
THREE-DIMENSIONAL SIMULATION OF SEMICONDUCTOR DEVICES ON
SUPERCOMPUTERS

K.P. Traar

SIEMENS AG Austria
Electronic Developement

Gudrunstrasse 11, A-1101 Wien, Austria

Abstract

For the selfconsistent solution of the three-dimensional
semiconductor device equations large and sparse linear
systems of equations have to be solved repeatedly. In
order to obtain reliable results with modest demands
on computer resources preconditioned iterative meth­
ods for the solution of the linear systems of equations
are applied. Various iterative methods for the solution
of the nonsymmetric discretized carrier continuity equa­
tions, e.g. conjugate gradients applied to the normal
equations, a symmetrized conjugate gradient method,
GMRES, and CGS, are compared. As preconditioners
Jacobi and incomplete LU factorization methods have
been investigated. For an efficient implementation on
modern vector and vector-concurrent computers special
coding techniques have to be applied in order to allow
vectorization and/or parallelization of the recurrence
relations in the preconditioners. Results obtained on
a SIEMENS/Fujitsu VP200, a Cray-2, and on Minisu­
percomputers such as ALLIANT/FX40 and VAX 6260
are presented.

1 INTRODUCTION

The numerical analysis of semiconductor devices [24]
has become an important tool as well for design en­
gineers to predict the device performance as for device
physicists to understand the internal behavior of the de­
vice. Whereas in the eighties two-dimensional simula­
tors were able to fulfill these demands, shrinking device
dimensions have led to submicron devices, which can
only be described satisfactorily by three-dimensional
simulation.

In order to be able to make three-dimensional device
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
o 1991 ACM 0-89791-434-1 /91 /0006/0154 ... $1.50

M. Stiftinger, 0. Heinreichsberger, and S. Selberherr

Technical University Vienna
Institute for Microelectronics

Gusshausstrasse 27-29, A-1040 Wien, Austria

simulators economically applicable, answers have to be
obtained within a time comparable to two-dimensional
simulations a few years ago. This can be achieved by
running those programs on modern supercomputers.
But also a lot of software development in the field of
numerical analysis has to be done, which was not so
important for two-dimensional device simulators.
Therefore much effort has been undertaken to develop
fast solvers for the sparse and large linear systems of
equations, when for our MOS-/MESFET device simu­
lator MINIMOS [25] a three-dimensional version was de­
veloped. Iterative solvers for the linear systems ap­
pear to be the most suitable solution methods in the
three-dimensional case. The solution of the symmet­
ric, positive definite, and well conditioned Poisson equa­
tion by the preconditioned conjugate gradient method
is straightforward [16]. For the nonsymmetric and com­
monly bad conditioned [2] continuity equations rapidly
convergent and numerically stable solvers are sought.
Conjugate gradient-like methods tum out to be the
most suitable choice (19]. As there are only few the­
oretical results concerning the convergence behavior of
iterative methods for nonsymmetric linear systems of
equations available, we have compared some important
algorithms.
Convergence (and thus reliability) of the applied iter~
ative method depends quite critically on the precondi­
tioner. The Jacobi preconditioner has recently again
become a matter of interest, because it can be vector~
ized and parallelized rather easily. The high quality
of preconditioners based upon incomplete LU factoriza­
tion (IL U} is firmly established in numerical analysis,
thus we also concentrated on adaptive fill-in ILU pre­
conditioning throughout our investigations.
The vectorization of the recurrence relations in the LU
factorization preconditioners is done by a hyperplane
method [1][27]. An efficient implementation of this
method with list vectors and zero padding is discussed.
Section 2 gives a brief overview of the basic partial dif­
ferential equations and Section 3 treats the discretiza­
tion and the iterative solution of the nonlinear system

154

of equations. Section 4 deals with some important al­
gebraic properties of the nonsymmetric coefficient ma­
trices. In Section 5 a number of methods for the iter­
ative solution of nonsymmetric linear systems are re­
viewed and compared against some new iterative meth­
ods. Section 6 shows the theoretical and Section 7 the
implementational aspects of the used preconditioners.
Section 8 concludes with numerical results.

