
A TCAD ENVIRONMENT
FOR PROCESS AND DEVICE ENGINEERING

H. Piiningstorfer, S. Halama,. and S. Selberherr

Institute for Microelectronics

Technical University of Vienna, Austria

Abstract - A new technology CAD environment is
presented which integmtes simulatio1i tools and capabil­
ities required in process and device development by us­
ing LISP as interaction an d p1·ogramming language. fo
TOAD shell functions LISP code is combined with func­
tions for u.ser interact.ion, data m ani7mlation, simulator
calls and visual'irntion in an operating system indepen­
dent manner. An XJJ-based graphical user interface is
provided fo r com;enient and inltti'.ti-ue con frol of simu­
lation tools. By m eans of this integrated TCAD envi­
ronment the user is able to concentrate on performing
complex development tasks rather than on suptrvising
single simulator runs .

INTRODUCTION

The demands on technology CAD (TCAD) range
from simple simulator coupling over process and device
characterization to technology optimization. Different
kinds of tools are required: graphical editors, process,
device, and interconnection simulators, parameter ex­
tractors, optimizers, postprocessors, etc. Integration of
all these tools into a homogeneous TCAD environment
is achieved by three key features: A common format for
data exchange, a powerful shell language for extension
and customization , and a graphical and interactive user
interface.

SYSTEM 9VERVIEW

An overview of our integrated TCAD system [l] ,
[2] is given in Fig. 1. The data interchange format we
have chosen is an enhanced and extended version of the
well-known profile interchange format {PIF) proposed
in [3]. The PIF database is accessed by programs by
means of an application interface which supports the
implementation languages C, FORTRAN and LISP.

User Interface Agent

(X11)

Technology CAD Shell

(XLISP)

VLSI- MINI­
CAP MOS

ROMI

PIF Application Interface

PIF Database

File
a nag

PIF

binary File

Figure 1: TCAD System Overview

TCAD SHELL LANGUAGE

On one hand the TCAD shell language is the com­
mand language with which the user interacts with the
TCAD system; so it has to be interpreted. In addition,
it must be able to run time consuming tasks as back­
ground processes or in batch mode. The other task of
the TCAD shell language is to serve as an extension lan­
guage, in which new functionality is added, customiza­
tions are specified, and macros or just shortcuts for
frequently used shell command sequences are defined.

We have chosen LISP as the base of the TCAD
shell because of the flexibility of this programming lan­
guage and its independence of the operating system.
Among the candidates of publicly available interpreters
we picked XLISP [4] in its current version 2.1. This
small interpreter is written in portable C with modu­
larized design and exhibits a clear C-to-LISP interface.

23. 2. 1

280 KITE-ICVC/91/0000-280 © 1991 KITE . ICVC '91, SEOUL

r·
The source code availability meets the need to im­

plement TCAD shell functions in C, which are linked
together with the original interpreter and are further
handled like built-in functions . .

TOOL INTEGRATION

Tools can be integrated in three ways, depending on
the language they are programmed in:

• LISP tools just have to be loaded and executed
by the TCAD shell. This is useful for high-level
optimization loops or module sequencers, which
consume only small amounts of the overall com­
putation time.

• Tools in form of a C function just have to get
a small C-to-LISP interface. Then they can be
linked together with the shell and called just like
normal built-in shell functions. This is useful for
small and frequently needed tools which consume
some computation time. They could as well be
called as separate executables by a system call,
but linking them to the shell eliminates the oper­
ating system overhead.

• Tools in any language that are separate executa­
bles can be called with a shell built-in system call
function . -Thus existing simulators, mostly coded
in FORTRAN, can be used like any other shell
function.

Until now the device simulator MINIMOS, e.g. [5],
the process simulator PROMIS, e.g. [6], and the inter­
connect capacitance simulator VLSICAP, e.g. [7], have
been integrated into the TCAD system.

SHELL FUNCTIONS

Shell functions specialized on MOS transistors for
example, compute the threshold voltage and drain and/
or bulk current by invoking MINIMOS and returning
the value of interest as a LISP expression. These func­
tions combined with a one-dimensional optimizer are
used, for instance, to find the maximum of the bulk
current or of the relative transconductance. Combined
with looping constructs, the shell functions are tailored
to compute I/V characteristics or any other variation
of an output quantity versus any allowed input key, ap­
plying a constant or an adaptive step size.

For each simulator run, the user is relieved from
modifying an input deck with an editor, starting the

simulator on the command line and getting the required
values from the simulator output.

