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SUMMARY 
For the solution of the three basic semiconductor equations in two space dimensions fully self-adaptive grids 
are a powerful tool to optimize the ratio between the number of unknowns and the accuracy of the solution. 
For the method of finite differences hardly any mathematically founded criterion for automatic grid control 
can be given which can be implemented in a computer program with acceptable effort. Therefore most of the 
strategies for self-adaptive grid control are totally heuristic or derived from physical properties. 

In this paper we present criteria for the design of an initial space grid. We discuss some conventional 
strategies for the automatic control of space grids (e.g. equidistribution of the local discretization error) and 
present new criteria (e.g. degree of cohpling of the equations, physical properties like net generation rate). 
For the time grid an automatic step length control algorithm is presented and the interaction between space 
and time grid is analysed. Throughout the paper the results are illustrated by realistic examples. 

1. INTRODUCTION 

For the solution of the three basic semiconductor equations fully self-adaptive grids are a 
powerful tool to optimize the ratio between the number of unknowns and the accuracy of the 
solution. It is well known that an estimation of the magnitude and the distribution of the 
computational error can be given only by an a-posteriori error analysis. Based on this error 
analysis the mesh can be refined in regions with large errors if this is necessary to reach a desired 
accuracy. 

For a discretization based on finite differences hardly any mathematically founded criterion for 
the design of both the time and space grid can be given which might be implemented in a 
computer program with reasonable effort. Therefore most of the strategies to control the self- 
adaptive grid are based on heuristics or on physical properties. 

In this paper various criteria for the design of two-dimensional space grids and of time grids are 
presented. We discuss strategies for the construction of initial space grids (if the simulation is 
started from scratch), some conventional strategies for automatic adaption of finite differences 
grids and we analyse new ones, since the commonly used methods like the control of the potential 
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differences do not provide a sufficiently accurate grid in a computer program, which is applicable 
to any given device geometry.' 

The results are illustrated by realistic two-dimensional examples (resistor, diode, lateral DMOS 
transistor). These have been computed with the two-dimensional device simulation program 
BAMB12s ' which is based on a totally self-consistent solution of the three semiconductor 
equations utilizing a Finite Boxes grid. In this program all physical models can be defined by the 
user; this means that in particular all effects of impact ionization can be taken into account. Data 
for the examples (geometries and doping profiles) can be found in the Appendix. 

2. DISCRETE SEMICONDUCTOR EQUATIONS 

In this section, we present the basic equations in a very rough form in order to establish the 
nomenclature. For detailed information about the derivation of the equations including all 
assumptions (e.g. linear variation of the electrostatic potential between two grid points) and 
restrictions, boundary conditions and physical models we refer to the book by Selberherr.4 

Usually the behaviour of a semiconductor is described by the following set of coupled non- 
linear partial differential equations: 

4 divgradJI = - (n  - p - C )  
E 

a n  
div J, - q-  = q R 

at 

at 

J, = - q ( P p  P grad * + D, grad P) 

divJ,+q-= a P  - q R  

J, = - q(p.n grad $ - D, grad n) 

Equation (1) is Poisson's equation, (2) the continuity equation for electrons, (3) the continuity 
equation for holes, (4) the carrier transport equation for electrons and (5 )  the carrier transport 
equation for holes. 

r) denotes the electrostatic potential, q is the elementary charge and E the dielectric constant of 
the device material. n and p denote the carrier concentrations (electrons and holes), C the net 
doping concentration, J, and J, the current densities for electrons and holes, R the net generation 
and p,,, the mobilities of electrons and holes, respectively. 

For our following investigations we assume the finite differences discretization (6)-(8) of (1)-(3) 
of Gummel-Scharfetter type in scaled For simplicity we have taken only the stationary 
part and neglected the time dependent terms an/& and ap/dt .  It is remarked that this is not a loss 
of generality of our strategies for space grid control. 

