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The discretization of the semiconductor equations in three-dimensional device simulators leads to very large sparse linear
systems of equations. While the solution of the Poisson equation — e.g. by the conjugate-gradient method - is straightforward,
the iterative solution of the carrier continuity equations is nontrivial due to both the nonsymmetry and the poor conditioning
of the coefficient matrices. As a consequence we have investigated conjugate-gradient-like iterative methods such as conjugate
gradients applied to the normal equations, a symmetrized conjugate-gradient method, dRTHOMIN, GMRES and three
squared biconjugate-gradient algorithms. All these methods were implemented in conjunction with incomplete factorization
preconditioners, since the large condition number of the coefficient matrices makes preconditioning indispensable. We
demonstrate the effectiveness of our implementation on vector and vector-concurrent supercomputers, such as the Fujitsu

VP200, Cray-2, and on minisupercomputers, such as the ALLIANT /FX40 and VAX 6260.

1. Introduction

In this paper the computational “number-
crunching” aspect of the numerical solution of the
three-dimensional stationary semiconductor equa-
tions on a rectangular domain is considered. This
nonlinear boundary value problem (BVP) is usu-
ally tackled by either a damped (and possibly
inexact) Newton technique [3,6], or by the well-
known Gummel algorithm [§8], a nonlinear block
Gauss—Seidel scheme. While the first method ex-
hibits superlinear local convergence, the latter
proves superior stability independent from a pos-
sibly poor initial guess. No Jacobi matrix is re-
quired thus keeping memory requirements low
contrary to the Newton method. The locally linear
convergence of Gummel’s algorithm, often consid-
ered as its major drawback, can be improved by
nonlinear convergence acceleration [15). In the
following we shall deal exclusively with the latter
method.

The decoupled and appropriately discretized
equations produce very large sparse systems of
equations the solution time of which dominates

program execution. In the case of Gummel’s al-
gorithm the discretization of the linearized Pois-
son equation for the electrostatic potential  leads
to a symmetric positive-definite coefficient matrix,
which, under favourable assumptions on the grid,
is well conditioned.

For the carrier continuity equations, however,
the situation is different (see e.g. ref. [2]). The
coefficient matrices of the discretized carrier con-
tinuity equations are nonsymmetric due to the
usual exponential (Scharfetter—Gummel) interpo-
lation scheme. Unlike the Poisson equation the
continuity equation can be conditioned poorly,
especially in the case of high terminal bias includ-
ing substantial impact ionization.

Iterative solvers for the linear systems appear
to be the most suitable solution methods for linear
systems in the three-dimensional case. The solu-
tion of the Poisson equation by the precondi-
tioned conjugate-gradient method is straightfor-
ward [16]. For the nonsymmetric continuity equa-
tions rapidly convergent and numerically stable
solvers are sought. Conjugate-gradient-like meth-
ods turn out to be the most suitable choice [14].
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Convergence (and thus reliability) of the applied
iterative method depends quite critically on the
preconditioner. The high quality of precondi-
tioners based upon incomplete LU factorization
(ILU) is firmly established in numerical analysis,
thus we used adaptive fill-in ILU preconditioning
throughout our investigations.

The recursion operations in the backsubstitu-
tion process of the triangular L, U factors con-
stitute the main computational bottleneck on a
vector computer. We have implemented the trian-
gular solvers using a list-vector technique resulting
in a 130 megaflop throughput for the triangular
solves on the VP200 supercomputer. The main
result of this paper is that the execution time of
our three-dimensional device simulator on a vec-
tor-supercomputer is comparable to the execution
time of the two-dimensional program version on a
common minicomputer or workstation.

The paper is organized as follows: section 2
gives a brief overview of the basic partial-differen-
tial equations and section 3 treats the discretiza-
tion and the iterative solution of the nonlinear
system of equations. Section 4 deals with some
important algebraic properties of the nonsymmet-
ric coefficient matrices. In section 5 a number of
methods for the iterative solution of nonsymmet-
ric linear systems are reviewed and compared
against some new iterative methods. Section 6
gives theoretical and section 7 implementational
notes on the used preconditioners. Section 8 con-
cludes with numerical results.

