CHAPTER 55

Three-Dimensional MOS Device Simulation on a
Connection Machine

O. Heinreichsberger*

S. Selberherr™
M. Stiftinger*

Abstract. In this paper we present our experience with the implementation of the three-dimensional semicon-
ductor device simulator MINIMOS on a massively parallel architecture, the Connection Machine CM2. The emphasis
of this work is placed on paralie] lierative methods for solving the very large sparse linear i¥stems of equations that
arise ot each step of the nonliness solution procedure. Both syrmumetric and nonsymrmnetric linear systems are solved
by conjugate gradient type iterstive methods. The implementation of the parallel preconditioner is the most crucial
step. Multicolor incomplete L1 factorization preconditioners are compared with polynomial preconditionsrs.
Several mumerical exarples from the nonsymmetric linear systems in MINIMOS sre given with timing results obtained
using the CM32. Comparisons with vector supercomputers are made.

1. Overview. Semiconductor device simulators compute the discrete solution of the semicon-
ductor device partial differential equations: The Poisson equation and the carrier (electrons and
holes) continuity equations. This system of nonlinear conservation laws is either solved by a damped
Newton method or by a nonlinear Gauss-Seidel iteration, the so-called Gummel [5] algorithm. In
the latter case, to which we restrict ourselves, each nonlinear (outer) iteration consists of the succes-
sive solution of the Poisson eguation for the electrostatic potential ¥ and of two carrier continuity
equations for the electron and hole concentrations, n and p, respectively. Here we consider only
three-dimensional nonuniform tensor product grids. For an overview see e.g. {1].

Solving the semiconductor equations means the repeated solution of large sparse linear systems. The
toeflicient matrices of the discrete continuity equations are nonsymmetric. QOur contribution here
is largely concerned with the iterative solution of those nonsymmetric linear systems on the CM2.
The emphasis is placed on parallel preconditioning methods. See also [4].

Iterative methods applied to the discrete continuity equations have to cope with high condition
numbers of the coefficient matrices and the enormous numerical range of the solution vector. Con-
trary to the Poisson equation the discrete continuity equations have to be evaluated much more
accurately 1o guarantee the stability of the nonlinear iteration resulting in high iteration counts of
the nonsymmetric solver. We use the bi-conjugate gradient squared (BiCGS) [12] method and a
stabilized version of this algorithm, BICGSTAB [14], for these nonsymmetzic linear systems.

*Institute for Microelectronics, Technical University Vienna, Gusshausstrausse 27-29, A-1040 Vienna, Ausiria.

388

APPLICATIONS, MODELING, AND SIMULATION 389

TABLE 1
BiCGSTAB Algorithm

Choose z¢ (e.g. zo = 0)

ro = (b— Azo)

Choose yo such that (yo, 7o) # 0 (e.g. o = 7o)

po=v0=0

p-1=1

Wo = 1

a=1

FOR n = 0 STEP 1 UNTIL convergence DO
Pn = (y017'n)
ﬁ - Pn—x Un

Pri1 =Tn+ P (Pn + wnvn)
Un4l = Apn-#l

a = (Yo, ¥n41)
$= Ty — QUpq41
t=As

— (¢,
Tnt+1 = 8 — Wnqit

Zn4l = Tpn + APn41 + WnyaS
END FOR

2. The Linear Solvers. The parallel solvers are of {bi-)conjugate gradient type. A relative
error of 10~3 for the symmetric and 10~2 for the nonsymmetric systems (motivated by numerical
experiments only) has been found to be sufficient.

For the Poisson equation the MIC-CG method[9] with a modification factor of @ = 0.95 is the
optimal choice to the best to our knowledge. On the CM2 we use the CG in the version of Concus,
Golub and O’Leary. As preconditioner the reduced system (RS) main diagonal is used. We shall
denote this method by RS-CG.