1 2  kj- 1 + kj 
2hi-' + +i-  I ,  j 
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where hi and kj are the distances of the grid lines in the x- and y-directions, $i, j ,  ni, j ,  pi,  j , .  Ci, and 
Rl, are the electrostatic potential, the electron and the hole concentrations, the impurity 
concentration and the net generation, respectively, at the meshpoint (i, j ) ,  1’ is the scaling factor4, 
U ,  = kT/q is the thermal voltage (k Boltzmann constant, T absolute temperature), D n l i +  l / z , j  

and Dp, i+l , z ,  are the effective diffusivities of the electrons and the holes, respectively, in the 
middle of the interval [ ( i ,  j ) ,  ( i  + l,j)], and B(x)  denotes the Bernoulli function, which is defined 
by B(x)  = x/(ex - 1). 

By the Einstein relation we can write D, = p,U, and D, = p, U,. 

3. SELF-ADAPTIVE SPACE GRIDS 

In a computer program which is applicable to arbitrary device geometries the optimal mesh can 
be obtained only by self-adaptive grid control. Thereby the time consuming part of mesh design 
shrinks to the simple definition of the geometry. 

3.1. initial space grid 

The design of an initial space grid is a very important task even if it does not seem so on first 
glance. A large number of experiments has shown that the numerical process is very sensitive to 
changes in the mesh at the beginning of a simulation. This means that the number of unknowns at 
the end of the computation may vary by about 25 per cent, depending on the start grid. 
Furthermore the convergence behaviour is strongly dependent on the initial mesh. 

We have tested and implemented strategies which take care of the information about the 
behaviour of the solution given by the geometry, the doping profile, some numerical properties of 
grids and a physical criterion. 

The methods for the construction of an initial grid in an arbitrary geometry to the demands of 
the discretization formulae have been treated by F i~che r .~  

3.1.1. Geometry information. For the design of an initial grid the device geometry has 
obviously to be taken into account. In many cases it is sufficient to use only the pure geometric 
values (co-ordinates, boundary conditions, etc.), but in some other cases it is necessary to take 
into account the behaviour of the solution, depending on the geometry. 

From theory it is known that, at points with a change of the boundary condition 
(Neumann-Dirichlet boundary (contact), origin of cylindrically symmetric co-ordinate system), a 
singularity in the electric field will arise. This knowledge is of major importance if there is no 
further criterion to construct an initial grid (e.g. in MESFET’s with a constant doping profile, cf. 
Section 3.1.2). 

In these cases we introduce one new grid line in every co-ordinate direction close to such a 
‘singular’ point to account for the influence of the singularity. This is also a possibility to isolate 
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the singularity, i.e. in a neighbourhood of such a point new points must not be inserted, since it is 
not necessary for the accuracy of the solution to refine the mesh to ‘infinity’ in these regions. 

In Figures l(a), (b) the initial meshes of the simple resistor ((a) of Appendix) can be seen. In 
Figure l(a) the knowledge of the singularity has not been taken into account, in Figure l(b) the 
three lines close to the point with the change in the boundary condition have been introduced. 

Only by this modification of the grid could an accurate solution of the problem be achieved, 
otherwise the grid did not account for the singularity in the electric field.6 It should be mentioned 
that a similar method can be used at Neumann boundaries in order to reduce the discretization 
error if Neumann boundary conditions of first order are implemented in a program. 

3.1.2. Analysis of the doping profile. It is a conventional method for the design of an initial 
space grid to analyse the doping profile. In order to resolve pn-junctions in a proper way the 
gradients of the doping profile are evaluated. In regions with large gradients new points are 
inserted, in regions with small gradients a coarse grid is assumed to be sufficient. This may cause 
troubles if abrupt junctions occur. In this case a refinement to infinity would occur because of the 
singular gradient. Therefore we have introduced a minimum distance between grid points which 

Figure l(a). Initial space grid of a resistor without the knowledge of the singularity 

Figure l(b). Initial space grid of a resistor accounting for the singularity 
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is controlled by the Debye length of the local doping. In the program BAMBI we have chosen the 
value l0J[(EUT)/(ql C(x, y)l)] for the minimum distance of points. 