With few lines of TCAD shell code a new shell func­
tion, tailored to the very specific needs of the user, can
be written as a combination of any tool callable at shell
level and normal LISP code. The TCAD shell allows ar­
bitrarily complex tasks to be performed, ranging from
simply calling a single module interactively over cou­
pling simulators to running whole optimization loops
as background processes.

USER INTERFACE

The TCAD shell serves as a textual user interface
to the TCAD system in cases where terminal capability
is required to be enough. For higher convenience, the
User Interface Agent (UIA) has been designed which
allows graphical control of the TCAD system.

An interface to the X11R4 window system has been
implemented as part of the LISP interpreter, based on
X Toolkit, Intrinsics and Athena widgets to address
the portability issue between workstations from differ­
ent vendors. Specialized widgets have been added to
provide for comfortable specification of numerical val­
ues, file selection and vector graphics capabilities. In
principle, widget callbacks cause LISP expressions to
be evaluated. The flexibility gained by combining Xll
with a LISP interpreter enables the system to accom­
modate to the very specific needs and peculiarities of
existing environments and applications. Due to the in­
teractive nature of the construction of the user inter­
face, the actual layout and major parts of the function­
ality are subject to customization and configuration.

For example, to support the creation of user inter­
faces for simulator features and any kind of TCAD shell
functions, a utility for automatic generation of interac­
tion panels (consisting of a set of widgets and callback
functions) from a brief abstract description (in LISP
syntax) was implemented. Some of these panels are
shown in Fig. 2. They are used for specifying input pa­
rameters and starting a tool execution. Default values
are supplied wherever possible. Each parameter mod­
ification is immediately checked, thus detecting simple
but most often made input errors like leaving the al­
lowed value range or selecting a badly interfering set
of choice parameters as soon as possible and not only
when a tool fails to execute.

Another example for the advantageous combination
of Xll and LISP is the hierarchically organized, inter­
active help system which retrieves the information it

23.2.2

281

..
Ur

lid

Us ~--
Ub Ur C!2}$ y

lid CH]S v
Ut ~S Y
Ub CJ]~ v

"11
i!J

Trenst:onducllYLt.y: p • lJ.67 ulVV 1

\ll<knowlodre\

Ia Ila Jlla

® Spacer Opt1m1zal1on Results 1 gJJ

Sc • D'.i

<+OS
la

18) Subthreshold-Ocmo @

IYa Va Via Vila

08 Cr "" Fe

Zr Nb Mo Tc Ru

0 Ta M Re Os

VIII;

[o Ni

Rh B
Ir Pt

t-----=--=-----~P~R0n~1$~-rme~l~mo~d~l~to•••..,,_.,...._.._._.;,._)

Cu Zn

Ro Cd

Ru "•

~I MC- lmplan t "11on ~

~ ~\c~ncel)!cenrlrol!c"•Lonl:tol

~
. -.

J Phy2lc•l p..,..of\t't.~rs I
Dose I h+l4 ($: /crt"2

Elerwmt. llllll I bOf"CK) ll '"'p-r..-.p-h-•• -u-.a r I .rn.inony I@: her!)
£neq~y c:::EJ A. keV

Tilt. Ant:"le [3.~ deerees

Rolale flnl:'le [3.B del:'rees

Ion Has:. L}!)x AHU

fCot1.put.ot.Ion11l r.r M IJlflrS I
final Enerey c::ill '~ eV

Co"P. Mode JlU@-I1fi(!M!NO superp.)IS£n.i-:.uperp, \

Nul'lb,dist. , Ions ltfJO(m Ix !on11

18J MulaG @

Huttbcr or Iom !1.1(11_10t) ~ ion:.

Nul'l.flol,Rn(:les l1011ll(I J ~ ani:les

Recoil Cor1p, ~

.... ;;-::;;.·;:~:
~ ... ;:--

Particle Tr.lee GIT]
M.irnjn(!s Trace GIT]

I ...) (!iliJ irwl.l11L.1lfon 1.1indo1.o1

• • J

S acer Optlm!latlon Resul1$ 2

- 18) SI ~

Subthreshold- Oemo

=·
~

Pll Binary file Manager

Figure 2: Graphical User Interface

nee<ls out of special comments within the code at load
time. Therefore the help system is guaranteed to be
consistent with the actually loaded versions of all func­
tions.

EXAMPLE

As an example, the bulk current of an n-channel
MOS transistor has to be minimized by varying the
close of the lightly doped drain (LDD) implant. For
this purpose process and device simulation are coupled
with in an optimization loop. The doping profiles sim­
ulated by PROMlS a.re characterized by several MlNI­
MOS runs, computing the threshold voltage, the satu-

ration current, and the maxima of the relatiw transcon­
ductance in the linear regime and of the bulk current.
The ratio of bulk to drain current for a. constant bias
condition is the value to drive the optimization loop for
the LDD implant dose.