2. The basic partial differential equations

We consider the time-invariant case of the
semiconductor equations only. In the transient
case additional terms increase the diagonal domi-
nance of the discretized equations and therefore
improve their condition number, if an implicit
backward time-difference scheme is used. The
semiconductor equations [23] in the variables (¥,
n, p) consist of the Poisson equation and the

carrier continuity equations. Poisson’s equation
for the electrostatic potential ¢ reads

div(e grad ) = —p, (1)

with the space charge p= g(p — n+ C), where C
denotes the net doping concentration, n the hole,
p the electron concentrations and ¢ the elemen-
tary charge. The carrier continuity equations for
the electron and hole current densities J, , read

divJ, = ¢R, (2)
divJ,= —¢R, (3)

where R denotes the carrier generation and re-
combination rate.
The current densities J, ,,

J, = w.nk,, 4
J, =, pF,, )

are assumed to be proportional to the driving
forces F, ,, proportionality being determined by
the carrier mobilities p, ,. Solid-state thermody-
namical statistics confirm the applicability of an
extended drift-diffusion approach for the driving
forces [11]

KT,
F,= —q(grad Y- %grad( q"n)), (6)

1 kT,
F,= —q(grad ¥+ ;grad(Tp)), (7

where carrier heating is modeled by carrier tem-
perature 7, ,. Approximations for the carrier tem-
peratures 7, , can be derived by a series expansion
of the energy conservation equation

24q . 2[ 1 1
Lp=T+7%3 FTnvP(”:?;) (ul’;liF - al’s )’ (8)

with the Boltzmann constant k, the ambient tem-
perature 7, and the energy relaxation times 7, ,.
The superscripts of p, , denote the mobilities due
to lattice (L), impurity (I), and surface (S) scatter-
ing and their decrease due to carrier heating (F).
The carrier generation and recombination rate
R on the right-hand side of the carrier continuity
equations represents the sum of the impact ioniza-
tion rate R", the Shockley-Read-Hall recombi-
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nation rate RS®Y and the Auger recombination
rate RAY,
R=R"+ RSRH + RAY. 9

3. Iterative solution of the nonlinear system of
equations

We use finite-difference discretization in a rec-
tangular spatial domain to treat the semiconduc-
tor equations numerically. At the idealized Ohmic
terminal contacts Dirichlet boundary conditions
hold, at artificial interfaces in the deep bulk ho-
mogenous Neumann boundary conditions have to
be applied. Inhomogenous Neumann boundary
conditions are valid in case of interface charges
for the electrostatic potential and in case of non-
vanishing interface recombination velocity for the
carrier concentrations.

The nonlinearity of the discretized coupled sys-
tem of equations can be treated in different ways:
classical Newton or quasi Newton schemes make a
simultaneous solution of the three semiconductor
equations necessary and have a locally quadratic
convergence behavior. We restrict ourselves to the
block iterative Gummel algorithm [8], which al-
lows a sequential solution of the three equations
within one outer iteration. It is less sensitive to the
initial guess than Newton methods but has the
disadvantage of even sublinear convergence be-
havior in the case of high-current simulations. The
nonlinear Gummel modification of Poisson’s
equation is linearized by a first-order series expan-
sion. The nonlinearities in the carrier mobilities
and carrier temperatures are neglected, the deriva-
tives of R with respect to n and p are updated
in a superimposed impact ionization subcycle and
can therefore be neglected, too. Both (9RS*H /3n)
and (3RSRY /3p) increase the diagonal dominance
in the resulting coefficient matrices and are there-
fore taken into account. (dRAY/dn) and (dRAY/
dp) do not necessarily have such a stabilizing
effect. Negative contributions to the main diago-

nal of the coefficient matrices are therefore dis-
carded. The resulting scheme reads

k
div grad ¢**' = _%(____a(p a’:; <)