This general criterion provides a good initial grid if the doping is not assumed to be constant 
(cf. Section 3.1.1). Depending on the complexity of the device and the desired accuracy of the 
simulation, the upper limit for the doping gradient above which points are inserted may be varied 
by the user. 

3.1.3. Quasiuniform grid. In the paper by Jiingling et aL7 it is emphasized to use a quasiuni- 
form space grid. This property guarantees superlinear behaviour of the local truncation error of 
the discretized  equation^.^ Furthermore, a smooth transition from a coarse to a fine grid is 
obtained which significantly increases the convergence speed of the Newton iteration cycle for the 
solution of the non-linear system. 

The well known sectio aurea (golden section), however, is applicable only for one-dimensional 
grids, since for two-dimensional meshes the number of points will grow too fast. 

Therefore we have implemented a criterion which is weaker than the sectio aurea. It checks for 
the ratio of adjacent grid spacings, and the limit is set to 3 and 1/3, respectively, thus avoiding a 
too rapidly increasing number of points. In Figure 2 the result of this criterion can be seen. The 
values mentioned above have been established by numerical experiments. 

3.1.4. Physical criterion. One additional strategic criterion for the design of an initial grid 
should be mentioned. From device physics it is known that near the boundary between the oxide 
and the semiconductor region (interface) an inversion layer may be built up. If the space grid near 
interfaces is too coarse this effect may even be lost in the simulation. Therefore it is necessary to 
introduce a line very close to the interface. We have taken a maximum distance of 1-0 x 1 0-' cm 
from the interface. This additional line must also be inserted even if at the opposite side of the 
oxide no contact is specified. This can be seen from various trench-structures.* 

3.1.5. Example. In this paragraph we present an example of the construction of an initial grid 
for a lateral DMOS transistor. In Figure 3 the start grid after the analysis of the pure geometry 
can be seen. In this case the singular points have not been refined since the doping profile is not 

Figure 2. Initial grid of DMOS transistor after the analysis of all criteria from section 3 
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Figure 3. Initial grid of DMOS transistor after the analysis of the geometry 

assumed to be constant. In Figure 2 the initial mesh of the simulation is shown. One can nicely 
see how parallel to the interface there is an accumulation of grid lines. The proper treatment of 
pn-junctions and the smooth transition from a coarse to a fine mesh can also be seen. 

3.2. Self-adaptive space grid rejinement 

In order to reach a desired accuracy of the solution the space grid is successively adapted to 
provide an optimal mesh for the particular operating point which has to be calculated. For the 
finite element method various criteria for grid refinement have been de~eloped;~ for the finite 
differences method, however, only few investigations and criteria have been published. In the 
following we will discuss some strategies. 

3.2.1. Local discretization error. It is a conventional and mathematically founded way in grid 
processing to equidistribute the local discretization error of the solution over the whole 
integration domain. ‘ ‘ 7  ’ Usually only Poisson’s equation is considered since mathematical tools 
fail in treating the whole system or the numerical effort will be very time consuming. The order of 
magnitude of the local discretization error also indicates in some sense the global accuracy of the 
solution. 

The discrete Poisson equation (6) has a local truncation error linearly proportional to the mesh 
spacing and the third partial derivatives of the electrostatic potential on a non-uniform mesh. 

For the discrete continuity equations (7), (8) we get a local truncation error linearly propor- 
tional to the mesh spacing and the sum of the first and second partial derivatives of the current 
density components (for the considered equation). This means that the Gummel-Scharfetter 
discretization scheme is a first order method which provides linear convergence. 