Th TCAD shell program is shown in Fig. 3. In
a. concrete application the one-d imensional optimizer
needed 8 iterations to explore a dose range from 1010

to I 016cm-2 till the quotient of two consecutive dose
values was less than 2. That means, 8 times PROMIS
and due to the extensive device characterization about
100 times MINIMOS ran automatically under control
of the TCAD shell.

23.2.3

282

. '

.·

,

optimize LDD impl. dose f or min.imal i b/id[2.6/6.0]
run PROKIS and character ize the profi le running
HIIIMOS for U_th, Id_saturat i on, gm_max, Ib_max,
and Ib/Id for each optilllizer i t eration

(defun minimize-ib/id
(PR-IRPUT HK-IIPUT DIRECTIVE OCCUR KEY Kii KAI. TOL

tkey (PR-BASEIAME TCAD-PR-TFR) (LOG IIL)
taux PROFILE RESULT-LIST lb/Id-VALUE)

;;id-optimizer
(golden-section

#'(lambda (VALUE)
;;new profile name
(setq PROFILE (new-profile-name PR-BASEIAHE

DIRECTIVE OCCUR KEY VALUE))
;;modify PROKIS input deck
(set-pr-key PR-IRPUT DIRECTIVE KEY VALUE OCCUR)
; ; run PROM IS
(run-promis PR-IIPUT : EXEC-MODE "i")
;; run HINIHOS several times ·
(setq RESULT-LIST (append RESULT-LIST

(list (list VALUE
(u-th MM-INPUT :PROFILE PROFILE)
(id[bias) HM-INPUT

'iUG 6 . 0 :UD 6.0 :PROFILE PROFILE)
.. ·~(gm-max 'MM-INPUT 1.0 3.0 0 . 2
. :UD 0 . 1 :PROFILE PROFILE)
(ib-max MM-INPUT 1. 0 3 .0 0 . 2

:UD 6 . 0 :PROFILE PROFILE)
(setq lb/Id-VALUE (ib/id[bias] KH-IIPUT

:UG 2.6 :UD S.O :PROFILE PROFILE))))))
lb/Id-VALUE); end lambda

KIN MAX T,OL :LOG LOG); end golden-section
;; retur~ ·result list
RESULT-LIST)

Figure 3: Example TCAD Shell Program

CONCLUSION

The use of LISP as top-level implementation lan­
guage for our TCAD system opens up new possibili t ies
in terms of flex ibili ty and customizat ion. Very complex
development tasks can be performed by ut ilizing the in­
t erfaces to simulation tools and the da tabase together
with t he programming language feat ures of LISP. In
contradiction with common expectations, a relati vely
small percentage of the computation time is spent in­
side the LISP interpreter. Generally spoken , the in-

terpreter is busy with the task of redirecting and re­
sponding to events coming from the Xll system and
controlling the execution of simulation tools. Hence,
the overall system performance does mainly depend on
the performance of the simulation tools themselves.

ACKNOWLEDGEMENTS

This project is supported by the research labora­
tories of: AUSTRIA N INDUSTRIES - .AMS Int . at
Unterpremstatten, Austria; DIGITAL EQUIPMENT
Corp. at Hudson, USA; SIEMENS Corp . at Munich,
F RG; and SONY Corp. at Atsugi, Japan.

REFERENCES

[1] S. Selberherr et al., The Viennese TCAD System,
Proc. Int. Workshop on VLSI Process and Device
Modeling, pp. 32-3.5, Oiso, Japan 1991

[2] F. Fasching et al., An Inf.egmted Technology CAD
Envfronment, Proc. Int. Syrop. on VLSI Technol­
ogy, Systems and Applications, pp. 147-151, Taipei,
Taiwan, 1991.

[3] S. Duvall, An Interchange Format for Process and
Device Simulation, IEEE Trans. Computer-Aided
Design, Vol. 7, pp. 489- 500, 1988.

[4) D. M. Betz, XL/SP: An Object-oriented Lisp, Ver­
sion 2.0, Peterborough, NH, Febr. 1988.

[5) S. Selberherr, Three Dimensional Device l\fodeling
with. Af!NIMOS 5, Proc. Int. Workshop on VLSI
Process and Device Modeling, pp. 40-41, 1989.

[6] G. Hobler et al., RTA-Simulation with. the 2D Pro­
cess Simulator PROMIS, Proc. NUPAD III, pp. 13-
14, 1990.

[7] F. Straker et al., Capacitance Computation for
VLSI Structures, Proc. EUROCON, pp. 602-608,
1986.

23.2.4

283

