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For the development of VLSI devices the simulation of nonplanar fabrication steps 
is an absolute necessity. A transformation from physical space to computational 
space has been implemented in our 2D Process-Simulator PROMIS to deal with 
nonplanar structures. This transformation is accomplished by specifying a general­
ized boundary fitted coordinate system, which maps the nonplanar physical domain 
( x, y) to a rectangular computational domain ( u, v ). Grid generation techniques 
have been investigated systematically on their applicability to process simulation 
problems. The implemented methods can be classified in: (1) algebraic, (2) elliptic, 
and (3) variational methods, and will be discussed in subsequent sections. 

1 Introduction 

Many applications dealing with partial differential equations (PDE) require an ac­
curate numerical representation of the boundary conditions. Any kind of boundary 
condition can be easily implemented in the case the boundary coincides with a coor­
dinate line. Finite difference expressions at, and adjacent to the boundary may be 
applied using solely grid points at the intersections of coordinate lines. Interpolation 
is no longer required. Generating a curvilinear coordinate system with coordinate 
lines coincident with all boundaries is thus an essential part of a numerical solution. 

Analytical formulas for body fitting coordinates can be given for relatively simple 
geometries only, e.g. circular areas, spheres, cylinders, etc. For instance polar coor­
dinates (r,r,o) (Eq. (1)) matching circular areas (Fig. 1). In this case the solution of 
the Laplace equation in cartesian coordinates (Eq. (2)) corresponds to the solution 
of Eq. (3) in the body fitted polar coordinates. 

x ( r, r,o) = r · cos c.p 

y(r,c.p) = r · smc.p (1) 

(2) 
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The general coordinate transformation from physical domain ( x, y) to the compu­
tational domain ( u, v) is given by u = u( x, y ), v = v( x, y ). Similarly, the inverse 
transformation is given by x = x( u, v ), y = y( u, v) (Fig. 2). We try to find the 
solution f of our problem in the computational domain f( u, v) rather than in the 
physical domain f(x,y). Derivatives are transformed as in Eq. (4), where J is the 
Jacobian of the transformation, J = XuYv - XvYu· 

(4) 

The basic concept of the transformation is to generate transformation functions so 
that all boundaries are coincident with coordinate lines. Once the ( u, v) system is 
obtained somehow, any set of partial differential equations can be solved on this body 
fitted coordinate system by solving the transformed equations in the rectangular 
computational domain. So the main task is to generate the body fitted coordinates. 

In sections 2 - 4 different generation techniques are presented. 

2 Algebraic Methods 

The simplest grid generation technique is the algebraic method. An algebraic re­
lation is used to map the grid points of the computational domain to those of the 
physical domain. This is accomplished by applying an interpolation scheme between 
the specified boundary points and the interior grid points [1). 

2.1 Unidirectional Interpolation 

Unidirectional interpolation means the interpolation in one curvilinear coordinate­
direction only. As an example we consider a physical domain depicted in Fig. 3. In 
our case r1 = r( v1 ) and r2 = r( v 2 ) are two points in opposite boundaries. 

In the linear case, one family of grid lines resembles straight lines connecting corre­
sponding boundary points with linear interpolation ( Eq. ( 5)). 

(5) 

In the general form (Eq. (6)) the interpolation function r( v) matches the N locations 
of certain interior grid points ri = r( vi)· In this case the interpolation polynomials 
<Pi are Lagrange polynomials (Eq. (7)). 

i( v) = <P 1 ( v) · r~ + ... + <P N ( v) · r N ( 6) 



N 
<I>i(v) =IT v - V1 

1=1 Vi - V1 
(7) 

The Lagrange interpolation is only able to match function values ri. To control 
other properties (e.g. orthogonality or grid spacing) it is necessary to match the 
first derivative t~ = ri', too (Fig. 4). Using Hermite interpolation (Eq. (8)) it is 
possible to match function i, as well as first derivative f. 

N N 

i(v) = L <i>i(v) · ri + L q,i(v) · t~ (8) 
i=l i=l 

- ( ) ( '( V - Vi ) 2( ) <I>i v = 1 - 2<I> vi)· · <I>i v 
Vi+l - Vi 

(9) 

~i(v)= ( v-vi) ·<I>f(v) 
Vi+l - Vi 

(10) 

The degree of the polynomial is increasing with each additional condition or point 
to be matched. Since polynomials of higher degrees exhibit considerable oscillations, 
such procedures failed in our applications. 

2.2 M ultidirectional Interpolation 

Most of the published two dimensional interpolation schemes are strongly dependent 
on a special geometry, e.g. airfoils, and therefore inappropriate for process simulation 
purposes. For our problems we need a general scheme being applicable to a large 
variety of geometries. 