2 THE BASIC PARTIAL DIFFERENTIAL
EQUATIONS

The semiconductor equations [24] in the variables
(1/J,n,p) consist of the Poisson equation and the car­
rier continuity equations. Poisson's equation for the
electrostatic potential 1/J reads

div (e · grad1/J) = -p (1)

with the space charge p = q · (p - n + C), where C
denotes the net doping concentration, n the hole, p the
electron concentrations and q the elementary charge.
The carrier continuity equations for the electron and
hole current densities J:,p read

- 8n
q· R (2) divJ -q·-

n 8t
- 8p

-q·R (3) divJp+q· Bt =

where R denotes the carrier generation and recombina­
tion rate and the current densities J:,p are given by

in -q·µn·n(grad1/J-~·Ui·gradn) (4)

J; -q·µp·p(grad1/J+~·Ut•gradp) . (5)

Calculating the carrier mobilities we take into account
lattice, impurity, and surface scattering and velocity
saturation for high electric fields. U1 = \T denotes
the thermal voltage.

We consider the time-invariant case of the semicon­
ductor equations only. In the transient case additional
terms increase the diagonal dominance of the discretized
carrier continuity equations and therefore improve their
condition number, if an implicit backward time differ­
ence scheme is used.

3 DISCRETIZATION AND ITERATIVE
SOLUTION OF THE NONLINEAR
SYSTEM OF EQUATIONS

We use finite difference discretization in a rectangu­
lar spatial domain to treat the semiconductor equa­
tions numerically. The coefficient matrices of the dis­
cretized equations have seven nonzero diagonals in nat­
ural ordering. At the idealized ohmic terminal contacts

155

Dirichlet boundary conditions hold, at artificial inter­
faces in the deep bulk homogenous Neumann bound­
ary conditions have to be applied. Inhomogenous Neu­
mann boundary conditions are valid in case of interface
charges for the electrostatic potential and in case ofnon­
vanishing interface charge and interface recombination
velocity for the carrier concentrations.
The nonlinearity of the discretized coupled system of
equations can be treated in different ways: Classical
Newton or quasi Newton schemes [3][6] make a si­
multaneous solution of the three semiconductor equa­
tions necessary and have a locally quadratic conver­
gence behavior. We restrict ourselves to Gummel's
algorithm [9], a block iterative . Gauss-Seidel method,
which allows a sequential solution of the three equa­
tions within each outer iteration. It is less sensitive to
the initial guess than Newton's method and no Jacobian
has to be calculated, thus keeping storage requirements
low contrary to the Newton schemes. The locally linear
convergence of Gummel's algorithm, often considered
as its major drawback, can be improved by nonlinear
convergence acceleration [15]. The nonlinear Gummel
modification of Poisson's equation and the nonlinear­
ity in the generation and recombination terms are lin­
earized by a first order series expansion, the nonlinear­
ities in the carrier mobilities and carrier temperatures
are neglected. The resulting scheme reads

q (k k c -; p - n + +

+ 8 (p- n + C)k (1/Jk+i -1/J1e)) (6)
81/;

-q(R(1/Jk+1,n",p") +

+- (pk+l - p") 8R)
8p

(7)

q (R (1/J"+i, nk,pk+l) +

+ ~~ (n k+ l _ n k)) . (8)

In order to cope with the exponential dependence
of the carrier densities on the electrostatic potential
and in order to allow carrier temperature dependent
mobilities a modified Scharfetter-Gummel interpolation
scheme (22] for the carrier concentrations is used. Non­
planar interfaces are discretized by the well-known box
integration method.

4 ALGEBRAIC PROPERTIES OF THE
COEFFICIENT MATRICES

The linear interpolation of the electrostatic potential
between adjacent grid lines and the modification by
Gummel's algorithm leads to a symmetric, positive def­
inite, 2-cyclic coefficient matrix of the discretized Pois­
son equation. The solution can easily be achieved by
the standard preconditioned conjugate gradient algo­
rithm. The exponential Scharfetter-Gummel interpo­
lation scheme in the discretization of the carrier conti­
nuity equations produces nonsymmetric, 2-cyclic coeffi­
cient matrices A, which can be transformed to a sym­
metric, positive definite matrix A [4][14]

- -1
A = Wn,p · A · Wn,p (9)

by a diagonal matrix W with positive elements Wi. The
Wi are given by

(tPi) Wi,n = exp - 2 . Ut , (tPi)
Wi,p =exp 2 . Ut (10)

for electrons and holes. Ut = k~T denotes the ther1~al
voltage. The enormous number range of the wi,n,p in­

hibits an explicit symmetrization.The symmetrizability
guarantees a positive real spectrum of A.

5 SELECTED ITERATIVE METHODS FOR
THE LINEAR SYSTEMS

We have selected some basic projection-type iterative
methods [20] for the nonsymmetric linear systems. In
the following section some theoretical aspects and the
practical applicability will be discussed.

