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Abstract 

For the selfconsistent solution of the three-dimensional 
semiconductor device equations large and sparse linear 
systems of equations have to be solved repeatedly. In 
order to obtain reliable results with modest demands 
on computer resources preconditioned iterative meth­
ods for the solution of the linear systems of equations 
are applied. Various iterative methods for the solution 
of the nonsymmetric discretized carrier continuity equa­
tions, e.g. conjugate gradients applied to the normal 
equations, a symmetrized conjugate gradient method, 
GMRES, and CGS, are compared. As preconditioners 
Jacobi and incomplete LU factorization methods have 
been investigated. For an efficient implementation on 
modern vector and vector-concurrent computers special 
coding techniques have to be applied in order to allow 
vectorization and/or parallelization of the recurrence 
relations in the preconditioners. Results obtained on 
a SIEMENS/Fujitsu VP200, a Cray-2, and on Minisu­
percomputers such as ALLIANT/FX40 and VAX 6260 
are presented. 

1 INTRODUCTION 

The numerical analysis of semiconductor devices [24] 
has become an important tool as well for design en­
gineers to predict the device performance as for device 
physicists to understand the internal behavior of the de­
vice. Whereas in the eighties two-dimensional simula­
tors were able to fulfill these demands, shrinking device 
dimensions have led to submicron devices, which can 
only be described satisfactorily by three-dimensional 
simulation. 

In order to be able to make three-dimensional device 
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simulators economically applicable, answers have to be 
obtained within a time comparable to two-dimensional 
simulations a few years ago. This can be achieved by 
running those programs on modern supercomputers. 
But also a lot of software development in the field of 
numerical analysis has to be done, which was not so 
important for two-dimensional device simulators. 
Therefore much effort has been undertaken to develop 
fast solvers for the sparse and large linear systems of 
equations, when for our MOS-/MESFET device simu­
lator MINIMOS [25] a three-dimensional version was de­
veloped. Iterative solvers for the linear systems ap­
pear to be the most suitable solution methods in the 
three-dimensional case. The solution of the symmet­
ric, positive definite, and well conditioned Poisson equa­
tion by the preconditioned conjugate gradient method 
is straightforward [16]. For the nonsymmetric and com­
monly bad conditioned [2] continuity equations rapidly 
convergent and numerically stable solvers are sought. 
Conjugate gradient-like methods tum out to be the 
most suitable choice (19]. As there are only few the­
oretical results concerning the convergence behavior of 
iterative methods for nonsymmetric linear systems of 
equations available, we have compared some important 
algorithms. 
Convergence (and thus reliability) of the applied iter~ 
ative method depends quite critically on the precondi­
tioner. The Jacobi preconditioner has recently again 
become a matter of interest, because it can be vector~ 
ized and parallelized rather easily. The high quality 
of preconditioners based upon incomplete LU factoriza­
tion (IL U} is firmly established in numerical analysis, 
thus we also concentrated on adaptive fill-in ILU pre­
conditioning throughout our investigations. 
The vectorization of the recurrence relations in the LU 
factorization preconditioners is done by a hyperplane 
method [1][27]. An efficient implementation of this 
method with list vectors and zero padding is discussed. 
Section 2 gives a brief overview of the basic partial dif­
ferential equations and Section 3 treats the discretiza­
tion and the iterative solution of the nonlinear system 
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of equations. Section 4 deals with some important al­
gebraic properties of the nonsymmetric coefficient ma­
trices. In Section 5 a number of methods for the iter­
ative solution of nonsymmetric linear systems are re­
viewed and compared against some new iterative meth­
ods. Section 6 shows the theoretical and Section 7 the 
implementational aspects of the used preconditioners. 
Section 8 concludes with numerical results. 

2 THE BASIC PARTIAL DIFFERENTIAL 
EQUATIONS 

The semiconductor equations [24] in the variables 
(1/J,n,p) consist of the Poisson equation and the car­
rier continuity equations. Poisson's equation for the 
electrostatic potential 1/J reads 

div (e · grad1/J) = -p (1) 

with the space charge p = q · (p - n + C), where C 
denotes the net doping concentration, n the hole, p the 
electron concentrations and q the elementary charge. 
The carrier continuity equations for the electron and 
hole current densities J:,p read 

- 8n 
q· R (2) divJ -q·-

n 8t 
- 8p 

-q·R (3) divJp+q· Bt = 

where R denotes the carrier generation and recombina­
tion rate and the current densities J:,p are given by 

in -q·µn·n(grad1/J-~·Ui·gradn) (4) 

J; -q·µp·p(grad1/J+~·Ut•gradp) . (5) 

Calculating the carrier mobilities we take into account 
lattice, impurity, and surface scattering and velocity 
saturation for high electric fields. U1 = \T denotes 
the thermal voltage. 