In the case of locally constant carrier temperatures (see [6]) the coefficient matrices of the discrete
continuity equations are diagonally similar to symmetric, positive definite matrices and thus have
a positive real spectrum. In these linearized discrete systems the matrix coefficients vary rapidly
resulting in a high condition number, thus yielding a large iteration counts of the linear iterative
solver. .

Among the number of iterative methods investigated [6] variants of the bi-conjugate gradient method
such as the biconjugate gradient squared (BiCGS) method and the the BICGSTAB method [14] (see
Table 1) seem to be the optimal choice.

In particular the BICGSTAB procedure improves one of the main problems of BiCGS, namely its
erratic convergence behaviour which often yields significantly more iterations for convergence than
necessary. At the same time the rapid convergence of BiCGS is maintained. BJCGSTAB needs two
dotproducts more, and one vector update less.

3. Preconditioning Methods. Efficient and robust preconditioning is the most critical issue
for the iterative solution of the discrete semiconductor equations.
Split incomplete LU preconditioning enables an efficient implementation of the incomplete Choleski
and the incomplete LU preconditioner, a technique originally proposed in [3]. However, the ILU
preconditioner of the naturally ordered unknowns is rather sequential in nature and thus unattractive
on a SIMD architecture. Alternatives are polynomial preconditioners and ILU with multicolor
orderings.
For multicolor ILU preconditioning the coefficient matrix is permuted according to some regular
replication (‘coloring’) pattern of the unknowns [11]. A partitioning of the unknowns into sets
of different colors resulting in a block structure of the coefficient matrix uncouples the unknowns

380 HEINREICHSBERGER, SELBERHERR, AND STIFTINGER

of the same color. The vector length decreases as the number of colors increases. At the same
time the convergence speed — usually — increases. We have made experiments using the simulator
NSPCG [10]. The results indicate that more than two colors are not favourable. We therefore
implemented a 2-color (red-black) ILU preconditioner. Partitioning the coefficient matrix A into

blocks
. Dy Hps
A= (Hgr Ds)

{the indices R denote the red, B the black points) the ‘reduced system’ is obtained by eliminating
one of both sets of (e.g. the red) unknowns:

{1) (Dp ~HprDr 'Hgp) 2p = b — HprDp 'br

The preconditioner is then the main diagonal of the reduced system

(2) Dg = Dp — diag (HpgrDgr "Hgp)

resulting in a symmetric diagonal scaling:

(3) D;} (Dp -~ HprDa 'Has) D3 D jes = D;* (bs - HeaDr 'bz)

Thus, scaling the red unknowns by the square root of main diagonal D we may write the precon-
ditioned system in the form

{4) ' (f)B - ﬁsaﬁfts) zp = bp

where hats ("} denote preconditioned quantities. Approximately half of the virtual processors in
the Connection Machine are inactive during each stage.

Matrix polynomials as preconditioners were originally proposed in order to remove the recursions
in the incomplete LU factors [2]. The construction of least squares polynomials that minimize the
residual with respect to some weight function [B] is feasible due the positive real spectrum of the
coefficient matrices of the uncoupled discrete device equations. The evaluation of matrix polynomials
can be carried out recursively and is a fast operation especially on an SIMD architecture.

In Figure 1 we present convergence results obtained from the majority continuity equation solve of
the first nonlinear iteration of device 1 (see section 5). The 2-norm of the relative euclidean solution
error is plotted using the BICGSTAB iterative procedure with various preconditioners: Point Jacobi
(JA)} i.e. diagonal scaling, the Reduced System (RS), Least Squares polynomials LS({i) up to degree
8, and incomplete LU (ILVU) with zero fill-in.

