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To describe the electron transport in both the high and low field region of a semiconductor device more accurately a
method to couple Monte Carlo and drift-diffusion model has been developed. The space dependent parameters occurr-
ing in the drift-diffusion equation are calculated by means of the Monte Carlo method. Their definitions are derived
from the Boltzmann transport equation without restricting assumptions about the underlying band structure. With this
method regional Monte Carlo device analysis can be performed. The transport coefficients have to be calculated just in
the high field region by the computationally demanding Monte Carlo method, thus including non-local effects such as ve-
locity overshoot and ballistic transport, whereas in the remaining regions the solution of the drift-diffusion current rela-

tion with local parameters is sufficient.
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§1. Introduction

The electric behavior of monolithic devices which are
employed in integrated circuits can only be predicted by
means of computer simulation. In many device simula-
tion programs carrier transport is described by the drift-
diffusion approximation. However, for present
technologies with feature sizes less than one micron, the
applicability of the drift-diffusion model becomes ques-
tionable. The electric field in the active region of a sub-
micron device is often very high and undergoes rapid
changes over distances comparable to the mean free path
of the carriers. The Monte Carlo method which is based
on more accurate physical models is well suited to
describe the non-equilibrium transport occurring under
these conditions. On the other hand for description of
low field transport the drift-diffusion model which uses
local transport coefficients provides sufficient accuracy.
Moreover, the drift-diffusion model has turned out to be
even superior to the Monte Carlo method in regions with
retarding fields. Therefore several attempts were publish-
ed to combine the drift-diffusion and Monte Carlo techni-
que in order to benefit from the different capabilities of
both methods.?

§2. Transport Theory

Many semiconductor transport problems can be de-
scribed by the Boltzmann transport equation. We assume
three-dimensional scattering rates in the entire device
thus neglecting quantization effects eventually occurring
in an inversion layer. Multiplication of the Boltzmann
transport equation with wave vector component k; and in-
tegration over k leads to a momentum balance equation,
which reads for electrons
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where E denotes the electric field, #n the electron concen-
tration and » the group velocity. The average operator
{A> is the mean value of A(k) weighted by the local
distribution function f(x, k). The left hand side can be in-
terpreted as driving force that acts on the electron ensem-
ble, consisting of electric field plus diffusion term,
whereas the right hand side describes the rate of
momentum loss due to scatterings. This equation can be
expressed in a form similar to the drift-diffusion current
relation. The parameters needed in this current relation
are derived in the following way.

For band structures with spheric and ellipsoidal energy
surfaces the vector valued momentum loss integral is col-
inear with the momentum 72k
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Here the proportionality factor 4,(E) is the momentum
scattering rate. With the local average velocity and the
local momentum loss mobility can be defined as
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This definition does not rely on the relaxation time ap-
proximation and, since no effective mass occurs in this
formula, extension to general bands is straight forward.
In the latter case p would have tensor property. The
definition of the thermal voltage tensor (which is propor-
tional to the temperature tensor U;;= (ks/ q) T;;) results di-
rectly from the momentum conservation eq. (1)
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This definition is independent of the underlying band
structure model. Inserting these definitions in eq. (1) we
obtain a general current relation
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The differences between this current relation and the
classical one are twofold. Firstly, the diffusion term is
due to the tensor property of the thermal voltage more
complicated. Secondly, the parameters u and U;; can no
longer be treated simply as parameters depending on elec-
tric field or other local quantities, as it is usually done in
the conventional drift-diffusion model, because they
carry information of the local distribution function. By
means of the Monte Carlo method, which is a tool to
solve the Boltzmann transport equation in a stochastic
way, we evaluate these parameters. The conventional
simulator using the Monte Carlo parameters u(x) and
U,{(x) in the current relation (5) is then capable of recover-
ing the Monte Carlo results for n(x) and J,(x). In this way
hot electron effects playing an important role in sub-
micron devices, such as velocity overshoot and hot car-
rier diffusion, are consistently included in the conven-
tional simulator. The solution is performed globally in
the whole device, but only in the high field region mobili-
ty- and temperature profiles have to be extracted from
the Monte Carlo procedure. In regions with low fields
and low spatial inhomogeneities local models can be used
thus saving computation time.

The continuity equation in conjunction with a drift-
diffusion current relation employing a scalar temperature
yields an elliptic partial differential equation, which has
diagonal form. If an anisotropic temperature is taken
into account cross derivatives appear in the elliptic
operator. Conventional device simulators solve elliptic
systems which are in diagonal form. Therefore a scalar
temperature is desirable. Neglecting the off diagonal
elements in (4) we use a scalar temperature which is the
arithmetic mean value of the two main diagonal
elements, provided we deal with problems in two space
dimensions.