5.1 CGNR

This algorithm applies conjugate gradients to the nor­
mal equations. It solves the symmetric, positive definite
problem

(11)

by the classical conjugate gradient algorithm. It is clear,
that the matrix-product AT A is never built explicitly.
Due to the minimization property of the conjugate gra­
dient method the convergence behavior is strictly mono­
tonic but it is determined by the squares of the singular
values of A [17]. Therefore it can be expected, that
the convergence behavior is rather poor. Numerical ex­
periments have confirmed, that this algorithm cannot
satisfy our requirements.

5.2 SYMMETRIZED CG

The similarity of the coefficient matrices to symmetric,
positive definite (SPD) matrices can be exploited by a
symmetrized conjugate gradient method, which avoids

156

the explicit symmetrization of the linear system [12].
The cumbersome symmetrization matrix W is only re­
quired for the computation of the iteration parameters,
where it appears both in the nominator and denomi­
nator. This allows scaling in order to avoid floating
point under- or overflow. This algorithm minimizes the

1

[W2 A] ~-norm of the error vector. It has proved, that
in our applications this algorithm can only be applied
in low voltage simulations, for which the number range
of the symmetrization matrix W fits into the number
range of the computer used.

5.3 GMRES

This algorithm [21] minimizes llrkll 2• An orthogonal ba­
sis of :ek is built by means of an Arnoldi construction.
Assuming that the procedure has converged in k steps
(llrkll < E), a k + l x k upper Hessenberg least squares
problem has to be solved, so that :Ck is the best ap­
proximation to the true solution within this orthogonal
basis.
Full orthogonalization requires the storage of k "back"­
vectors and the calculation of k+l inner products at the
k1h iteration. To limit storage requirements we restart
GMRES after m (where mis a constant) iterations, if
the method has not yet converged. The approxima­
tion to the solution at the end of every m iterations is
used is initial value for the next m-step Arnoldi pro­
cess. The truncated version GMRES(m) of course loses
optimality but restarting preserves monotonicity in the
residual-norm.

5.4 BIOMIN2 (CGS), BIORES2
, BIODIR2

They are built by squaring the Lanczos
biorthogonalization algorithms BIO MIN, BIO RES, and
BIODIR [11][26). From the computational point of view
they are more efficient than the original procedures. All
three squared algorithms produce the same iterates for
the same initial guess, but both from the aspect of the
work per iteration and of numerical stability BIOMIN2

(CGS) outperforms the other two procedures (14].
The biorthogonalization algorithms have no minimiza­
tion properties. Therefore the residual usually does not
decrease monotonically. Very often an erratic conver­
gence behavior can be observed. This may increase the
influence of roundoff errors.
The biorthogonalization algorithms may break down by
division by zero also in exact arithmetic, if certain in­
ner products vanish. A breakdown is likely to occur, if
the initial guesses are chosen inappropriately, but was
never observed in our examples.

A comparison of all tested algorithms has shown that
BIOMIN2 (CGS) performs best for our applications in
the sense of minimizing the overall computational work

and storage requirements. This is remarkable, because
it is the only algorithm out of those we have tested,
which has no minimization property.

6 PRECONDITIONING

It turned out that preconditioning of iterative solvers
is inevitable to fulfill the stability requirements. We
are searching for easily invertible approximations to the
matrix A which allow a transformation of the linear sys­
tem A:c = b to the system Bi = b with superior spectral
properties. The matrix B is of course never formed ex­
plicitly. In addition to every matrix vector multiplica­
tion Av a linear system with the preconditioning matrix
as coefficient matrix has to be solved. This system must
be solvable much easier than A:v = b.
We have investigated a block Jacobi preconditioner

(12)

where Dis the (block) tridiagonal part of A and incom­
plete LU (IL U) factorization preconditioner (16]

Pnu=PLPR= (.i+D)frifr~ (u+D) (13)

where .i and U are strictly lower and upper triangular
matrices and D is a diagonal matrix. In the symmetric
case j,T = U holds and the preconditioner is the well
known incomplete Cholesky decomposition (IC) precon­
ditioner.
For the Jacobi preconditioner left preconditioning has
been chosen

P - 1A - B p- 1b - b-J ;c = J:C = J = J, (14)

for the ILU preconditioners left and split precondition­
ing has been implemented

Pji_ 1 P£ 1A:c::: BILu,.1,:c = Pji_ 1P£ 1b:: bnu,.1,(15)

P - 1AP- 1P - B - p- 1b - b-L R R:C = ILU,,.,..:c = L = ILU,,., ... (16)