4. Installation on the CM. MINIMOS is a standard FORTRAN 77 program. A two-
dimensional simulation provides the initial data prior to the three-dimensional run. The maximum
number of gridpoints in each dimension of the self-adaptive grid is 64 nodes. A massive paral-
lelization throughout the whole MINIMOS code for application on the CM2 requires a rewrite of
the largest part of the MINIMOS source code in connection machine FORTRAN (CMF) and was
not the purpose of this work. Such a rewrite is very time-consuming, of little scientific value, but
necessary for a production code on the Connection Machine. A compromise was obtained by leaving
the largest part of the MINIMOS code, essentially all parts except the linear system solvers, in the
FORTRAN 77 standard and using the Connection Machine for the solution of the linear systems
only. Such an implementation achieves parallelization of the most costly computational part ~ the
linear system solution — at relatively low programming costs. That is, the matrix assembly is done
on the so-called front-end computer, and the linear system solution is achieved on the Connection
Machine. The Connection Machine acts so to speak as a ‘coprocessor’ for linear system solving.
An interface using routines from the CMF library was provided to quickly move binary data to and
from the Connection Machine's processors. The matrices are stored by diagonals. For a 262144 node
mesh the move of 9 diagonals (matrix-+rhs+solution) per solve takes approx. 40 seconds. This time
which is independent of the number of processors allocated is in most cases larger than the solution
of the linear systems within the CM2. In an actual production code such an 10 bottleneck must

http:indic::a.te

APPLICATIONS, MODELING, AND SIMULATION 391

clearly be avoided.

The linear solvers RS-CG and the RS-BiCGSTAB methods have been benchmarked. Some results
are shown in Table 2: Three tensor product grids of 16%, 32° and 64° points are chosen. The Laplace
equation is solved on 8k, 16k and 32k processors using double precision arithmetic.

Using 32k processors we find a megaflop rate 2o0f 120 for for the N = 64% grid. Note that only half
of the virtual processors are active due to the red-black mask. Obviously this speed is determined
by the speed of the 7 point stencil which executes with roughly 200 megaflops. Correspondingly we
obtain approximately 50 megaflops on 16k processors for the same grid. The low speed of the T-point
stencil computation is the reason why polynomial preconditioners are not (yet 7} competitive, De-
spite global communication the dotproduct achieves a rate of 300 megaflops. This makes polynomial
preconditioners compare unfavorable. We use the RS preconditioner for our device simulation runs
therefore.

F16. 1. Convergence Curves for the Discrete Majority Continuity Equation of Devicr 1

e li/]le©) |l
1.0e+00 ‘

1.00-01 EN

e
1.0e-02 \\\i“

1.0e-03
1.0e-04 \

1.0e-05 LS(4
10606 Y

JA

1.0e-07 ¢ LS(2)
1.0e-08 LS LS(1)
LS(8) LS(6) RS '
1.0e-001 } t 1 t - t } | L
0 i0 20 30 40 60 60 70 8 90 n

TasLe 2
RS$-CG and RS—B:CGS TAB Benchmarks (maec per iteration)

Solver RS-CG RS-BiCGSTAB

Processors || 8k | 16k | 32k | 8k | 16k | 32k
16x16x16 || 10| 10| 10 20] 20 20
32x32x32 | 40| 20| 10| 50| 30| 20
64 x64x64 || 100 | 110 | 60 || 300 | 160 | 90

392 HEINREICHSBERGER, SELBERHERR, AND STIFTINGELX

TaBLE 3
Performance of MINIMOS on 16k Processors

Device 1 | Device 2 | Device §

Meshpoints 12880 18144 171985
Nonlin. fier. 5 18 26
Total CPU Time (s 72 216 5700

I Majority CC Lin. Tter. 415 5328 9880
Majority CC Time (s) || & 100 1680
Minority CC Lin. Iter. 3160 5076 22360
Minority CC Time (s} 59 97 3800
Poisson Lin. Iier. 115 540 1014
Poisson Time (s) 5 20 212

5. Performance Analysis. In this section performance measurements of MINIMOS on a 32k
processor Connection Machine CM2 are given. 16k processors are used in all simulations. The
reduced system conjugate gradient method is used for the Poisson equation, and the reduced system
conjugate gradient squared (RS-BiCGSTAB) method is used for both carrier continuity equations.
We present three device simulation runs of different complexity. Device 1 is an NMOSFET in
the subthreshold operating region, device 2 a PMOSFET in the saturation region and device J an
NMOSFET in saturation with a complex shape of the oxide-semiconductor interface thus reguiring
a fine mesh. The simulation includes a selfconsistent treatment of impact ionization and carrier
recombination.

