorst, “Vectorization of Linear Recur-
rence Relations”, SIAM J. Sci. Stat. Comput., Vol. 10,

[23] H. A. van der Vorst, “High Performance Precondition-
ing,” SIAM J. Sci. Stat. Comput., Vol. 10, No. 6,

[24] H. A. van der Vorst, “Large Tridiagonal and Block Tridi-
agonal Linear Systems on Vector and Parallel Comput-
ers,” Parallel Computing 5, pp. 45-54, North Holland,
1987.

[25] H. H. Wang, “A Parallel Method for Tridiagonal Equa-
tions,” ACM Trans. Math. Software, 7, pp. 170-183,
1981.

[26] J. van Kats, Aad van der Steen, R. Llurbal, “Result of a
Benchmark Test on a Siemens VP-200 Vectorprocessor
with Comparisons to Other Supercomputers,” in Special
Topics in Supercomputing, Vol. 3, North Holland, 1987.

[27] S. C. Eisenstat, “Efficient Implementation of a Class of
Preconditioned Conjugate Gradiend Methods,” SIAM
J. Sci. Stat. Comput., Vol. 2, No. 1 , pp. 1 4 , 1981.

[28] H. A. van der Vorst, “The Performance of FORTRAN
Implementations for Preconditioned Conjugate Gradi-
ents on Vector Computers,” Parallel Computing 3,
pp. 49-58, North Holland, 1986.

NO. 1, pp. 27-35, 1989.

pp. 1174-1185, NOV. 1989.

(291 SIEMENS Fortran77/VP Programming handbook.

23 1