We consider the time-invariant case of the semicon­
ductor equations only. In the transient case additional 
terms increase the diagonal dominance of the discretized 
carrier continuity equations and therefore improve their 
condition number, if an implicit backward time differ­
ence scheme is used. 

3 DISCRETIZATION AND ITERATIVE 
SOLUTION OF THE NONLINEAR 
SYSTEM OF EQUATIONS 

We use finite difference discretization in a rectangu­
lar spatial domain to treat the semiconductor equa­
tions numerically. The coefficient matrices of the dis­
cretized equations have seven nonzero diagonals in nat­
ural ordering. At the idealized ohmic terminal contacts 
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Dirichlet boundary conditions hold, at artificial inter­
faces in the deep bulk homogenous Neumann bound­
ary conditions have to be applied. Inhomogenous Neu­
mann boundary conditions are valid in case of interface 
charges for the electrostatic potential and in case ofnon­
vanishing interface charge and interface recombination 
velocity for the carrier concentrations. 
The nonlinearity of the discretized coupled system of 
equations can be treated in different ways: Classical 
Newton or quasi Newton schemes [3][6] make a si­
multaneous solution of the three semiconductor equa­
tions necessary and have a locally quadratic conver­
gence behavior. We restrict ourselves to Gummel's 
algorithm [9], a block iterative . Gauss-Seidel method, 
which allows a sequential solution of the three equa­
tions within each outer iteration. It is less sensitive to 
the initial guess than Newton's method and no Jacobian 
has to be calculated, thus keeping storage requirements 
low contrary to the Newton schemes. The locally linear 
convergence of Gummel's algorithm, often considered 
as its major drawback, can be improved by nonlinear 
convergence acceleration [15]. The nonlinear Gummel 
modification of Poisson's equation and the nonlinear­
ity in the generation and recombination terms are lin­
earized by a first order series expansion, the nonlinear­
ities in the carrier mobilities and carrier temperatures 
are neglected. The resulting scheme reads 

q ( k k c -; p - n + + 

+ 8 (p- n + C)k (1/Jk+i -1/J1e)) (6) 
81/; 

-q( R(1/Jk+1,n",p") + 

+- (pk+l - p") 8R ) 
8p 

(7) 

q ( R (1/J"+i, nk,pk+l) + 

+ ~~ ( n k+ l _ n k)) . (8) 

In order to cope with the exponential dependence 
of the carrier densities on the electrostatic potential 
and in order to allow carrier temperature dependent 
mobilities a modified Scharfetter-Gummel interpolation 
scheme (22] for the carrier concentrations is used. Non­
planar interfaces are discretized by the well-known box 
integration method. 



4 ALGEBRAIC PROPERTIES OF THE 
COEFFICIENT MATRICES 

The linear interpolation of the electrostatic potential 
between adjacent grid lines and the modification by 
Gummel's algorithm leads to a symmetric, positive def­
inite, 2-cyclic coefficient matrix of the discretized Pois­
son equation. The solution can easily be achieved by 
the standard preconditioned conjugate gradient algo­
rithm. The exponential Scharfetter-Gummel interpo­
lation scheme in the discretization of the carrier conti­
nuity equations produces nonsymmetric, 2-cyclic coeffi­
cient matrices A, which can be transformed to a sym­
metric, positive definite matrix A [4][14] 

- -1 
A = Wn,p · A · Wn,p (9) 

by a diagonal matrix W with positive elements Wi. The 
Wi are given by 

( tPi ) Wi,n = exp - 2 . Ut , ( tPi ) 
Wi,p =exp 2 . Ut (10) 

for electrons and holes. Ut = k~T denotes the ther1~al 
voltage. The enormous number range of the wi,n,p in­

hibits an explicit symmetrization.The symmetrizability 
guarantees a positive real spectrum of A. 

