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~'I7"JJHH~ll"'J.VllC:U MOS Device Simulation on a 

Heinreichsberger* 

Abstract. In this paper we present oW' experience with the implementation of the three-dimensional semicon· 
ductor derice simula.tor MINIMOS on a. massively architecture, the Connection Machine CM2. The eD1lpllaSlS 
of this WOl'lI: is placed on herative methods for solving the very luge sparse lineu .yltems of equations that 

at each step of the nonlmeu solution procedure. Both symmetric and nonsymmetric linear systems ue solved 
br co:nJugate gradient type iterative methods. The implementation or the puallel preconditioner is the most crucial 
step. Multicolor incomplete LV ractori.ation preconditioners are compued with polynomial preconditioners. 
Several __erical examples from the nonsymmetric lineu systems in MlNIMOS ue given 

Comparisons with vector supercomputers are made. 
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TABLE 1 

BiCGSTAB Algorithm 

Choose 2:0 (e.g. Zo = 0) 

7'0 = (b - Azo) 

Choose Yo such that (Yo,1'o) -# 0 (e.g. Yo = 1'0 ) 

Po = Vo = 0 

P- l = 1 

Wo = 1 

a =1 
FOR n = 0 STEP 1 UNTIL convergence DO 

Pn = (Yo, rn) 
f3 = ~ ...!!... 

Pft-l Wft 

P"+1 = 1'n + f3 (p" + wnv,,) 

V,,+1 = A pn+l 

a = (Yo , Vn+ l ) 

• = 1'" - aVn +l 

t =A. 


~ "',,+1 = M 

7n +l = • - Wn +lt 

2:,,+1 = Z" + ap,,+1 + W,,+lS 


END FOR 

2. T he Linear Solvers. The parallel solvers are of (bi-)conjugate gradient type. A relative 
error of 10-3 for the symmetric and 10-8 for the nonsymmetric systems (motivated by numerical 
experiments only) has been found to be sufficient. 
For the Poisson equation the MIC-CG method[9] with a modification factor of Q = 0.95 is the 
optimal choice to the best to our knowledge. On the CM2 we use the CG in the version of Concus, 
Golub and O'Leary. As preconditioner the reduced system (RS) main diagonal is used. We shall 
denote this method by RS-CG. 
In the case of locally constant carrier temperatures (see [6]) the coefficient matrices of the discrete 
continuity equations are diagonally similar to symmetric, positive definite matrices and thus have 
a positive real spectrum. In these linearized discrete systems the matrix coefficients vary rapidly 
resulting in a high condition number, thus yielding a large iteration counts of the linear i terative 
solver. 
Among the number of iterative methods investigated [6J variants of the bi-conjugate gradient method 
such as the biconjugate gradient squared (BiCGS) method and the the BiCGSTAB method [14] (see 
Table 1) seem to be the optimal choice. 
In particular the BiCGSTAB procedure improves one of the main problems of BiCGS, namely its 
erratic convergence behaviour which often yields significantly more iterations for convergence than 
necessary. At the same time the rapid convergence of BiCGS is maintained. BiCGSTAB needs two 
dot products more, and one vector update less. 

3. Preconditioning Methods. Efficient and robust preconditioning is the most critical issue 
for the iterative solution of the discrete semiconductor equations. 
Split incomplete L U preconditioning enables an efficient implementation of the incomplete Choleski 
and the incomplete LU preconditioner, a technique originally proposed in [3]. However, the ILU 
preconditioner ofthe nat urally ordered unknowns is rather sequential in nature and thus unattractive 
on a SIMD architecture. Alternatives are polynomial preconditioners and ILU with multicolor 
orderings. 
For multicolor ILU preconditioning the coefficient matrix is permuted according to some regular 
replication ('coloring') pattern of t he unknowns [11]. A partitioning of the unknowns into sets 
of different colors resulting in a block structure of the coefficient matrix uncouples the unknowns 
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dearly be 
The linear solvers RS-CG and the RS-BiCGSTAB methods have been benchmarked. Some results 
are shown Table 2: Three tensor of 163 .323 and 

is solved on Sk. 16k and 32k processors USing double pn:ClS:lOn 
32k processors we a megaflop rate 20f 120 for for the N :::: 643 grid. Note that only halI 
VJ...'DI.. processors are active due to the red-black: Obviously is determined 

the 7 point which executes with roughly 200 J.J.l<:O,I!.<ULUI":'. (J:Q:rlres'pOl!1diA.:1J 
OOi&Ul aplP:r(l,mna1~el) 50 megaflops on 16k processors for the same 
!l.tplrorll COJnput3Ltlo;n is the reason why polynomial preconditioners are not 

dotproduct achieves a rate of 300 me:ga:no]:>s 
pr4~con4Itl(>ners compare unfavorable. We use the RS preconditioner for our 
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TA.BLB 2 

RS-CG 8'Ai RS-BiCGSTAB Be'Aclmal'u (mul: ;pel' ifusfiD'I'I.) 