In Table 3 performance statistics of the three simulations are listed. The rows in Table 3§ have the
following meaning: Row 1 shows the grid dimensions, row 2 the number of nonlinear {Gummel}
iterations. Row 3 through row 9 shows the total times and iteration counts of the linear iterative
solvers for the majority and minority carrier continuity (CC) equation and the Poisson equation.
The timings do not in¢lude front-end computation and transfer times to and from the CM2.

As has been outlined in the previous section the implementation using straightforward FORTRAN
code and fieldwise data is far from optimality. The linear solvers execute with approximately 60
megaflops on 16k processors. In the case of a mean convergence degradation factor of 4 (RS vs. ILU)
as e.g. in device 3 this corresponds to a 15 megaflop scalar machine using MIC-CG/ILU-BiCGS.
For a detailed description of numerical results see 7).

8. Some Remarks and Conclusions. The implementation on the Connection Machine has
been carried out in a relatively short time by porting the computationally most expensive code
onto the Connection Machine. We have learned that the Connection Machine is easy to use and to
program although re-programming of selected parts of the software is required.

Complex simulations, say, tasks exceeding 100000 unknowns execute well on the CM2 (no memory
problems). However the matrix assembly on the front end computer becomes disastrous slow. Fur-
thermore, the transfer time of the diagonally stored 7-band matrix and the right hand side to and the
solution vector from the Connection Machine’s processors is in most cases slower than the solution
of the linear system itself. For a production code this is not acceptable. Therefore an interaction of
the front-end computer with the Connection Machine’s processors, which involves computation and
transfer of large sets of binary data, must be avoided.

Thinking Machines Corporation is improving its FORTRAN compiler, using ’slicewise’ data. Op-
timization of many basic linear algebra subroutines (such as multiwize nearest neighbour commu-
nication for stencil operations, overlapping of communication and computation) is under way. A
speedup of CMF-coded FORTRAN code by a factor between 4 to § seems realistic. A one gigaflop
execution speed of the linear CG and BiCGSTAB solvers is expected. Assuming a mean convergence
deterioration factor of 4 corresponding to the ILU(0) preconditioned solvers, this corresponds to 250
megaflops of MIC-CG and ILU-BiCGSTAB. In a recent work [13] high performance implementations
of MINIMOS on vector-computers were presented. It has been shown that megaflop rates exceeding
100 megaflops are obtainable for the MIC-CG and ILU-BiCGS solvers. E.g. the FUJITSU VP20
can execute the triangular solves of the ILU(0) preconditioner, the bottleneck of the overall com-
putation, with 100 megaflops. We expect that a fully optimized code on the CM should thus be at

APPLICATIONS, MODELING, AND SIMULATION 393

least twice as fast,

The convergence loss factors of the iterative solvers in the presented simulations are larger than three,
in some cases larger than 10. A convergence degradation of more than a factor of 10 makes the ques-
tion of a potential superiority of the Connection Machine or similar massively parallel computer
architectures over vector-supercomputers doubtful. Part of this convergence dilemmma is believed to
be an insufficient 3D mesh. The ILU preconditioner can much more efficiently handle grids that
deviate to much from quasi-uniformity. An improved grid generation with respect to conditioning
of the linear equations may alleviate this problem and is part of current investigations.

Parallel preconditioning concerning the semiconductor equations is in its early stages. Black-box
solvers such as those used in this investigation may not be the ultimate answer. Concepts that are
more flexible in nature such as domain decomposition methods, are likely to yield betier results on
parallel computers. Further research in this field is encouraged.

The following final statements are meant to summarize what we believe a potential user of MINI-
MOS, e.g. a process/device engineer at a semiconductor manufacturing site, would expect from a
Conpection Machine implementation: At first double precision hardware is an absolute prerequisite
for any implementation. This is not only true for MINIMOS but also for all process simulators, a
class of software tools which are also candidates for Connection Machine implementations.