For the split IL U preconditioner :c has to be unscaled
at the end of the iterative process: :c = PJi. 1i.
The computational work for the Jacobi preconditioner
is smaller and as there are only first order recurrences
vectorization and/or parallelization is more straightfor­
ward than for the ILU preconditioners. But as can
be expected from theory (8] the Jacobi preconditioner
causes worse convergence behavior for all tested accel­
erators than ILU preconditioners. For high bias simula­
tions, where the drift term dominates in the the current
relations (4) and (5) the Jacobi preconditioner does not
guarantee a fast and reliable convergence of the iter­
ative methods. Therefore we do not recommend this
type of preconditioner for general use.
The second class of preconditioners we tested exten­
sively are the incomplete LU preconditioners with al­
lowable fill-in denoted by ILU(q) (1](5](13]. For q = 0

157

the matrices L and U are equal to the strictly lower
and upper matrices L and U of A. The sparsity pat­
tern of the triangular factors L and U therefore is the
same as for the triangular parts of A. For q = 1 the
fill-in caused by the ILU(O) nonzero pattern is taken
into account, for q = 2 the fill-in caused by the ILU(l)
sparsity pattern and so on (ILU(NX ·NY) would be
the exact LU factorization of A). A higher degree of
fill-in of course reduces the number of iterations which
are necessary to solve the linear system but increases
the work per iteration and the storage requirements.
For the incomplete LU preconditioner D can be com­
puted such that diag (PILu) = diag (A) or alternatively
such that (PILu - A) has zero column sums, which
leads to modified incomplete factorization type precon­
ditioners (MIL U) originated by Gustafsson (10] for Pois­
son type equations (in the symmetric case this is equal
to 7'owsum(P1c) = rowsum(A)). For the symmetric
and positive definite Poisson equation the modulus of
the main diagonal is greater or equal than the offdi­
agonal elements of the very row (or column) . For the
coefficient matrices of the discretized carrier continu­
i~y equations an analogous relationship for the columns
holds. A modification factor a in the interval (0, 1] is
usually introduced to smoothly sweep between IL U and
MILU factorization . Our results concerning the choice
of such a modification factor do not admit a clear state­
ment. We found a number of device examples where a
choice of a = 0.5 yields a performance enhancement of
about 10% to 30% concerning the iteration count. This
is rather disappointing, as for the symmetric Poisson
equation a modification factor of a = 0.95 reduces the
iteration count up to 50%.
For q = 0 efficient implementations of the multiplica­
tions of the preconditioned coefficient matrix B and an
vector v are possible. For the left (M)ILU(O) precondi­
tioner we scale the coefficient matrix from the left side
by D. The scaled matrix A,,.1 , =DA can be written as
a sum of a strictly lower, a diagonal, and a strictly up­
per matrix: A,,.1 , = L,,, 1 , +D,1ct• +U, 1• 1 ,. The number
of fl.ops can be reduced from 13N (N is the number of
grid points) to lON by

(I+ U, 1.,,r1 [v +(I+ L, .. ,,f1
.

· (D,,.1, - I+ U,,.1,) v]. (17)

An analogous simplification for the split (M)ILU{O) pre­
conditioner, which saves even 6N flops, is well known
as Eisenstat 's trick (7]. The coefficient matrix A is
scaled symmetrically by Di : A,,,.,;, = Di AD i. Then
B1 LU,,.,;, v can also be written as

BILu,,., ,, v = [t +(I+ L,,,. .. ,)- 1 (v - (21 - D,,,.w) t)]
(18)

with
t = (I+ U,,.w)- 1

v. (19)

We are not aware of analogous tricks for higher fill-in
preconditioners.

There are a number of other preconditioners such as
the SSOR [1], least squares polynomial, Neumann poly­
nomial and their line and/or block variants. Numeri­
cal experiments carried out with the NSPCG software
package [18] identified none of them competitive with
ILU.

7 IMPLEMENTATION OF THE
PRECONDITIONERS ON
VECTORCOMPUTERS

The basic components of all methods described above
are operations like vector updates, inner products, and
sparse matrix vector products, which are quite easily
implementable and lead to high performance codes on
vectorcomputers. However, those components contain­
ing recurrence relations do not vectorize or parallelize
when coded in a straightforward manner. For the Ja­
cobi preconditioner we have to deal with a first order
linear recursion. For the preconditioning by incomplete
factorization linear recursions of several orders appear.

7.1 VECTORIZED SOLUTION OF
TRIDIAGONAL SYSTEMS

Vectorizable solution for tridiagonal systems may be
obtained by different methods like recursive doubling,
cyclic reduction [23], and the partition method [28][30].

The most efficient solver for the VP200 as well as for
the ALLIANT/FX40 (with two processors) was the one
factorizing the tridiagonal system into two bidiagonal
ones and solving them by the partition method. Using
the fact that the tridiagonal matrix is blockdiagonal due
to the finite difference discretization no fill-in occurs and
the solution of the bidiagonal system further simplifies
to (N X, NY, and NZ denote the number of grid points
in aJ-, y-, and z-direction, respectively.)