X(¢k+1—¢k)+pk—-n"+C), (10)

diva(¢k+l, pk+1) = ___q(R(‘Pk+1, nk, pk+l)
dR
+_a_;(pk+l_pk))’ (11)

diVJn(lllk+], nk+1) =4(R(\Pk+l, nk+1’ pk+1)

+g—§(nk“—n")). (12)

In order to cope with the exponential depen-
dence of the carrier densities on the electrostatic
potential and in order to allow carrier temperature
dependent mobilities, a modified version of the
Scharfetter—Gummel interpolation scheme [22] for
the carrier concentrations is used. Nonplanar in-
terfaces are discretized by the well-known box
integration method.

4. Algebraic properties of the coefficient matrices

The linear interpolation of the electrostatic
potential between adjacl:nt gridlines and the mod-
ification by Gummel’s algorithm (using natural
ordering) leads to a symmetric, positive definite,
2-cyclic coefficient matrix of the discretized Pois-
son equation. The solution can easily be achieved
by the standard preconditioned conjugate-gradient
algorithm. The exponential Scharfetter—Gummel
interpolation scheme in the discretization of the
carrier continuity equations produces nonsymmet-
ric, 2-cyclic coefficient matrices 4. The diagonal
dominance is guaranteed by the derivatives of
Shockley—Reed—-Hall and Auger recombination
with respect to the carrier concentrations. In the
absence of recombination terms the main diagonal
elements equal the negative column sum of the
offdiagonal elements. This implies at least semi-
definiteness of A.

From the exponential interpolation scheme it
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can easily be seen, that 4 can be transformed to a
symmetric, positive definite matrix A [4],

A=W, , AW, (13)

by a diagonal matrix W with positive elements w,.,
The w; are given by '

¥ ¥
wi',,=exp(— Z—U_;)’ w,‘p=exp(-2—l7’), (14)

for electrons and holes. U, =kT/q denotes the
thermal voltage. The enormous number range of
the w, , , inhibits an explicit symmetrization and
a solution of the resulting symmetric linear system
by conjugate gradients. For a maximum electro-
static potential of 5 volts and a minimum temper-
ature of 77 K (liquid nitrogen temperature) expo-
nents of the order log;; (W nax) = 164 arise.

The symmetrizability guarantees a positive real
spectrum of A. Therefore iterative methods are
safely applicable.

5. Selected iterative methods for the linear systems

We have selected some basic projection-type
iterative methods [20] for the nonsymmetric linear
systems. In the following section some theoretical
aspects and the practical applicability will be dis-
cussed. All of these methods are preconditioned
by incomplete LU factorization.

5.1. CGNR

This algorithm applies conjugate gradieﬁts to
the normal equations. It solves the symmetric,
positive definite problem

ATAx=ATp , | (15)

by the classical conjugate-gradient algorithm. It is
clear, that the matrix-product A™4 is never built
explicitly. It constructs a unique sequence of vec-
tors

X € xg+ (ATry, (ATA) ATry, ..., (A4) " aTr),
(16)

where || r, ||, = min, which is equal to the ortho-
gonality condition

re L(AATr, (AA™Y 1y, ... (AAT) 1. (17)

Because of this minimization property, the conver-
gence is strictly monotonic but it is determined by
the squares of the singular values of 4 [17]. There-
fore it can be expected that the convergence be-
havior is rather poor. Numerical experiments con-
firm, that this algorithm cannot satisfy our re-
quirements.

5.2. Symmetrized CG

The similarity of the coefficient matrices to
symmetric, positive-definite (SPD) matrices can be
exploited by a symmetrized conjugate-gradient
method, which avoids the explicit symmetrization
of A [12]. The cumbersome symmetrization matrix
W is only required for the computation of the
iteration parameters, where it appears in the
numerator and denominator. This allows scaling
in order to avoid floating-point under- or over-
flow. This algorithm constructs a unique sequence
of vectors

Xg € xo+ (1o, Argy...y A7 ). (18)
The following orthogonality condition for the

residuals holds:

re L(W?ry, Wir,,..., W), (19)

This algorithm minimizes the [W24]'/% norm of
the error vector. In our applications this algorithm
can only be applied in low-voltage simulations, for
which the number range of the symmetrization
matrix W fits into the number range of the com-
puter used.