ILU-BiCGS cnnll>Pfl 

of the ILU(O) preconditioner, the uU""'~lLc\;A 

a 
BiCGSTAB solvers is expected. 

.............r......'U and ILU-BiCGSTAB. In a recent work [13] high pelformance 

392 HEINREICHSBERGER, SELBERHERR, AND 

TABLB 3 

Ptf'form4f1.ctt of MINIMOS 011. 16k Pf'OCttIlllOf'4 

5. 

Device 1 

performance measurements 
16k processors 

is used for the Poisson 
for both 

3 performance statistics of the three simulations are listed. The rows 
following meaning: Row 1 the grid dimensions, row 2 the number 
iterations. Row 3 the and counts 
cnl,,..,.. , for the continuity (CC) equation 

and transfer times to and 
n1"''II'u\nc section the implementation using 

optimality. The linear solvers execute 
the case of a mean convergence u.clilOnl.u.~ 

cOlrrespc)n<1s to a 15 megaflop scalar nHl~<';"lue 
of numerical results see [7J. 

6. Some Remarks 
been out in a relatively short time by porting 
onto the Connection Machine. We have learned ,that the Connection Machine easy to use and to 
program although reo-programming of selected parts of the software is required. 

Conclusions. The implementation on the L>OIUl'""10n ",U'<.;lILUe 

computationally most eXipeIlSl"e 

;o!lrlpJlex ..u,a".... , ..."v...., say, tasks 100000 unknowns execute well on memory 
n"lll1pv,'1' the matrix assembly on the end computer becomes slow. 

r;nerlDllOlie, the transfer time oUhe 7-band matrix the right side to and the 
SOIUllon 

UC~nl-eJlla computer with the 

vector from the Connection processors is in most cases slower than the solution 
IIVt;t~lrn itself. For a production code this is not acceptable. Therefore an interaction of 

Machine's processors, which involves computation and 
u ........... " .. of large sets data, must be avoided . 
.l.WLU.L.LLl5 Machines is its FORTRAN compiler, 

algebra subroutines (such as multi wire nearest neighbour commu­
C:OIIDIIlUJD.lCatlOn and computation) is under way. A 

between -4 to 8 seems A one gigaflop 
a mean convergence 

deterioration factor of -4 corresponding to the IL U (0) preconditioned solvers, to 250 

were presented. It has been shown 
the MIC-CG 

expect that a fully optimized 
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least twice as 
The convergence loss factors iterative solvers in presented simulations are than three, 
in some cases larger than 10. A convergence degradation of more than a factor ofl0 makes the ques­
tion of a potential of the Connection Machine or similar 
architectures over doubtful. Part of this convergence dlllem:ma 

an insufficient 3D mesh. preconditioner can much more CUJl\;lC:ln,ljI 

An improved grid generation with .._n...~t 

problem and is part of current UH'csvlg~.J,UUilli. 
semiconductor equations is its 

m,restl,;:atlloD may not the ultimate answer. ~'U'\.i"I"'." 

are likely to on 
is OE;U',;Vtu:.,,:,c ..... 

statements are meant to summarize what we believe a 
engineer at a semiconductor manufacturing site, 

At first double hardware is an 
is Dot only true for MINIMOS but 

are candidates for Connection Machine ImplE~ml~ntatllons. 
Machine system with a number of processors is QC'l'I\l"a.U'lC. 

nr()V1ltles a powerful very large three-dimensional 
of processors may be subdivided, thus enabling more 

......,~•• t .... "" concurrently on the Connection Machine. Concurrency of 
Ul<S.I.VLl> such as MINIMOS CAD 

Uil~D:liiel' of binary data to and from the Machine's processors is a 
(JClnlllectlO,n ""a'.A ........ in a serveN:lient manner. The transfer 

l.;onnll!ct:lon Machine and the computer 
modern device/process CAD environments, are on a computer 

performance workstations as tools and supercomput­
solvers. The effectiveness of such a configuration quite 

interconnection between and the supercomputer hardware. 
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