5 SELECTED ITERATIVE METHODS FOR 
THE LINEAR SYSTEMS 

We have selected some basic projection-type iterative 
methods [20] for the nonsymmetric linear systems. In 
the following section some theoretical aspects and the 
practical applicability will be discussed. 

5.1 CGNR 

This algorithm applies conjugate gradients to the nor­
mal equations. It solves the symmetric, positive definite 
problem 

(11) 

by the classical conjugate gradient algorithm. It is clear, 
that the matrix-product AT A is never built explicitly. 
Due to the minimization property of the conjugate gra­
dient method the convergence behavior is strictly mono­
tonic but it is determined by the squares of the singular 
values of A [17]. Therefore it can be expected, that 
the convergence behavior is rather poor. Numerical ex­
periments have confirmed, that this algorithm cannot 
satisfy our requirements. 

5.2 SYMMETRIZED CG 

The similarity of the coefficient matrices to symmetric, 
positive definite (SPD) matrices can be exploited by a 
symmetrized conjugate gradient method, which avoids 
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the explicit symmetrization of the linear system [12]. 
The cumbersome symmetrization matrix W is only re­
quired for the computation of the iteration parameters, 
where it appears both in the nominator and denomi­
nator. This allows scaling in order to avoid floating 
point under- or overflow. This algorithm minimizes the 

1 

[W2 A] ~-norm of the error vector. It has proved, that 
in our applications this algorithm can only be applied 
in low voltage simulations, for which the number range 
of the symmetrization matrix W fits into the number 
range of the computer used. 

5.3 GMRES 

This algorithm [21] minimizes llrkll 2• An orthogonal ba­
sis of :ek is built by means of an Arnoldi construction. 
Assuming that the procedure has converged in k steps 
(llrkll < E), a k + l x k upper Hessenberg least squares 
problem has to be solved, so that :Ck is the best ap­
proximation to the true solution within this orthogonal 
basis. 
Full orthogonalization requires the storage of k "back"­
vectors and the calculation of k+l inner products at the 
k1h iteration. To limit storage requirements we restart 
GMRES after m (where mis a constant) iterations, if 
the method has not yet converged. The approxima­
tion to the solution at the end of every m iterations is 
used is initial value for the next m-step Arnoldi pro­
cess. The truncated version GMRES( m) of course loses 
optimality but restarting preserves monotonicity in the 
residual-norm. 

5.4 BIOMIN2 (CGS), BIORES2
, BIODIR2 

They are built by squaring the Lanczos 
biorthogonalization algorithms BIO MIN, BIO RES, and 
BIODIR [11][26). From the computational point of view 
they are more efficient than the original procedures. All 
three squared algorithms produce the same iterates for 
the same initial guess, but both from the aspect of the 
work per iteration and of numerical stability BIOMIN2 

(CGS) outperforms the other two procedures (14]. 
The biorthogonalization algorithms have no minimiza­
tion properties. Therefore the residual usually does not 
decrease monotonically. Very often an erratic conver­
gence behavior can be observed. This may increase the 
influence of roundoff errors. 
The biorthogonalization algorithms may break down by 
division by zero also in exact arithmetic, if certain in­
ner products vanish. A breakdown is likely to occur, if 
the initial guesses are chosen inappropriately, but was 
never observed in our examples. 

A comparison of all tested algorithms has shown that 
BIOMIN2 (CGS) performs best for our applications in 
the sense of minimizing the overall computational work 



and storage requirements. This is remarkable, because 
it is the only algorithm out of those we have tested, 
which has no minimization property. 

6 PRECONDITIONING 

It turned out that preconditioning of iterative solvers 
is inevitable to fulfill the stability requirements. We 
are searching for easily invertible approximations to the 
matrix A which allow a transformation of the linear sys­
tem A:c = b to the system Bi = b with superior spectral 
properties. The matrix B is of course never formed ex­
plicitly. In addition to every matrix vector multiplica­
tion Av a linear system with the preconditioning matrix 
as coefficient matrix has to be solved. This system must 
be solvable much easier than A:v = b. 
We have investigated a block Jacobi preconditioner 

(12) 

where Dis the (block) tridiagonal part of A and incom­
plete LU (IL U) factorization preconditioner (16] 