The concepts of unidirectional interpolation can be extended to the multidirectional 
case. We consider a unidirectional interpolation function individual in each curvi­
linear direction. Eq. (11) matches the boundaries i(u1 ,v) and i(uN,v), whereas 
Eq. (12) matches i(u,v1 ) and i(u,vN)· 

N 

i( u' v) = L <I> i ( u) . i( Ui' v) (11) 
i=l 

N 

i(u,v) = L <I>Av) · i(u,vj) (12) 
j=l 

Eq. (13) matches any of the four boundaries, and is called transfinite interpolation. 

N M 

i(u,v) = L <I>i(u) · i(ui,v) + L <I>Av) · i(u,vi) 
i=l j=l 

NM 

L L <I> i ( u) . <I> j ( v) . i( Ui' v j) (13) 
i=l j=l 



This interpolation function with N = M = 2 and the Lagrange interpolation poly­
nomials (Eq. (7)) was used for the grid in Fig. 5. 

The transfinite interpolation is a fast and flexible grid generation technique but by 
far not as reliable as elliptic and variational methods. As Fig. 6 shows, this method 
is unable to avoid irregular grids, i.e. intersections of grid lines of the same type. 
For this reason we use the transfinite interpolation either for the generation of an 
initial grid for the other methods, or in cases of frequent regeneration of the grid 
and not too complex geometry (e.g. for the moving boundary problem during local 
oxidation). 

3 Elliptic Methods 

As the basic idea is to generate transformation functions u(x,y) and v(x,y) in a 
way that all boundaries coincide with coordinate lines, the body fitting coordinates 
( u, v) are taken as solutions of an elliptic boundary value problem [4]. For each 
curvilinear coordinate we solve an elliptic PDE with given values at the boundaries, 
e.g. v = v1 = const. inf 1 (see Fig. 3). 

We consider Laplace equation (Eq. (14)) as a generating system with Dirichlet 
boundary conditions, v = v1 on f 1 , v = v2 onf2. 

U:r:r + Uyy = Q 

0 (14) 

Since we perform all numerical computations in the rectangular transformed domain, 
the dependent and independent variables are interchanged. Thus we get Eq. (15) 
with the transformed boundary conditions x = x(u,v1 ) and y = y(u,vi) are in fi, 
and analogous relations in r 2 - r 4. etc. 

0 (15) 

a= x2 + y2 v v 'Y = x~ + y~ 
This nonlinear elliptic system with Dirichlet boundary conditions is discretized using 
nine-point finite differences. The resulting system of coupled nonlinear algebraic 
equations is solved using a successive over-relaxation algorithm (SOR) [2]. 

In Fig. 7 the basic behaviour of a Laplacian grid is shown. Grid lines generated by 
the Laplacian system (Eq. (14)) gather at convex boundaries and become sparse at 
concave ones. 

To overcome this behaviour we introduced source terms P, Q. The generating 
system becomes a Poisson-type system (Eq. (16)). 



V:i::i: + Vyy = Q 

Transforming Eq. (16) to the computational domain we get Eq. (17). 

a · Xuu - f3 · Xuv + / · Xvv = - J · ( p · Xu + Q · Xv) 

a· Yuu - f3 · Yuv +I· Yvv - J · (P ·Yu+ Q · Yv) 

(16) 

(17) 

The source terms P and Q are used to control grid spacing and orthogonality at 
the boundaries [3]. To derive expressions for the source terms we specify a grid 
spacing dr and an angle at the boundary O:r (usually 90° ). At any point of the 
body the existing spacing is calculated using Eq. (18), and the existing angle at 
each boundary point can be calculated easily by the scalar product of the tangent 
vectors (Eq. ( 19) ). 

(18) 

(19) 

We start with a Laplacian grid generation system (Eq. (20)) and solve the system 
of nonlinear PDEs (Eq. (17)) applying a SOR algorithm. Eq. (21) and Eq. (22) are 
used to update the source terms p and Q on boundary r1 and r2. 

po= Qo = 0 (20) 

(
a: - a) pk+l = pk =f Ep • arctan r O:r (21) 

(d - d) Qk+l = Qk ± Eq · arctan r dr (22) 

The upper signs in Eq. (21) and Eq. (22) relate to boundary r 1 , the lower ones to 
r 2 • For the boundaries r 3 and r 4 we have to exchange the correction terms for pk 
and Qk. 

We interpolate these new source terms between the boundaries in the interior of 
the domain, and solve Eq. (17) for the modified source functions. We repeat this 
procedure until the desired grid quality is achieved (Fig. 8). 

Numerous test cases proofed, that this method is very reliable in process simula­
tion applications. This generation method turned out to be highly stable and the 
quality of the grids with respect to overall smoothness and boundary orthogonality 
is excellent Fig. 9. Note that a nonuniform computational grid was used in this 
example. 