5.3. ORTHOMIN

This algorithm [20] constructs a unique se-
quence of vectors
X, € xo+ {1y, Arg,..., A7) (20)

so that || 7, ||, = min. Therefore the following or-
thogonality condition for the residuals holds:

re L (Ar,, A*ry,..., A*ry). (21)



S. Selberherr et al. / 3D semiconductor device equations on vector-concurrent computers 149

ORTHOMIN converges monotonically. The mini-
mization property of this algorithm is guaranteed
by explicit 4%-orthogonalization of the k th search
direction p, to all previous search directions p,,
P1s--+» Px—~1- This requires the storage of all previ-
ous search directions and the computation of k
inner products per iteration. This is not possible in
practice, so we use a truncated version of the
ORTHOMIN algorithm. Only the last m (where
m 1is a constant) search-direction vectors are kept.
This restricts the storage requirements and the
arithmetic work per iteration, but the ORTHO-
MIN algorithm loses its optimality properties.
About the truncated version few theoretical results
are available.

5.4. GMRES

Similar to ORTHOMIN this algorithm [21]
minimizes || r,||,. x, belongs to the same Krylov
subspace as with ORTHOMIN, but a unique se-
quence of vectors

Xy € xo+ {1y, Argy..., A7 1) (22)

is built my means of an Arnoldi construction of
an orthogonal basis. Assuming that the procedure
has converged in k steps (]| r, ||, <€), a(k+1)X
k upper Hessenberg least squares problem has to
be solved, so that x, is the best approximation to
the true solution.

The minimization property of GMRES is equal
to the orthogonality condition

re L (Ary, A%ry,..., A" (23)

and guarantees monotonic convergence.

Full orthogonalization requires the storage of &
“back”-vectors and the calculation of k + 1 inner
products at the kth iteration. To limit storage
requirements we -use a restarted -version of
GMRES. The algorithm is restarted after m (where
m is a constant) iterations, if it has not yet con-
verged. The approximation to the solution at the
end of every m iterations is used as initial guess
for the next m iterations.

The least-squares problem is solved by QR
factorization using Householder transformation.
The QR factorization of the upper Hessenberg

matrix in addition provides the residual for no
extra cost. As the QR factorization is updated for
every iteration, the residual is always known and
the algorithm can immediately be stopped when
the required accuracy is reached.

The truncated version of course loses optimal-
ity, but restarting preserves monotonicity in the
residual-norm. ‘

5.5 BIOMIN? (CGS), BIORES’, BIODIR®

They are built by squaring the Lanczos bi-
orthogonalization algorithms BIOMIN, BIORES
and BIODIR [10,24]. From the computational
point of view they afe more efficient than the
original procedures. BIOMIN? (CGS) and BIO-
RES? do not involve the matrix-vector multiplica-
tion A%v. This can be important, if the matrix-ele-
ments are stored in a general data structure. All
three squared algorithms produce the same iterates
for the same initial guess (as do the nonsquared
ones).

In contrast to ORTHOMIN and GMRES the
storage requirements of BIOMIN? (CGS), BIO-
RES? and BIODIR? (also of CGNR and of the
symmetrized CG) do not increase during the itera-
tion process.

The x, belong to the Krylov subspace

X € X0+ (ry, Aryy..ey A1), (24)

For the residuals a biorthogonality condition
holds (# denotes the initial residual for the
“transposed” system):

e L (R, A%, (A7) TR, (25)

The biorthogonalization algorithms have no
minimization properties. Therefore the residual
does not decrease monotonically. Very often an
erratic convergence behavior can be observed. This
may increase the influence of roundoff errors, an
effect which has always to be kept in mind be-
cause of the enormous number range of the coeffi-
cient matrices of the linear systems we have to
deal with, '

The biorthogonalization algorithms may break
down by division by zero, if certain inner products
vanish. A breakdown is likely to occur, if 7, and /or
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7, are chosen inappropriately, but was never ob-
served in our device simulations.