Pnu=PLPR= (.i+D)frifr~ (u+D) (13) 

where .i and U are strictly lower and upper triangular 
matrices and D is a diagonal matrix. In the symmetric 
case j,T = U holds and the preconditioner is the well 
known incomplete Cholesky decomposition (IC) precon­
ditioner. 
For the Jacobi preconditioner left preconditioning has 
been chosen 

P - 1A - B p- 1b - b-J ;c = J:C = J = J, (14) 

for the ILU preconditioners left and split precondition­
ing has been implemented 

Pji_ 1 P£ 1A:c::: BILu,.1,:c = Pji_ 1P£ 1b:: bnu,.1,(15) 

P - 1AP- 1P - B - p- 1b - b-L R R:C = ILU,,.,..:c = L = ILU,,., ... (16) 

For the split IL U preconditioner :c has to be unscaled 
at the end of the iterative process: :c = PJi. 1i. 
The computational work for the Jacobi preconditioner 
is smaller and as there are only first order recurrences 
vectorization and/or parallelization is more straightfor­
ward than for the ILU preconditioners. But as can 
be expected from theory (8] the Jacobi preconditioner 
causes worse convergence behavior for all tested accel­
erators than ILU preconditioners. For high bias simula­
tions, where the drift term dominates in the the current 
relations (4) and (5) the Jacobi preconditioner does not 
guarantee a fast and reliable convergence of the iter­
ative methods. Therefore we do not recommend this 
type of preconditioner for general use. 
The second class of preconditioners we tested exten­
sively are the incomplete LU preconditioners with al­
lowable fill-in denoted by ILU(q) (1](5](13]. For q = 0 
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the matrices L and U are equal to the strictly lower 
and upper matrices L and U of A. The sparsity pat­
tern of the triangular factors L and U therefore is the 
same as for the triangular parts of A. For q = 1 the 
fill-in caused by the ILU(O) nonzero pattern is taken 
into account, for q = 2 the fill-in caused by the ILU(l) 
sparsity pattern and so on (ILU(NX ·NY) would be 
the exact LU factorization of A). A higher degree of 
fill-in of course reduces the number of iterations which 
are necessary to solve the linear system but increases 
the work per iteration and the storage requirements. 
For the incomplete LU preconditioner D can be com­
puted such that diag (PILu) = diag (A) or alternatively 
such that (PILu - A) has zero column sums, which 
leads to modified incomplete factorization type precon­
ditioners (MIL U) originated by Gustafsson (10] for Pois­
son type equations (in the symmetric case this is equal 
to 7'owsum(P1c) = rowsum(A)). For the symmetric 
and positive definite Poisson equation the modulus of 
the main diagonal is greater or equal than the offdi­
agonal elements of the very row (or column) . For the 
coefficient matrices of the discretized carrier continu­
i~y equations an analogous relationship for the columns 
holds. A modification factor a in the interval (0, 1] is 
usually introduced to smoothly sweep between IL U and 
MILU factorization . Our results concerning the choice 
of such a modification factor do not admit a clear state­
ment. We found a number of device examples where a 
choice of a = 0.5 yields a performance enhancement of 
about 10% to 30% concerning the iteration count. This 
is rather disappointing, as for the symmetric Poisson 
equation a modification factor of a = 0.95 reduces the 
iteration count up to 50%. 
For q = 0 efficient implementations of the multiplica­
tions of the preconditioned coefficient matrix B and an 
vector v are possible. For the left (M)ILU(O) precondi­
tioner we scale the coefficient matrix from the left side 
by D. The scaled matrix A,,.1 , =DA can be written as 
a sum of a strictly lower, a diagonal, and a strictly up­
per matrix: A,,.1 , = L,,, 1 , +D,1ct• +U, 1• 1 ,. The number 
of fl.ops can be reduced from 13N (N is the number of 
grid points) to lON by 

(I+ U, 1.,,r1 [v +(I+ L, .. ,,f1
. 

· (D,,.1, - I+ U,,.1,) v]. (17) 

An analogous simplification for the split (M)ILU{O) pre­
conditioner, which saves even 6N flops, is well known 
as Eisenstat 's trick (7]. The coefficient matrix A is 
scaled symmetrically by Di : A,,,.,;, = Di AD i. Then 
B1 LU,,.,;, v can also be written as 

BILu,,., ,, v = [t +(I+ L,,,. .. ,)- 1 (v - (21 - D,,,.w) t)] 
(18) 



with 
t = (I+ U,,.w)- 1 

v. (19) 

We are not aware of analogous tricks for higher fill-in 
preconditioners. 