DO 1. I=2 ,NX
DO 1 J=1,NY•NZ

1 X(I,J) = X(I,J) - A(I,J)•X(I-1,J)

7.2 VECTORIZED SOLUTION OF
TRIANGULAR SYSTEMS

In the following we will label the unknowns of the lin­
ear system Az = b with a triple of indices (i, j, k) cor­
responding to the grid coordinates of the three spatial
dimensions.

The recurrence relation to be solved for the 3D prob­
lem with finite differences discretization reads for q = 0

Zi,j,k = ri,j,k-bi,j,lc Zi-1,j,k-di,j,k Zi,j-1,k- fi,j,k :Vi,j,k-1 ·
(20)

158

The simplest way to achieve vectorizable codes in the
recurrence relation is to accumulate all contributions to
the vector z from an already computed plane k - 1 to
the right hand side of the equation:

r;,j,k = ri,j,k - fi,j,k :Vi,j,k-1 (21)

This is a vector operation of length O(N X ·NY). In
MINIMOS this yields vector lengths of about 400 up to
3600 and good performance is achievable.

One can proceed in a similar manner now to accu­
mulate the contributions to aJ in a fixed plane from an
already computed line j - 1. This yields vector opera­
tions of length 0(N X), typically between 20 and 60 for
MINIMOS. This is not too bad for a Cray or for our su­
perminicomputer ALLIANT/FX40, but the VP200 due
to the large n 1; 2 [23] is far off the performance limits.

To end up one has to solve the remaining first order
recurrence. Due to the short vector length it is no use
to try to vectorize this recursion, so it is executed at a
poor speed on the VP200 and the overall gain due to
vectorization is low. Note however, that by unrolling
the loop for the bidiagonal system on ALLIANT /FX40
the performance of this operation gains by about a fac­
tor of 2.

The next variant to be discussed is one which uses the
(effective) accumulation for the planes and solves them
by a grid-diagonal approach. A grid-diagonal is defined
by the set of all grid points (i,j,k), for which i+j =
const, for a fixed k. Unknowns in a diagonal can be
computed in vector mode now from already computed
quantities of the previous grid-diagonal.

High computational speed for the triangular back­
ward substitutions is reported for the so-called hyper­
rlane method [1][29). A hyperplane Hm is now de­
fined by all triples (i, j, k) for which i + j + k = m.
All unknowns belonging to Hm can be computed inde­
pendently from those belonging to the previous plane
Hm-1·

A straightforward implementation of this algorithm
would consist of three nested loops, the outermost one
for all hyperplanes, one for all planes, and the innermost
one for all diagonals of this plane. The two inner loops
can be executed in vector mode. However, the FORT77
compiler of the VP200 denies to vectorize multiple loops
with variable loop lengths. Because of its large n 112 it is
very important for the VP200 to gain advantage from
the fact that the number of unknowns in the hyper­
planes is rather large - up to O(N~). This is done by
forming a vector out of all the unknowns of each hyper­
plane by storing the addresses of tl1e unknowns to be
processed in a list vector and marking the beginnings
of the individual hyperplanes before starting the itera­
tions. By this way the two inner loops are combined to
one, which now can be totally vectorized.

Inherent to this method is the need for indirect ad­
dressing. And there is still the problem of how to avoid

unallowed addressing on the boundary of the simula­
tion domain. Van der Vorst [29] has suggested to accu­
mulate the contributions of the different sub-diagonals
in one hyperplane by individual loops. This however
introduces considerable loop overhead. Other possibili­
ties are to calculate those unknowns outside the loop or
to avoid unallowed addressing by use of IF-statements.
We have obtained best results by extending the arrays
of the unknowns at the lower and upper ends by an
amount of the number of elements in one plane and fill
them with zeros. The algorithm then reads:

X(1)=R(1)
DO 1 L=2,NX+NY+NZ-2
DO 1 M=LIST(L-1)+1,LIST(L)
I=MASK(M)

1 X(I)=R(I)-B(I)•X(I-1)-D(I)•X(I-NX)
1 -F(I)•X(I-NX•NY)

Note that almost all vectorizable algorithms dis­
cussed can be used to vectorize the factorization (except
for the the modified IL U preconditioners for q > 0) in
a similar manner.