A Connection Machine system with a large number of processors is desirable. On the one hand
this provides a powerful computing basis for very large three-dimensional problems, on the other
hand a large number of processors may be subdivided, thus enabling more than one simulation to
be executed concurrently on the Connection Machine. Concurrency of this type is essential to any
integration of simulators such as MINIMOS into a technology CAD. framework.

Fast transfer of binary data to and from the Connection Machine’s processors is & key requirement
for the use of the Connection Machine in a server-client manner. The transfer speeds for large seis
of binary data between the Connection Machine and the front-end computer measured in this work
are rather slow. We note that modern device/process CAD environments, are based on a computer
network, which consists of high performance workstations as visualization tools and supercomput-
ers as the device/process equation solvers. The effectiveness of such a configuration depends quite
critically on a fast interconnection between the workstations and the supercomputer hardware.

REFERENCES

{1} Bank, R.E., Rose, D.J., Fichtner, W., “Numerical Methods for Semiconductor Device Simulation”, JEEE ED-39,
By 10311041, 1983
{2] Dubois, P.F., Greenbaum, 4., Rodrigue, G.H., “Approximating the Inverse of & Matrix for Use in lterative
Algorithmos on Vectors Vector Processors”™, Computing, Vol. 22, pp. 257-268, 1979.
{4 Eisenstat, 5.C., “Efficient Implementation of & Class of Preconditioned Conjugate Gradient Methods™, SIAM
J.8ei.5tat. Comput., Val. 2, No. 1, Mar. 1881, pp. 1-4.
[4] Guerrienri, R., 2. al., “Massively Parallel Algorithms for Three-Dimensional Device Simulstion”, Proceedings
NUPAD 2, July 1996, pp. 35-36
8] ‘Gumsmel; H.K., A Selfconsisient Iterative Scheme for One-dimensional Steady State Transistor Calculations”,
IEEE ED.11, pp. 455-465, 1964.
i8] Heinreichsberger, O., Selberherr, S., Stiftinger, M., Traar, K.P., “Fast Iterative Solution of Carrier Continnity
Eqgustions for 3D Device Simulation®, to appesr in SIAM J.5¢i.5tat. Comput..
[¥] Heinveichsberger, O., “MINIMOS on the Connection Machine”, Technical Report, February 1991, Institute for
Microelectronics, Technical University Vienna, AUSTRIA.
{81 Johuson, 0.G., Micchelli, 4., Paul, G., “Polynomial Preconditioners for Conjugste Gradient Calculations”,
SIAM J.Humer.Anel. Vol. 20, No. 2, Apr. 1583, pp 362-376.
9] Meijerink, H., Vorst, H., “An Iterative Solution Method for Linesr Systems of which the Coefficient Matrix is a
Symmetric M-Matrix”, Math. Comp., 31 {1977), pp. 148-162.
[10} Oppe, T.C., Joubert, W.D., and Kincaid, D.R., “NSPCG User's Guide.”, Center of Numencal Analysis, Uni-
versity of Texas at Austin, 1984.
[11] Poole, B.L., Ortega, J.M., “Multicolor ICCG Methods for Vector Computers”, SIAM J Numer. Anal, Vol 24,
He. 8, Dec 1987, pp. 13941418,
{12] Sonmneveld, F., “CGS, A Fast Lancgos-Type Solver for Nonsymmetric Systems”, .S'IAM J.Bei. Stat. Comput., Vol.
10, No. 1, Jan. 1989, pp. 36-52.
[13] Trasx, K.P., Mader, W., ¢t al., “High Performance Preconditioning on Supercomputers for the 3D Device
Shmulator MINIMDS"Q Proceedmgs Supercomputing *90, pp. 224-231.
[14] Vorst, H.A. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of BiCG for the Solution of Nonsymmetric
Linear Systems.”, to appear in STAM J.5¢i.5tet. Comput..