There are a number of other preconditioners such as 
the SSOR [1], least squares polynomial, Neumann poly­
nomial and their line and/or block variants. Numeri­
cal experiments carried out with the NSPCG software 
package [18] identified none of them competitive with 
ILU. 

7 IMPLEMENTATION OF THE 
PRECONDITIONERS ON 
VECTORCOMPUTERS 

The basic components of all methods described above 
are operations like vector updates, inner products, and 
sparse matrix vector products, which are quite easily 
implementable and lead to high performance codes on 
vectorcomputers. However, those components contain­
ing recurrence relations do not vectorize or parallelize 
when coded in a straightforward manner. For the Ja­
cobi preconditioner we have to deal with a first order 
linear recursion. For the preconditioning by incomplete 
factorization linear recursions of several orders appear. 

7.1 VECTORIZED SOLUTION OF 
TRIDIAGONAL SYSTEMS 

Vectorizable solution for tridiagonal systems may be 
obtained by different methods like recursive doubling, 
cyclic reduction [23], and the partition method [28][30]. 

The most efficient solver for the VP200 as well as for 
the ALLIANT/FX40 (with two processors) was the one 
factorizing the tridiagonal system into two bidiagonal 
ones and solving them by the partition method. Using 
the fact that the tridiagonal matrix is blockdiagonal due 
to the finite difference discretization no fill-in occurs and 
the solution of the bidiagonal system further simplifies 
to (N X, NY, and NZ denote the number of grid points 
in aJ-, y-, and z-direction, respectively.) 

DO 1. I=2 ,NX 
DO 1 J=1,NY•NZ 

1 X(I,J) = X(I,J) - A(I,J)•X(I-1,J) 

7.2 VECTORIZED SOLUTION OF 
TRIANGULAR SYSTEMS 

In the following we will label the unknowns of the lin­
ear system Az = b with a triple of indices ( i, j, k) cor­
responding to the grid coordinates of the three spatial 
dimensions. 

The recurrence relation to be solved for the 3D prob­
lem with finite differences discretization reads for q = 0 

Zi,j,k = ri,j,k-bi,j,lc Zi-1,j,k-di,j,k Zi,j-1,k- fi,j,k :Vi,j,k-1 · 
(20) 
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The simplest way to achieve vectorizable codes in the 
recurrence relation is to accumulate all contributions to 
the vector z from an already computed plane k - 1 to 
the right hand side of the equation: 

r;,j,k = ri,j,k - fi,j,k :Vi,j,k-1 (21) 

This is a vector operation of length O(N X ·NY). In 
MINIMOS this yields vector lengths of about 400 up to 
3600 and good performance is achievable. 

One can proceed in a similar manner now to accu­
mulate the contributions to aJ in a fixed plane from an 
already computed line j - 1. This yields vector opera­
tions of length 0( N X), typically between 20 and 60 for 
MINIMOS. This is not too bad for a Cray or for our su­
perminicomputer ALLIANT/FX40, but the VP200 due 
to the large n 1; 2 [23] is far off the performance limits. 

To end up one has to solve the remaining first order 
recurrence. Due to the short vector length it is no use 
to try to vectorize this recursion, so it is executed at a 
poor speed on the VP200 and the overall gain due to 
vectorization is low. Note however, that by unrolling 
the loop for the bidiagonal system on ALLIANT /FX40 
the performance of this operation gains by about a fac­
tor of 2. 

The next variant to be discussed is one which uses the 
(effective) accumulation for the planes and solves them 
by a grid-diagonal approach. A grid-diagonal is defined 
by the set of all grid points (i,j,k), for which i+j = 
const, for a fixed k. Unknowns in a diagonal can be 
computed in vector mode now from already computed 
quantities of the previous grid-diagonal. 