In the following, p ( x ,  y) = ( q / ~ )  (n(x,  y) - p(x ,  y )  - C(x, y)) denotes the space charge. 
For the numerical treatment of this criterion the right-hand side of (1) is considered. p ( x ,  y )  is 

expanded in a Taylor series around the point ( x  + h , , y  + k j ) ,  where hi and k j  again indicate the 
ith and jth mesh spacing in the x- and y-directions: 

P ( X  + h i , y  + k j )  = P ( X ,  Y )  

+ Obi :  j)P”’(x, Y )  (9) 

where g i , j  = max(hi, kj ) ,  p x  = a p / a x ,  p y  = a p / a y  and p“‘ derivatives of p of order 3 and higher. 
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In the discretization formulae (6H8) only the first term p(x, y )  is considered. The truncation 
error of (9) will be integrated over a rectangular domain around each point, thus providing the 
simple formula (10) for a first order approximation of the local truncation error A ~ .  

where A = 2 (hi + hi- 1) ( k j  + kj- 1) denotes the integration area. 
It should be remarked that the differentiation of p with respect to the co-ordinate directions x 

and y is a disadvantage in the numerical treatment of this formula. From theory pxy = pyx holds, 
but in the discrete case very high differences for these values may occur, strongly depending on the 
mesh spacing. These differences may be taken directly as a criterion for grid refinement but then 
the first derivatives are neglected and it becomes much more difficult to find a rigorous 
mathematical explanation. The resulting grids, however, are almost the same for both strategies. 
In Figure 4 the distribution of the local discretization error of the diode from Figure 5 (0.3 V in 
backward direction) can be seen. The values are scaled to unity therefore it contains no 
information about the quantity of the error. It turns out (as is expected) that the error is 
concentrated at the junctions (boundaries of the space charge regions) and at the singularity at the 
change of the boundary condition (cf. Section 3.1.1). 

The equidistribution of the local discretization error is a basic property that must be fulfilled to 
reach a given accuracy. However, various numerical experiments have shown that this criterion is 
not sufficient. In the following some new criteria for automatic grid adaption will be proposed 
and discussed. 

Figure 4. Distribution of the local discretization error in a diode 
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Figure 5. Geometry of the diode 

3.2.2. Degree of coupling of the equations. The degree of coupling of (6), (7), (8) is mainly 
determined by the magnitude of the Bernoulli function 

where t+hi denotes the electrostatic potential at the grid point i with its neighbour NB,. As the 
difference of the potential values increases, B tends to 0. In this case either the electron or the hole 
concentration at the point i becomes almost independent of the potential at the neighbouring 
point NB, in the grid, as can easily be recognized from (7) and (8). 

It should be noted that this effect becomes even worse for low temperatures since U ,  will be 
decreased. Furthermore, some coefficients in the matrix of the linearized equation system may 
become zero, thus resulting in a singular matrix. 

Limiting the Bernoulli function B by insertion of new lines is (under equithermal conditions) in 
fact a restriction to the electrostatic potential $. It is well known that a rigorous restriction to the 
electrostatic potential is too strong because the local truncation error of Poisson’s equation is 
linearly proportional to the mesh spacing and the third partial derivatives of $. This means that 
the differences of the potential values do not affect the local discretization error if the space charge 
does not vary in this region. 

On the other hand the magnitude of the Bernoulli function is of fundamental importance for 
elliptic and mixed (elliptic-parabolic) problems where the behaviour of the solution is determined 
by the boundary conditions. 

For the first inner neighbour of a Dirichlet point both B(x)  and B( - x) appear in the 
discretization formulae either in (7) or in (8). Thus for these points the magnitude of B( lx l )  has to 
be checked. If decoupling occurs, unconditionally new lines have to be inserted otherwise the 
linear equation system becomes singular. Vanishing values of B at inner points in regions with 
varying space charge and at contact points have to be avoided. Furthermore, in some cases saddle 
points (punch-through) and peaks in the electrostatic potential (transient simulations) may occur. 
In these cases decoupling has also to be avoided. 

In the program BAMBI we have implemented two strategies. During the Newton iteration 
cycle (set-up of coefficient matrix, elimination process) the main diagonal elements of the 
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linearized equation system are checked for zero values. If a zero main diagonal element occurs 
this indicates local decoupling. The value is set to a very small number to avoid singularity of the 
linear equation system. Thereby a slightly changed problem is solved. In this case the solution has 
to be computed again on a grid which avoids these effects. After each Newton iteration cycle the 
electrostatic potential is checked for high gradients and-if the space charge is varying more than 
a given limit-new lines are inserted. By repeated application of this criterion difficulties due to 
vanishing values of B can be avoided for the next iteration cycle. 

