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Abstract 

Our device simulator MINIMOS has been used for the 
numerical analysis -of three-dimensional non-planar sil­
icon MOSFET and GaAs MESFET structures. Here 
we present an extension of the program for the simu­
lation of transient effects. This version of MINIMOS 
has further been enhanced by a new, highly accurate 
current integration method. 
The computational complexity of three-dimensional 
transient simulations is tackled by preconditioned it­
erative methods. We present efficient algorithms and 
their implementation for the solution of the large lin­
ear systems of equations on vector and parallel com­
puters. 

1 Transient Simulation 

Three-dimensional transient simulation of MOSFET 
structures is necessary to analyze both the influence of 
time dependent physical quantities such as the recom­
bination rate, and three-dimensional non-planar ge­
ometries such as the field-oxide transition. The current 
continuity equations are discretized in space by the 
Scharfetter-Gummel method and in time by the fully 
implicit (backward Euler) method. Time-step control 
is based on the functional 

I 
i+l i+l 

I [(ni+1 - ni) In nni + (pi+l - pi) lnppi 

+ 

n 

_:(grad (,pi+i - ,pi))]d11 
2 

The time-step Ti+l is chosen such that 

Ti+l = 6. I 
Ti 

remains bounded. For the solution of the device 
equations the decoupled (Gummel) algorithm is used. 
The convergence of Gummel's algorithm in the linear 
regime is accelerated effectively by least squares ex­
trapolation for the update of the electric potential 1/J. 
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Transient simulation is an important method for the 
analysis of physical effects such as e.g. the kinetic of 
deep traps in the semi-insulating substrates of GaAs 
MESFETs [3][4], and the simulation of the charge­
pumping experiment (interface trap kinetic). The deep 
trap model in GaAs for the donor trap rate-equation 
is given by 

in which the effective recombination rates Rn,p are 

Rn CnN;Jn - en (NT - N;j) 

Rp Gp (NT - N;j} p - epN;j 

In these equations NT denotes the total and N;j the 
density of the electrically active deep donors. Cn,p are 
capture coefficients and en,p are the emission rates [3]. 
An equivalent formulation holds for the acceptor traps. 
For the simulation of the charge-pumping experiment 
in silicon MOSFETs we use a model for the interface 
trap kinetic given in [2]. Assuming the acceptor type 
of the interface traps with density DT, the time de­
pendent charge-pumping current is obtained by inte­
gration with respect to the gate-oxide surface and the 
time (period length T0 ). The falling pulse slope is as­

sumed to start at t = t': 
t'+To 

lcp (t) = ~o UVth J J NT(1)p(r)dfdr 

t' f'a 

where NT (t) is the non-equilibrium part of the trapped 
charge density, obtained by integration of the rate 
equation 

NT (t) = 

t 

UVth I NT ( T) p ( T) dT 

t' 



The time interval 6 (t, E) is determined for a given E 
by the condition EF (t - 6) - E = 0. All parameters 
are assumed as spatial variables along the channel stu­
fo.ce. r .. ( E) denotes the trap lifetimes which depend 
on the energy in the well-known way [6]. 
A selfconsistent transient solution of these equations 
enables the simulation of the charge-pumping experi­
ment. This facilitates a proper design of this experi­
ment and the extraction of the spatial distribution and 
energy density of the traps created by a hot carrier in­
jection. 

2 Current Integration 

After a solution at .some timestep has been found a 
critical step is the terminal current integration. We 
have implemented a new method which is based on 
choosing weight functions wi for each terminal T, and 
evaluating a volume integral instead of a surface inte­
gral. E.g. for the electron current on the terminal T; 
we compute 

I'.. = J [gradw~ ·Jn - w~R]dO 
n 

In this formula Jn denotes the electron current density 
and R the recombination rate. The functions w~ are 
smooth functions on 0. They have to suffice homoge­
nous Dirichlet boundary conditions at all terminals 
T; -:/:- T;, non-homogenous constant Dirichlet boundary 
conditions at the terminal T; and homogenous Neu­
mann boundary conditions elsewhere. To obtain op­
timal weight function for e.g. the electron current on 
terminal T; we minimize the functional 

~~=I rn(gradw~) 2 
- w~R] dO 

n 

This choice is motivated by the experimental observa­
tion that a high degree of accuracy for terminal cur­
rents is achievable, if the gradients of the weight func­
tions are minimized in highly doped regions of the de­
vice [5]. The variation of the functional above leads to 
the elliptic partial differential equation 

div (ngradw~) = R 

which is discretized by the Scharfetter-Gummel 
method and solved by .the standard preconditioned 
conjugate gradient method. For the deviation currents 
the Laplace equation is solved on n. 

3 Implementations 

The backward Euler time discretization in general in­
creases the diagonal dominance of the linearized dis-

crcte earner continuity equations, thus making pre­
conditioned iterative methods converge quickly. Apart 
from the classical conjugate gradient algorithm (CG), 
which is used to solve the discrete Poisson and weight 
function equation, we use the conjugate gradient 
squared method (CGS) for the carrier continuity equa­
tions. 
The convergence rate on one hand and the efficiency of 
the implementation on parallel computers on the other 
is determined to a large extent by the applied precon­
ditioner. Incomplete LU factorizations have proven 
to be a nearly optimal choice on vector computers. 
We have carried out various implementations on vec­
tor supercomputers such as the Cray-2 and the Fujitsu 
VP200 resulting in execution speeds of more than 100 
megaflops for the critical triangular solves of the IL U 
preconditioner. This is achieved by the hyperplane­
reordering technique using list-vectors. We have in­
vestigated also several massively parallelizable precon­
ditioners, namely truncated Neumann series and mul­
ticolor incomplete factorization preconditioners. Ex­
periments performed on a massively parallel architec­
ture, the Connection Machine [l], indicate that an in­
complete factorization of the reduced system matrix 
performs best. 
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