High computational speed for the triangular back­
ward substitutions is reported for the so-called hyper­
rlane method [1][29). A hyperplane Hm is now de­
fined by all triples ( i, j, k) for which i + j + k = m. 
All unknowns belonging to Hm can be computed inde­
pendently from those belonging to the previous plane 
Hm-1· 

A straightforward implementation of this algorithm 
would consist of three nested loops, the outermost one 
for all hyperplanes, one for all planes, and the innermost 
one for all diagonals of this plane. The two inner loops 
can be executed in vector mode. However, the FORT77 
compiler of the VP200 denies to vectorize multiple loops 
with variable loop lengths. Because of its large n 112 it is 
very important for the VP200 to gain advantage from 
the fact that the number of unknowns in the hyper­
planes is rather large - up to O(N~). This is done by 
forming a vector out of all the unknowns of each hyper­
plane by storing the addresses of tl1e unknowns to be 
processed in a list vector and marking the beginnings 
of the individual hyperplanes before starting the itera­
tions. By this way the two inner loops are combined to 
one, which now can be totally vectorized. 

Inherent to this method is the need for indirect ad­
dressing. And there is still the problem of how to avoid 



unallowed addressing on the boundary of the simula­
tion domain. Van der Vorst [29] has suggested to accu­
mulate the contributions of the different sub-diagonals 
in one hyperplane by individual loops. This however 
introduces considerable loop overhead. Other possibili­
ties are to calculate those unknowns outside the loop or 
to avoid unallowed addressing by use of IF-statements. 
We have obtained best results by extending the arrays 
of the unknowns at the lower and upper ends by an 
amount of the number of elements in one plane and fill 
them with zeros. The algorithm then reads: 

X(1)=R(1) 
DO 1 L=2,NX+NY+NZ-2 
DO 1 M=LIST(L-1)+1,LIST(L) 
I=MASK(M) 

1 X(I)=R(I)-B(I)•X(I-1)-D(I)•X(I-NX) 
1 -F(I)•X(I-NX•NY) 

Note that almost all vectorizable algorithms dis­
cussed can be used to vectorize the factorization (except 
for the the modified IL U preconditioners for q > 0) in 
a similar manner. 

For preconditioning allowing fill-in (i.e. (M)ILU(q), 
q = 1, 2, ... ) the definition of the hyperplane Hm must 
be extended to the set of mesh points fulfilling the re­
lation 

i+(q+l)(j+k)=m (22) 

where q denotes the degree of fill-in. For the lower tri­
angular system the unknowns in Hm can be calculated 
independently from those of Hm_ 1 , for the upper trian­
gular system from those of Hm+l · Implementation by 
the above mentioned list vector method is straightfor­
ward. 

8 NUMERICAL RESULTS AND 
CONCLUSIONS 

At first the convergence of several iterative methods 
which have been treated in Section 5 is examined. As 
test matrix serves the coefficient matrix of the elec­
tron continuity equation of the first Gummel-iteration 
of a nonplanar n-channel silicon MOSFET (1.5 micron 
channel length) from the device simulator MINIMOS 5. 
Bias conditions are: Us = UB = OV (source, bulk), 
UG = 0.5V (gate) and Un = IV (drain) . As er­
ror measure the maximum norm of the error vector 
en = Iii - ~nlJ 00 is used. i denotes the solution vec­
tor obtained by Gaussian elimination, on the horizontal 
axis the number of flops divided by N, the n n 111 ber or 
grid points, is plotted. 

Figure I shows the convergence curves. CGNR is cer­
tainly not competitive. In this easy example the sy m­
metrized CG, SYMCG is almost as fast as nIOMIN 2 

(CGS), but unfortunately this solver is not applicable 

for higher bias voltages. GMRES is a reliable, but slow 
alternative to BIOMIN2 (CGS). 

In Table I we show the CPU time requirements (in 
seconds) for one solution of the Poisson and carrier con­
tinuity equations using different variants to solve the 
triangular systems introduced by the modified IC(O) 
(a = 0.95) and ILU(O) preconditioners . The methods 
described in Section 7 are compared to the straightfor­
ward (autovectorized) implementation. The test exam­
ple was an-channel MOSFET with a channel length of 
1. 5 micron and the bias conditions Un = U G = 3 V and 
Us= UB = OV. 

Table 2 shows a comparison (CPU time in seconds) 
of the vector performance of hyperplane precondition­
ers with different degrees of fill-in and the standard 
non-vectorizable recursions ( autovector). We have used 
ILU(O), ILU(l), and ILU(2) together with the conju­
gate gradient method on different machines. The ma­
trices for the linear system were obtained by discretiz­
ing the Laplace equation on a rectangular grid with 403 

grid points. Although the number of iterations (IT) is 
obviously reduced by a higher degree of fill-in, this is 
compensated by the higher work per iteration. Due to 
Eisenstat's trick ILU(O) needs less CPU time than the 
higher degree fill-in preconditioners in this example. 