It should be remarked that we have proposed a criterion that provides not only the region 
where new lines have to be inserted but also the direction from the considered point. 

3.2.3. Physical criteria. Various physical criteria for grid refinement may be implemented. In 
Section 3.1.4 a strategy for the initial grid has been proposed. We have extensively tested one 
particular criterion that is based on the user defined net generation. In regions with a net 
generation of more than 11OZ21 cm-3 s-’ new points have to be inserted to take all effects in the 
device into account. This ‘magic’ number of 110z21cm-3s-’ has been established by a large 
number of numerical experiments. For these new points a minimum distance of approximately 
60 x lO-*cm has been introduced, which is about the mean free path of electrons in silicon. 
Using this criterion a significant gain of accuracy is obtained; furthermore, the convergence speed 
of the Newton iteration scheme is increased. 

Another physical criterion should be mentioned. The smoothness of the current densities can 
be taken as a measure for the quality of the solution. Since the current densities are assumed to be 
smooth the differences between two grid points should be limited. This again provides a criterion 
that indicates the direction of inaccuracy since the current densities can be split into the co- 
ordinate directions. 

The smoothness of the contact currents and of the potential energy from one grid to the next 
can be used to estimate the quality of the solution. If the contact current values or the potential 
energy change more than a defined limit from one grid to the next a new iteration cycle has to be 
started with a refined grid. In the program BAMBI these are additional stopping criteria for the 
simulation. 

3.2.4. Deletion of lines. In the previous paragraphs only criteria for the insertion of points have 
been discussed. Particularly in time dependent calculations the regions of interest move, therefore 
it is necessary that the grid also moves. This means that during a simulation grid points lose their 
importance for the accuracy of the solution while in other regions points have to be inserted. In 
order to minimize the number of grid points for a desired accuracy these points have to be deleted. 

It is quite difficult to derive a mathematically founded criterion for the deletion of points. 
Indeed it is not possible to use the ‘inverse’ strategies for insertion of points. Only the local 
discretization error gives some information where points might be removed. 

The Gummel-Scharfetter discretization scheme provides linear convergence since it is a first 
order method. As already mentioned, it implies only linear variation of the electrostatic potential 
between two neighbouring grid points. Furthermore, the local discretization error is proportional 
to the mesh spacing. From this consideration we can establish a criterion for the deletion of lines: 

If for all points on a grid line the local discretization error is less than half the defined limit for 
insertion of new points and if it is less than half of the middle of error of the two neighbours in a 
perpendicular direction of the line, this line may be removed. 

Some advantage of the reduced number of points will be destroyed since by the criterion of 
Section 3.1.3 new points will be inserted in order to obtain smooth transitions from a coarse to a 
fine grid. 
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Even for stationary calculations savings of about 25 per cent of points could be achieved 
because lines which have been inserted by the analysis of the doping profile will be removed if they 
are not needed for a special operating point. 

In Figures 6 and 7 the grids of the diode (0-5V in backward direction) without and with 
removal of lines can be seen. For this operating point the nn+-junction is not of importance, 
therefore, the lines introduced by the analysis of the doping profile have been removed. 

For transient simulations a ‘moving grid’ will save CPU-time and storage requirements. In 
most cases a reduction of the run time could be observed using alternate insertion and deletion of 
lines in spite of the additional effort which has to be undertaken because of the results which are 
described in Section 4.3. 

t 

Figure 6. Grid of a diode without deletion of lines 

Figure 7. Grid of a diode after deletion of lines 
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3.2.5. Case ofno convergence. The solution is either done by Gummel's algorithm (decoupled 
solution of the equations) or by a modified version of Newton's algorithm (simultaneous solution 
of the equations). In both cases it may occur that the iteration cycle does not converge. 