For preconditioning allowing fill-in (i.e. (M)ILU(q),
q = 1, 2, ...) the definition of the hyperplane Hm must
be extended to the set of mesh points fulfilling the re­
lation

i+(q+l)(j+k)=m (22)

where q denotes the degree of fill-in. For the lower tri­
angular system the unknowns in Hm can be calculated
independently from those of Hm_ 1 , for the upper trian­
gular system from those of Hm+l · Implementation by
the above mentioned list vector method is straightfor­
ward.

8 NUMERICAL RESULTS AND
CONCLUSIONS

At first the convergence of several iterative methods
which have been treated in Section 5 is examined. As
test matrix serves the coefficient matrix of the elec­
tron continuity equation of the first Gummel-iteration
of a nonplanar n-channel silicon MOSFET (1.5 micron
channel length) from the device simulator MINIMOS 5.
Bias conditions are: Us = UB = OV (source, bulk),
UG = 0.5V (gate) and Un = IV (drain) . As er­
ror measure the maximum norm of the error vector
en = Iii - ~nlJ 00 is used. i denotes the solution vec­
tor obtained by Gaussian elimination, on the horizontal
axis the number of flops divided by N, the n n 111 ber or
grid points, is plotted.

Figure I shows the convergence curves. CGNR is cer­
tainly not competitive. In this easy example the sy m­
metrized CG, SYMCG is almost as fast as nIOMIN 2

(CGS), but unfortunately this solver is not applicable

for higher bias voltages. GMRES is a reliable, but slow
alternative to BIOMIN2 (CGS).

In Table I we show the CPU time requirements (in
seconds) for one solution of the Poisson and carrier con­
tinuity equations using different variants to solve the
triangular systems introduced by the modified IC(O)
(a = 0.95) and ILU(O) preconditioners . The methods
described in Section 7 are compared to the straightfor­
ward (autovectorized) implementation. The test exam­
ple was an-channel MOSFET with a channel length of
1. 5 micron and the bias conditions Un = U G = 3 V and
Us= UB = OV.

Table 2 shows a comparison (CPU time in seconds)
of the vector performance of hyperplane precondition­
ers with different degrees of fill-in and the standard
non-vectorizable recursions (autovector). We have used
ILU(O), ILU(l), and ILU(2) together with the conju­
gate gradient method on different machines. The ma­
trices for the linear system were obtained by discretiz­
ing the Laplace equation on a rectangular grid with 403

grid points. Although the number of iterations (IT) is
obviously reduced by a higher degree of fill-in, this is
compensated by the higher work per iteration. Due to
Eisenstat's trick ILU(O) needs less CPU time than the
higher degree fill-in preconditioners in this example.

Table 3 compares the performance of the hyperplane
triangular backsubstitutions for the ILU(q) precondi­
tioners on a SIEMENS/Fujitsu VP200 (VP), a Cray-2
(C2) and an ALLIANT/FX40 (AL) computer. The test
example is as for Table 2. Besides the CPU time for
one backsubstitution in milliseconds (ms), the overall
achieved speed-up over the trivial code iu the solution of
the triangular systems and the megaflop (Mflops) rate
are presented. The hyperplane code is obviously better
suitable for the VP200 than for the Cray-2. One reasons
is the good performance of the Fujitsu vectorcomputer
for long vector length. Possible memory bank conflicts
on the Cray due to the indirect addressing according to
the hyperplane-ordering decreases the performance of
the Cray supercomputer substantially.

In order to show that our code can also be parallelized
on tightly coupled multiprocessor computers to a high
extent we carried out tests for the hyperplane back­
substitutions on a 6-scalar-processor Digital VAX 6260.
Table 4 shows speedups against one processor.

To demonstrate that results for three-dimensional de­
vice simulations are obtained in relatively short times
on supercomputers we have selected two examples of
mt.her low complexity, namely a n-channel l\IOSFET
with channel length and width of about one micron
and a p-channel l\IOSFET with similar dimensions .
Dias conditions were Uns = Ucs = 3V for the n-
1\IOSFET example and Uns = -IV, UGs = -4V,
and Uns = 2V for the p-MOSFET example. The
CPU times (in seconds) for a fully three-dimensional
simulation using MICCG(O) for the Poisson equation

159

Type VP200 ALLIANT
MICCG I ILUCGS MICCG I IL UCGS

autovector 0.100 0.826 3.19 7.47
accumulation 0.090 0.635 2.60 5.26
grid-diagonal 0.064 0.337 2.84 5.52
hyperplane 0.020 0.093 2.07 3.97

Table 1: Vectorization Methods for Triangular Backsubstitutions

q IT VP200 Cray-2 ALLIANT
auto I hyper auto I hyper auto I hyper

0 61 15.5 1.29 15.1 5.19 128 85.8
1 53 22.4 1.84 30.8 8.23 177 117.0
2 50 27.9 2.21 38.3 8.33 206 124.6