4 Variational Methods 

Variational methods offer the opportunity to get control over several grid properties 
(e.g. orthogonality, smoothness, etc.) [5]. We minimize a weighted linear combina­
tion (J = 'I:, wJi) of the functionals of the different properties. The functionals Ji 
are integral functionals defined in this section. Three functionals are presented, a 
criterion for (i) the spacing between the grid lines (smoothness), (ii) the area of the 
grid cells, and (iii) the orthogonality of the grid lines. The minimization problem is 
solved by calculating the Euler-Lagrange (EL) equations for the variational problem. 

Smoothness Control 

The integral functional measuring the spacing between grid lines is given in Eq. (23), 
where Y7 denotes the gradient in the ( x, y) variables. 

(23) 

The EL equations for the minimization problem (13 ) resemble the nonlinear coupled 
elliptic system Eq. (24), with the shorthands Eq. (25). If A2 

- BC I= 0, the EL 
equations can be rewritten as Eq. (26). 

B(exuu - 2fxuv + gxvv) 

A(exuu - 2fxuv + 9Xvv) 

A( eyuu - 2fYuv + 9Yvv) = 0 

C(eYuu - 2/Yuv + 9Yvv) = 0 

A= XuYu + XvYv 

e = (x~ + y;)/J3 

B = y~ + y; 

J = (Xu Xv + YuYv) / J 3 

exuu - 2fxuv + gxvv 

eyuu - 2/Yuv + 9Yvv 

0 

0 

Eq. (26) is identical to the Laplacian generation system (Eq. (15)). 

Area Control 

(24) 

(25) 

(26) 

The integral functional that measures the area of the grid cells is given in Eq. (27), 
recalling that dx dy = J du dv leads to Eq. (28). 

1 I 2 Ia= -2 J dudv (27) 

Ia= -~ f J dx dy (28) 



From this formulation the EL equations Eq. (29) can be derived. 

(Yv - Yu)J + JuYv - JvYu 

(xu - xv)J + Jvxu - Juxv 

Orthogonality Control 

0 

0 (29) 

The integral functional to measure the orthogonality of the grid lines is shown in 
Eq. (30). The integrand in Eq. (30) can be calculated using the scalar product of 
the tangent vectors of the grid lines. 

1 I 2 Io = - 2 (xuXv + YuYv) du dv (30) 

The EL equations for the orthogonality functional I 0 are given in Eq. (31) using the 
shorthands of Eq. (32). 

(31) 

al = XvYv b1 = X~ C1 = y; 
a2 = XuYv + XvYu b2 = 2(2xuxv + YuYv) C2 = 2(xuXv + 2YuYv) (32) 

2 
C3 = Yu 

The functionals described above are combined to a general measure I for the grid 
(Eq. (33)). This resulting functional is now to be minimized. 

I = W,, • I,, + W0 • I0 + Wa ' Ia 

W,, 2 O, Wo 2 O, Wa 2 .0 

w,, + W 0 + W + a = 1 

minimize I 

(33) 

The minimization problem is solved by evaluating the EL equations. The system of 
(nonlinear) elliptic partial differential equations (Eq. (24), Eq. (29) and Eq. (31)) 
is discretized using nine-point finite differences. The resulting system of coupled 
nonlinear algebraic equations is solved applying a SOR algorithm. 

Fig. 10 - Fig. 11 show some grids achieved with variational methods. 



5 Conclusion 

Different grid generation techniques has successfully been applied to process simu­
lation problems. 

Algebraic grid generation systems are based on an interpolation. These methods 
provided fast results, but could not avoid irregular grids (i.e. intersection of grid 
lines of the same type). 

Elliptic methods generate curvilinear coordinate systems by numerical solution of 
partial differential equations. An iterative control algorithm for the source functions 
P and Q allows grid adaption and optimization. 

With variational formulations many· grid properties (e.g. orthogonality of the map­
ping, smoothness of the grid, etc.) can be controlled at the same time. The vari­
ational methods yield high quality grids for most geometries occurring in VLSI 
fabrication. They are also favoured due to their flexibility and numerical stability. 
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Figure 1: Polar Coordinates 
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Figure 2: Transformation from physical domain to computational domain 

Figure 3: Unidirectional algebraic 
interpolation 
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Figure 4: Hermitean interpolation 
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Figure 5: Transfinite interpolation for 
a test geometry 

Figure 7: Laplace type grid for a test 
geometry 
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Figure 6: Irregular grid 
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Figure 8: Flowchart for source term 
(P, Q) control 



Figures 

Figure 9: Poisson type grid for diffusion simulation during local oxidation 

Figure 10: Grid generated with varia­
tional method ( W 6 = 1, Wa = w 0 = 0) 

Figure 11: Grid generated with varia­
tional method 
(wa = 0.3, Wa = 0.7, W 0 = 0) 