From our knowledge it is not possible to give a generally applicable criterion for grid 
refinement for this case. If the residual norm of the solution is near (e.g. two orders of magnitude) 
to the desired accuracy and further improvement of the solution is not possible because of 
numerical reasons (e.g. weak coupling, high net generation, roundoff errors) all the above 
mentioned criteria (Sections 3.2.1-3.2.4) might be used. But if the residual norm of the solution is 
far away from the desired accuracy it becomes much more difficult. A commonly used method is 
an analysis of the residual vector introducing new points in regions with large residuals. This 
sometimes enables convergence, but often fails. 

We have implemented another strategy. On the existing space grid we solve a set of partial 
differential equations: 

div grad wi = 0 

for each contact i with the following boundary conditions: 

wi = 1 at the ith contact; 
wi = 0 at all other contacts; 
awi/dn = 0 at all other boundaries. 
an denotes the derivation with respect to the outer normal vector. 

The sum of all so called weights must be 1 at each point of the grid; this means that the 
difference between 1 and the sum of the weights directly indicates the numerical error at each 
point. This error indicates that in regions with large differences new points have to be inserted. In 
Figures 8(a), (b) the weights for the diode can be seen. 

It should be mentioned that the local discretization error of the solution of these Laplace 
equations can also be taken for an estimation of the quality of the space grid, leading to almost 
the same results. In our simulations it turned out that this method based on the solution of the 
Laplace equations is superior compared with the strategy of analysing the residual vector. 

Figure 8(a). Weight function for a diode (1st contact) Figure 8(b). Weight function for a diode (2nd contact) 



SELF-ADAPTIVE SPACE AND TIME GRIDS 1369 

4. SELF-ADAPTIVE TIME GRIDS 

In Section 3 we have discussed self-adaptive space grids. All considerations are also applicable to 
the space grid in transient simulations. In this section we discuss the automatic control of the time 
grid. 

Since the Gummel-Scharfetter space discretization scheme provides linear convergence on a 
non-uniform space grid a time discretization scheme of order one is sufficient to guarantee 
consistency. In BAMBI we have implemented the backward Euler method, because it is 
absolutely stable. This means that no restrictions on the time step are required. 

It is more difficult to derive criteria for a self-adaptive time grid than for space grids. This 
means that all considerations are based on heuristics and on physical properties. 

4.1. Initial time step 

The calculation of an initial time step is based on a physical consideration. Since the effects by 
the dielectric relaxation time are not analysed, we choose & of the maximum life time of the 
carriers as initial time step dt,. This value has been established by numerical experiments. 
However, if there is no change in the boundary conditions for a longer time than dt, the greatest 
possible time step is chosen while the boundary conditions are kept constant. 

Since it is impossible to give a generally applicable strategy for the automatic computation of 
an initial time step the user may define it by himself in BAMBI. 

4.2. Automatic step width control 

Automatic time step width control is almost equivalent to estimating the time and the space 
discretization error simultaneously. We have dealt with the space discretization error in 
Section 3.2.1; here we will discuss the estimation of the time discretization error. 

4.2.1. Time discretization error. Once more (as is done for space discretization) an estimation 
of the time discretization error is done by analysing the transient behaviour of the space charge. 
The change of the space charge densities from one time step to the next indicates the intensity of 
the time dependent process. It can be written as 

AP = l/Pr+l - ~ t l l  = llPr+l - ~t - (nt+1 - nt)ll (11) 
where the index t denotes the number of the time step. Equation (1 1) can be computed very easily 
and it has proved to provide a good estimation of the time dependent computational error.I2 

4.2.2. Step width algorithm. We have implemented a sophisticated time step algorithm in 
BAMBI. The computation of the initial time step has been discussed in Section 4.1, the 
calculation of the time step during the simulation is done as follows: 

Take the old time step dt,,,. If Ap is less than a given limit (e.g. 10 per cent) and there is no 
change in the boundary conditions take dt,,, = 4 dt,,, . 

Take the old time step dt,,,. If Ap is less than a given limit (e.g. 10 per cent) and there is a 
moderate change in the boundary conditions take dt,,, = 2 dtOld. 