§3. The Semiconductor Model

For the first conduction band of silicon we use a model
consisting of six anisotropic valleys with a first order cor-
rection for nonparabolicity.® Acoustic intravalley scatter-
ing in the elastic approximation, intervalley phonon scat-
tering, surface roughness scattering and coulomb scatter-
ing are taken into account. Except of the latter one all
mechanisms are isotropic. In the case of surface scatter-
ing in the inversion layer the wave vector is redistributed
randomly in a plane parallel to the Si-SiO, interface.¥
For isotropic scattering mechanisms the momentum scat-
tering rate does not differ from the total scattering rate.
The following superposition implies independence of all
scattering processes

Am(E)= 25+ A+ At + Adon. (6)

Coulomb interaction is the only one to be treated
separately. We evaluate the momentum loss integral (2)
with the Brooks-Herring formulation for the transition
rate S(k, k') and obtain

Aon(E )= Ain(E) = Aion(E). 7

The subtraction corresponds to the difference of initial
and final wave vector in (2). In the following notation £ is
the reciprocal screening length.

Hans KosiNA and Siegfried SELBERHERR

1l.e+15
l.e+14
I
~
=
W 1e+13 |
—_ £
jLa]
(0%
o)
9
= le+l2
Q E — 1
= |
5 !
em 1
P et E | Aopt i
: | ]
| i
L | i
1.e+10 ERIITT R R | "
2 20 200 2000

Energy [meV]

Fig. 1. Total and momentum scattering rates used for mobility
calculation.
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the two terms at the right hand side of (7) can be written
as
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Figure 1 depicts the energy dependencies of total (Aion
and momentum (Ajp,) scattering rate for ionized im-
purities, and additionally the total scattering rates for
acoustic intravalley phonons (1..) and one representative
intervalley phonon mode (emission and absorption).

§4. Results

An n-channel MOSFET with Lgy.=0.25 um, 7,,=5 nm
was simulated at room temperature using the combined
technique. The device has a metallurgical channel length
of Ler=0.15pum and exhibits a threshold voltage
U=0.23V.

For practical simulation of a MOSFET, electrons are
injected in source, where they fully thermalize before
entering the channel.” In the region of interest, usually
near the drain, a sufficiently large number of particles is
supplied by a particle split algorithm as proposed in,*
thus reducing the statistical uncertainty of the results.
The potential distribution in the device was calculated
with  MINIMOS? wunder a bias condition of
U(;s: UDS=2-5 V and UBS=0 V.

The two-dimensional distribution of the main diagonal
temperatures in the area near the drain are depicted in
Fig. 2. The lateral temperature 7T, has a maximum value
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at the surface, while the maximum of 7, is shifted away
from surface. Degradation due to hot electron injection
into the oxide can be more accurately modeled by using
the spatial distribution of 7, than by using the scalar tem-
perature obtained from average energy. In our simula-
tions the off-diagonal temperatures never exceeded 15%

of the main-diagonal elements.

Comparing Figs. 3(a) and 3(b) we see that the large nor-
mal field within the inversion layer does not appear in the
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Fig. 2.
micron MOSFET (units [1000 K]).

Lateral and transversal electron temperatures in a quarter
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Fig. 3.
Carlo in the same device.

(a) Electric field and (b) driving force calculated by Monte
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Fig. 4. Electron average velocity along the channel. Curve A: at the
Si-SiO, interface. Curves B and C: 5 nm and 10 nm away from inter-
face.

driving force. This is obvious since the normal field is
compensated by diffusion. The electric field in the source
junction is compensated by diffusion as well, since in this
area the driving force calculated by Monte Carlo
vanishes. The field peak near the drain edge however ap-
pears almost unchanged in the driving force, thus ac-
celerating and heating up the electron gas in this area.

Velocity of electrons in the channel is plotted in Fig. 4.
The effective channel extends from 0.05 ym to 0.2 pm,
the positions of the junctions of source and drain sub-
diffusion, respectively. In the first half of this range the
surface velocity (curve A) is lower than the velocities
within the inversion layer since the electrons are pressed
towards the surface. Near drain the pressing force has op-
posite direction and the electron velocity is maximal at
the surface. The field peak near drain induces a velocity
overshoot of 909% related to the bulk saturation velocity.
Comparison of Figs. 3(a) and 3(b) has shown that in the
overshoot region diffusion is not important. Therefore ve-
locity overshoot is treated in this model more like a drift
phenomenon. It is reproduced by the drift-diffusion cur-
rent relation (5) by incorporating the nonlocal mobility
which will also be increased compared to a local mobili-
ty, which cannot produce velocities larger than the bulk
saturation velocity.

Acknowledgement

This work is considerably supported by the research
laboratories of DIGITAL EQUIPMENT CORPORA-
TION, at Hudson, U.S.A.

References

1) S. Bandyopadhyay, M. E. Klausmeier-Brown, C. M. Maziar, S.
Datta and M. S. Lundstrom: IEEE Trans. Electron Devices 34
(1987) 392.

2) Y. J. Park, D. H. Navon and T.-W. Tang: IEEE Trans. Electron
Devices 31 (1984) 1724.

3) C. Jacoboni and L. Reggiani: Rev. Mod. Phys. 55 (1983) 645.

4) C. Hao, J. Zimmermann, M. Charef, R. Fauquembergue and E.
Constant: Solid-State Electron. 28 (1985) 733.

5) S. Sangiorgi, B. Ricco and A. Venturi: IEEE Trans. CAD. 7 (1988)
259.

6) A. Phillips and P. J. Price: Appl. Phys. Lett. 30 (1977) 528.

7) W. Hinsch and S. Selberherr: IEEE Trans. Electron Devices 34
(1987) 1074.