Table 2: Comparison of ILU(q) Preconditioners

160

q VP200 Cray-2 ALLIANT
time I speed-up I Mflops time I speed-up Mtlops time I speed-up 1 Mflops

0 4 13.75 96 14 4.30 27 212 1.34 1.8
1 8 12.12 96 26 4. 76 30 327 1.51 2.3
2 8 12.62 128 30 5.93 34 410 1.64 2.5

Table 3: Hyperplane-ILU(q) Backsubstitutions on Vectorcomputers

Processors 1 2 3 4 5 6

Mflops 0.58 1.15 1.64 2.06 2.41 2.65
Speedup 1.00 1.98 2.82 3.54 4.14 4.56

Table 4: Parallel Hyperplane ILU(O) on VAX 6260

Example VP200 Cray-2 ALLIANT

n- MOSFET 28.87 72 .92 718.2
p-MOSFET 30.32 55.77 629.5

Table 5: CPU Times for Fully Three-Dimensional Device Simulation

and ILUCGS(O) for the carrier continuity equations are
shown in Table 5.

The highly satisfactory result is that one bias condi­
tion can be simulated in half a minute on the VP200.
Thus it is possible to tum ones focus to really complex
problems in the near future. For the VP200 the overall
vectorization rate is 96%.

A straightforward analysis of the CPU time consump­
tion shows that tuning the solvers further has only little
influence on the total performance. For our low com­
plexity example a gain of 2 for the nonsymmetric solver
would lead to a total performance gain of only about
5%. For highly complex examples the performance gain
will be better as long as swapping memory out of core
(either done by a virtual operation system or the virtual
memory package distributed with MINIMOS) will not be­
come too time consuming, when memory requirements
due to large grids increase.

9 ACKNOWLEDGEMENTS

This work has been initiated and sponsored by
SIEMENS AG, Munich. It has also been supported
by Digital Equipment Corporation, Hudson. The au­
thors are indebted to Martin Schubert and Hans-Peter
Falkenburger from the Institute of Microelectronics
Stuttgart for their help on performing tests on the Cray-
2, and to Dr. Martin Thurner from the Campusbased
Engineering Center Vienna (Digital Equipment Corpo-

161

ration) for performing measurements on the VAX 6260.
We wish to thank H. Dietrich, G. Koessl, and H. Wik­
torin of the Computer Services of Cooperate Research
and Development, SIEMENS AG Munich, for valuable
help in gaining access to the VP200.

Refe1·ences

[1) Ashcraft, C.C., Grimes, R.G., "Ou Vectorizing In­
complete Factorization and SSOR Precondition­
ers", SIAM Journal of Scientific and Statistical
Computing, Vol. 9, No. 1, January 1988, pp. 122-
151.

[2) Ascher, U., Markovich, P.A., Schmeisser, C., Stein­
rueck, H., Weiss, R., "Conditioning of the Steady
State Semiconductor Problem", Tech. Rep. 86-18,
Dept. of CS , Univ. of British Columbia, Vancouver.

[3) Bank, R.E., Rose, D.J., "Global Approximate
Newton Methods", Numerische Mathematik 37
(1981), pp. 279-295.

[4) Bank, R.E., Rose, D.J., Fichtner, W., "Numerical
Methods for Semiconductor Device Simulation",
IEEE ED-30, pp. 1031-1041, 1983.

[5) Concus, P., Golub, G.H., Meurant, G., "Block Pre­
conditioning for the Conjugate Gradient Method",
SIAM]ottrnal of Scientific and Statistical Com­
puting, Vol. 6, No. 1, January 1985, pp. 220-252.

[6] Dembo, R.S., Eisenstat, S., Steinhaug, T., "Inex­
act Newton Methods", SIAM Journal of Scientific
and Statistical Computing, Vol. 18, (1981), pp. 400-
408.

[7] Eisenstat, S.C., "Efficient Implementation of a
Class of Preconditioned Conjugate Gradient Meth­
ods", SIAM Journal of Scientific and Statistical
Computing, Vol. 2, No. 1, March 1981, pp. 1-4.

[8] Elman, H.C., Golub, G.H., "Line Iterative Meth­
ods for Cyclically Reduced Discrete Convection
Diffusion Problems", Proceedings of the Copper
Mountain Conference on Iterative Methods, Vol.
1, April 1990.

[9] Gummel, H.K., "A Selfconsistent Iterative Scheme
for Onedimensional Steady State Transistor Calcu­
lations", IEEE ED-11, pp. 455-465, 1964.