Take the old time step dt,,,. If Ap is greater than a given limit (e.g. 10 per cent) and/or there is a 
significant change in the boundary conditions take dt,,, = sdtold, where 0-1 < s < 1 depends on 
the change in the boundary conditions. 

Furthermore, A p  is extrapolated from two previous time steps. If ‘overshoot’ would occur the 
proposed time step is cut, thus guaranteeing that no important information will be lost. 
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To analyse the changes of the boundary conditions each proposed new time step is divided into 
10 subintervals to check for the applied voltages and currents. Thereby also discontinuities can be 
resolved in a proper way. In order to reduce the number of iterations in the next Newton cycle the 
solution for the next time step dt,,, is extrapolated from the two previously calculated solutions. 

However, it may happen that the Newton cycle does not converge. Then the proposed time step 
is divided by 4 and computed again. If this fails a grid refinement is performed. 

It should be mentioned that for transient calculations the space discretization error is not 
controlled after every time step because this might lead to an exploding number of points. Instead 
we check the time discretization error after every third time step to guarantee the accuracy of the 
space grid. 

4.3. Interaction of time and space grids 

The interaction of the time space grid is of major importance in transient simulations and it 
may cause numerical trouble if it is not handled properly. 

If a space grid refinement has been performed the solution for the new points is interpolated 
from the old ones. The last time step is calculated again handling the old points as Dirichlet 
points. Intuitively it is obvious that this method introduces an error. Moreover, new points are 
inserted in regions with big changes in the solution, thus a smooth fitting of the new values will 
result in a bad solution which, however, is assumed to be correct in the next Euler step. 

The contact currents are very sensitive to small changes in the solution, therefore they provide 
a good indicator for this interpolation error, as can be seen in Figure 9 (arrow) (turn-on of a MOS 
transistor).I2 In order to reduce this error two quasi-zero time steps are introduced. These two 

2 
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Figure 9. Contact currents without quasi-zero time steps 
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Figure 10. Contact currents with two quasi-zero time steps 

steps cause wrong and oscillating results but they allow a relaxation of the space charge, thus 
leading to a significant improvement in the smoothness of the terminal currents Figure 10. It 
should be mentioned that the number of quasi-zero time steps depends on the order m of the time 
discretization scheme. From theory m intermediate time steps are sufficient, but it has turned out 
in numerical experiments that m + 1 steps give even better results. 

5. CONCLUSION 

We have presented criteria for fully self-adaptive two-dimensional space grid design. Besides the 
equidistribution of the local discretization error the degree of coupling of the equations is 
controlled and physical properties like net generation are taken into account. The automatically 
computed initial time step is derived from the life times of the carriers. The time step algorithm 
controls the applied boundary conditions (contact voltages, contact currents) and the time 
discretization error which is proportional to the change in the space charge. To reduce the 
influence of changes in the space grid on the computational error in transient simulations quasi- 
zero time steps provide a relaxation of the space charge after insertion or deletion of points. 

By the presented methods for fully self-adaptive space and time grid control nearly optimal 
meshes for all operating points of a device can be achieved, thus minimizing the number of 
unknowns for a desired accuracy. Furthermore, an estimation of the distribution of the 
computational error can be given. 
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APPENDIX 

Geometries and doping projiles of examples 

from the thesis by Rank.g 
(a) Resistor. This example is a simple potential problem with a constant doping. It is taken 

In Figure 11 the geometry can be seen; the doping profile is assumed to be constant. 

(b) p+nn+-diode. This two-dimensional diode is taken from the thesis by Franz.I3 
In Figure 5 the geometry can be seen; in Figure 12 the doping profile is shown. 

(c) DMOS transistor. This lateral DMOS transistor has been analysed previously. 14-16  

In Figure 13 the geometry can be seen; in Figure 14 the doping profile is shown. 

Conlacl constantly doped 

uo n-vpe or P-WP Contacl 

Figure 11. Geometry of the resistor 

+ v f 6 .  * 

Figure 12. Doping profile of the diode 
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Drain Gate Source 
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9 
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k 

Figure 13. Geometry of the DMOS transisto1 

Figure 14. Doping profile of the DMOS transistor 
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