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A b s t r a c t  
A coupling scheme between Poisson's equation and a combined Monte Carlo - Drift Diffu- 
sion transport model is presented. In an iterative procedure the mobility- and temperature 
profiles are updated. The method which exhibits a very good convergence rate is applied 
to study non-equilibrium transport in a one-dimensional semiconductor structure. 

1 I n t r o d u c t i o n  

For the simulation of submicron devices a hybrid approach to the modeling of carrier 
transport has several benefits [1][2]. The Drift Diffusion (DD) model provides an accurate 
description in the low field areas of a device. Since the Monte Carlo (MC) method is 
computationMly expensive, it is desirable to restrict its application to areas were the DD- 
model becomes inaccurate, which is the case when the electric field is high an its spatial 
variation is large. One difficulty in this kind of regional MC analysis is the accurate 
handling of boundary conditions at the interface between the various regions. Furthermore 
in very small devices the hybrid transport model and the Poisson equation must be solved 
self consistently. 

In the standard iteration technique the updated MC-carrier concentrations are substi- 
tuted in the Poisson equation [3]. However stability problems can arise in areas with high 
carrier concentrations. In more recent work [4] the quasi fermi level has been proposed 
to be taken as MC-output and to serve as input for the Poisson equation. This algorithm 
solves the above mentioned stability problems and shows a better  convergence rate [4]. In 
the following we describe a new selfconsistent iteration scheme which takes into account 
the hybrid nature of the transport model. During each MC-step the coefficients mobility 
and thermal voltage are updated. Their new vMues are then substituted in a set of equa- 
tions consisting of Poisson-, the continuity equation and a generalized current relation. 
This procedure allows in low regions the required coefficients to be related analytically to 
the electric field. The current relation then simplifies to the DD-relation. Just in device 
regions far off equilibrium the coefficients have to be calculated by MC. The area in which 
MC-calculation is performed is larger then the area where the coefficients are recorded. 
This leads to an overlap of the MC-domain with the DD-areas, which makes the boundary 
condition problem less stringent. 

2 I t e r a t i o n  T e c h n i q u e  

The basis of our method is the following set of equations, which is assumed to be valid 
both near equilibrium and in the hot carrier regime. Neglecting pair generation and 
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Figure h Flow chart of the main iteration 
loop. 
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Figure 2: Doping profile and carrier con- 
centrations in an n + -  n - n  + structure. 
n (°) . . .  initial solution (DD) 
n (4)--- after four MC-Poisson iterations 

recombination and impact ionization this set reads for electrons 

: , ¢  = q .  - c )  
£ 

v A  : o (2) 

j ,  = q . n .  # .  ( - V ¢  + VU T  + UT . Vn) . (3) 
n 

Poisson equation (1) and continuity equation (2) are valid in the whole device regardless 
to the energy distribution of the electrons. The equation for the first moment of the 
Boltzmann Transport equation can be cast in the form of the generalized current relation 
(3). It states momentum balance for electrons and includes nonlocal effects such as 
velocity overshoot and the occurrence of an energy gradient field VUT.  

In device areas where the electric field is low or the situation is homogeneous, the 
energy gradient field vanishes in (3) leading to the conventional DD-current relation. 
Furthermore the mobility # and the electron thermal voltage UT can be related analytically 
to local quantities such as doping concentration, electric field or the driving force. 

In regions far off equilibrium the set of parameters (#(x), UT(x)) depend on the local 
distribution function. Extracting these parameters from the equation for the first mo- 
ment in its rigorous form they would have tensor property. However to deal with scalar 
quantities we adopt the following definitions [5]. 

q Vd (4) 
# -  (dp/dt)¢ 

UT = q _  1 1 . ~ .  T r  < hkl vj > (5) 

Here vd and (dp/dt)c  denotes the magnitude of drift velocity and momentum loss rate, 
respectively. With the energy dependent momentum relaxation time rm(E)  the average 
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Figure 3: Initial solution (9(°}) of the elec- 
trostatic potential and its profile after four 
iterations (g2(4)). 

Figure 4: Evolution of the maximum of 
the electric field and the retarding poten- 
tial barrier with the number of iterations. 

momentum loss rate is defined as: (dp/dt)c = <  hk.  r~,l(E) >. In (5) we use the trace of 
the energy tensor to get the scalar approximation UT. Provided that the same potential 
distribution is used in both the current relation (3) and in the MC-procedure, this cur- 
rent relation employing the parameters (4) and (5) recovers exactly the MC-results n(z)  
and va(z). Therefore nonlocal transport effects such as velocity overshoot and ballistic 
transport are included in this drift-diffusion like current relation. 

In the first step of our algorithm an initial guess for the electrostatic potential is 
calculated by a conventional DD-simulator (Fig. 1). 

In step two the updated potential serves as input for the MC-procedure. Mobility 
and thermal voltage profiles are calculated in the critical device regions according to (4) 
and (5). These profiles are then extended over the remaining regions, which are near 
equilibrium. 

In step three the set of equations (1),(2) and (3) is solved in the entire device by means 
of a conventional continuity-Poisson solver. During this step the coefficients (#, UT) are 
kept constant. The algorithm continues with step two until the change of the potential is 
sufficiently small. 

3 R e s u l t s  

As an example we have simulated is an n+-~--~ + structure, where the n-region has a length 
of 0.15#m. Bias voltage has been 3V. To tackle the Poisson- and continuity equation we 
have used PROMIS, a general solver for partial differential equations of second order [6]. 
The MC-simulator is based on the physical model of Si mainly as it is described in [7]. 

Since the simulation domain is very small (0.6#m) we performed the MC-simulation 
from contact to contact. The decision where to use the MC-calculated parameters and 
where the analytical near-equilibrium values has be made by the carrier temperature 
profile. In the region, where the thermal voltage UT exceeds 5% of the equilibrium value 
the MC-parameters have been used. 

To characterize the potential distribution the maximum electric field in the device and 
the potential barrier at the n + -  n junction have been observed. This barrier is of some 
importance for the MC-method, because a particle split algorithm is required to achieve 
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significant injection into the n-region. Fig. 2 compares the initial carrier concentration 
obtained by the DD-simulator and the selfconsistent concentration after four MC-Poisson 
iterations. Fig. 3 shows the change of the potential due to the redistribution of the mobile 
charge. Fig. (4) shows the convergence rate of the two observed quantities. After three 
MC-Poisson iterations the maximum field evolved from 320kV/cm to 345kV/cm. The 
values of the following iterations spreads within +0.45%. The potential barrier decreases 
from 110meV to 99meV within a range of +0.9%. 

To get reliable results in the present one-dimensional example only three of the time 
consuming MC-Poisson iterations are actually required. Thus the proposed MC-Poisson 
coupling scheme proves very efficient. 

4 Conclusion 

A new coupling scheme between Poisson equation and MC-transport has been proposed. 
The algorithm which allows combined Monte Carlo - Drift Diffusion analysis is efficient 
for two reasons: Firstly, few MC-Poisson iterations are required due to the very high 
convergence rate. Secondly, if significant portions of the device allow accurate modeling 
by the DD-model, MC-calculation can be restricted to the critical device regions. 
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