(10] Gustafsson, I., "A Class of First Order Factoriza­
tion Methods", BIT, 18 (1978), pp. 142-156.

[11] Gutknecht, M.H., "The Unsymmetric Lanczos Al­
gorithms and their Relations to Pade Approxi­
mations, Continued Fractions and the QD Algo­
rithm", Proceedings of the Copper Mountain Con­
ference on Iterative Methods, Vol. 2, April 1990.

(12] Hageman, L.A., Luk, F.T. and Young, D.M., "On
the Equivalence of certain Iterative Acceleration
Methods", SIAM Journal of Numerical Analysis,
Vol. 17, No. 6, December 1980, pp. 852-873.

[13] Hane, IC, "Supercomputing for Process/Device
Simulations", Proceedings of the Sixth Interna­
tional NASECODE Conference, July 1989, pp. 11-
21.

[14] Heinreichsberger, 0 ., Selberherr, S., Stiftinger, M.,
Traar, K.P., "Fast Iterative Solution of Carrier
Continuity Equations for 3D Device Simulation",
SIAM Journal of Scientific and Statistical Com­
puting, to be published.

[15] Kerkhoven, T., Saad, Y., "Acceleration Techniques
for Decoupling Algorithms in Semiconductor Sim­
ulation." Tech. Rep., Dept. of Computer Science,
Univ. of Illinois at Urbana Champaign, 1987.

(16] Meijerink, H., van der Vorst, H., "An Iterative So­
lution Method for Linear Systems of which the Co­
efficient Matrix is a Symmetric M-Matrix", Math.
Comp., 31 (1977), pp. 148-162.

[17] Nachtigal, N.M., Reddy, S.C., Trefethen, L.N.,
"How fast are nonsymmetric iterations ?", Pro­
ceedings of the Copper Mountain Conference on
Iterative Methods, Vol. 4, April 1990.

162

[18] Oppe, T.C., Joubert, W.D., and Kincaid, D.R.,
"NSPCG User's Guide.", Center of Numerical
Analysis, University of Texas at Austin, 1984.

[19] Polak, S.J., Den Heijer, C., Schilders, W.H.A.,
"Semiconductor Device Modelling from the Nu­
merical Point of View", Int. J. N um. Methods in
Eng., Vol. 24, pp. 763-838, 1987.

(20] Saad, Y., "The Lanczos Biorthogonalization Algo­
rithm and other Oblique Projection Methods for
Solving Large Unsymrnetric Systems", SIAM Jour­
nal of Scientific and Statistical Computing, Vol. 19,
No. 3, June 1982, pp. 485-506.

(21] Saad, Y. and Schultz, M.H., "GMRES: A Gen­
eralized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems.", SIAM Journal of
Scientific and Statistical Computing, Vol. 7, No. 3,
July 1986, pp. 856-869.

[22] Scharfetter, D.L., Gummel, H.K., "Large-Signal
Analysis of a Silicon Read Diode Oscillator.",
IEEE ED-16, pp. 64-77, 1969.

[23] Schonauer, W., "Scientific Computing on Vector
Computers", Special Topics in Supercomputing,
Vol. 2, North Holland, 1987.

(24] Selberherr, S., "Analysis and Simulation of Semi­
conductor Devices", Springer- Verlag Wien New
York, ISBN 3-211-81800-6, 1984.

[25] Selberherr, S., et al., "MINIM OS 5 User's Guide",
Technical University Vienna, 1990.

[26] Sonneveld, P., "CGS, A fast Lanczos-Type Solver
for Nonsymmetric Systems", SIAM Journal of Sci­
entific and Statistical Computing, Vol. 10, No. 1,
Jan. 1989, pp. 36-52.

(27] Traar, K.P., Mader, W., Heinreichsberger, 0., Sel­
berherr, S., Stiftinger, M., "High Performance Pre­
conditioning on Supercomputers for the 3D Device
Simulator Minimos.", Proceedings of the Super­
computing 90, Nov. 1990, pp. 224-231.

(28] van der Vorst, H., Dekker, K., "Vectorization of
Linear Recurrence Relations", SIAM Journal of
Scientific and Statistical Computing, Vol. 10, No.
1, Jan. 1989, pp. 27-35 .

[29] van der Vorst, H., "High Performance Precondi­
tioning", SIAM Journal of Scientific and Statis­
tical Computing, Vol. 10, No. 6, Nov. 1989, pp.
1174-1185.

[30] Wang, R.H., "A Parallel Method for Tridiagonal
Equations", ACM Trans . Math. Software, 1, pp.
170-183, 1981.