Table 3 compares the performance of the hyperplane 
triangular backsubstitutions for the ILU(q) precondi­
tioners on a SIEMENS/Fujitsu VP200 (VP), a Cray-2 
(C2) and an ALLIANT/FX40 (AL) computer. The test 
example is as for Table 2. Besides the CPU time for 
one backsubstitution in milliseconds (ms), the overall 
achieved speed-up over the trivial code iu the solution of 
the triangular systems and the megaflop (Mflops) rate 
are presented. The hyperplane code is obviously better 
suitable for the VP200 than for the Cray-2. One reasons 
is the good performance of the Fujitsu vectorcomputer 
for long vector length. Possible memory bank conflicts 
on the Cray due to the indirect addressing according to 
the hyperplane-ordering decreases the performance of 
the Cray supercomputer substantially. 

In order to show that our code can also be parallelized 
on tightly coupled multiprocessor computers to a high 
extent we carried out tests for the hyperplane back­
substitutions on a 6-scalar-processor Digital VAX 6260. 
Table 4 shows speedups against one processor. 

To demonstrate that results for three-dimensional de­
vice simulations are obtained in relatively short times 
on supercomputers we have selected two examples of 
mt.her low complexity, namely a n-channel l\IOSFET 
with channel length and width of about one micron 
and a p-channel l\IOSFET with similar dimensions . 
Dias conditions were Uns = Ucs = 3V for the n-
1\IOSFET example and Uns = -IV, UGs = -4V, 
and Uns = 2V for the p-MOSFET example. The 
CPU times (in seconds) for a fully three-dimensional 
simulation using MICCG(O) for the Poisson equation 
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Type VP200 ALLIANT 
MICCG I ILUCGS MICCG I IL UCGS 

autovector 0.100 0.826 3.19 7.47 
accumulation 0.090 0.635 2.60 5.26 
grid-diagonal 0.064 0.337 2.84 5.52 
hyperplane 0.020 0.093 2.07 3.97 

Table 1: Vectorization Methods for Triangular Backsubstitutions 

q IT VP200 Cray-2 ALLIANT 
auto I hyper auto I hyper auto I hyper 

0 61 15.5 1.29 15.1 5.19 128 85.8 
1 53 22.4 1.84 30.8 8.23 177 117.0 
2 50 27.9 2.21 38.3 8.33 206 124.6 

Table 2: Comparison of ILU(q) Preconditioners 
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q VP200 Cray-2 ALLIANT 
time I speed-up I Mflops time I speed-up Mtlops time I speed-up 1 Mflops 

0 4 13.75 96 14 4.30 27 212 1.34 1.8 
1 8 12.12 96 26 4. 76 30 327 1.51 2.3 
2 8 12.62 128 30 5.93 34 410 1.64 2.5 

Table 3: Hyperplane-ILU(q) Backsubstitutions on Vectorcomputers 

Processors 1 2 3 4 5 6 

Mflops 0.58 1.15 1.64 2.06 2.41 2.65 
Speedup 1.00 1.98 2.82 3.54 4.14 4.56 

Table 4: Parallel Hyperplane ILU(O) on VAX 6260 

Example VP200 Cray-2 ALLIANT 

n- MOSFET 28.87 72 .92 718.2 
p-MOSFET 30.32 55.77 629.5 

Table 5: CPU Times for Fully Three-Dimensional Device Simulation 

and ILUCGS(O) for the carrier continuity equations are 
shown in Table 5. 

The highly satisfactory result is that one bias condi­
tion can be simulated in half a minute on the VP200. 
Thus it is possible to tum ones focus to really complex 
problems in the near future. For the VP200 the overall 
vectorization rate is 96%. 

A straightforward analysis of the CPU time consump­
tion shows that tuning the solvers further has only little 
influence on the total performance. For our low com­
plexity example a gain of 2 for the nonsymmetric solver 
would lead to a total performance gain of only about 
5%. For highly complex examples the performance gain 
will be better as long as swapping memory out of core 
(either done by a virtual operation system or the virtual 
memory package distributed with MINIMOS) will not be­
come too time consuming, when memory requirements 
due to large grids increase. 
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