A comparison of the squared Lanczos al-
gorithms shows, that BIOMIN? (CGS) needs less
computational work per iteration than BIORES?
and BIODIR? Roundoff errors cause the iterates
of the three biorthogonalization algorithms to dif-
fer from each other during the iteration process.
BIOMIN? (CGS) proves to be numerically most
stable as illustrated by an example in section 8.

A comparison of all tested algorithms has shown
that BIOMIN? (CGS) performs best for our appli-
cations in the sense of minimizing the overall
computational work and storage requirements.
This is remarkable, because it is out of the class of
biorthogonalization algorithms which, in contrary
to the other tested methods, have no minimization

property.

6. Preconditioning

Due to the large condition number of the coef-
ficient matrices of the discretized continuity equa-
tions efficient preconditioning is necessary in order
to guarantee fast and reliable convergence of the
chosen iterative methods for all of our different
simulation problems. We are searching for easily
invertible approximations to the matrix 4 which
allow a transformation of the linear system Ax =b
to the system BX = b with superior spectral prop-
erties. The matrix B is of course never formed
explicitly. In addition to every matrix vector mul-
tiplication Av, the linear system P~ 'w has to be
solved where w = Av and P is the preconditioning
matrix. This system must be solvable much easier
than A7'b.

We have implemented a block Jacobi precondi-
tioner

P,=D, (26)

where D is the tridiagonal part of A, and an
incomplete LU (ILU) factorization preconditioner
(16]

Py, =P Py=(L+D)D'?D"V}(U+ D),
(27)

where L and U are strictly lower and upper trian-
gular matrices and D is a diagonal matrix. In the
symmetric case L' = U holds and the precondi-
tioner is the usual incomplete Cholesky (IC) de-
composition preconditioner.

For the block Jacobi preconditioner left-pre-
conditioning has been chosen,

Pi'4x=Bx=P;'b=b,; (28)

for the ILU preconditioners left- and split-precon-
ditioning has been implemented,

PR'P{'Ax=B,y x=Pi'P{'b=byy_, (29)

P AP 'Ppx= BILUspmi =P 'b=byy (30)

split”
For the split ILU preconditioner x has to be
unscaled at the end of the iterative process: x =
PR'%.

It can be shown that stationary iterative meth-
ods based on the ILU splitting converge at least as
fast as methods based on a block Jacobi splitting.
It can be expected that the accelerators we have
discussed in section 5 behave in a similar way. On
the other hand the computational work for the
block Jacobi preconditioner is smaller and as there
are only first-order recurrences, vectorization
and/or parallelization is more straightforward
than for the ILU preconditioners. But there are a
few disadvantages: as can be expected from theory
the block Jacobi preconditioner causes worse con-
vergence behavior for all tested accelerators than
ILU preconditioners. For high bias simulations
where the drift term dominates in the current
relations (6) and (7), unpleasant numerical effects
can be observed, such as convergence stagnation
or near-breakdown in the Lanczos process at the
beginning of the iteration. Another point of dis-
tress is the sensitivity of the block Jacobi precon-
ditioner to the orientation of x, y, and z in the
three-dimensional simulation domain. “Swapping”
the coefficient matrix in the most favourable di-
rection causes computational overhead. The main
disadvantage is that this direction is not the same
for all our examples and sometimes changes dur-
ing the outer iteration process of one example. As
an efficient algorithm to detect the best precondi-
tioning direction could not be established, we do
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not recommend this type of preconditioner for
general use.

The second class of preconditioners we tested
extensively are the incomplete LU preconditioners
with allowable fill-in denoted by ILU(k) [1,5,13].
For k =0 the matrices L and U are equal to the
strictly lower and upper parts L and U of A. The
sparsity pattern of the triangular factors (L + D)
+ D~V 4+ (U + D), therefore, is the same as for A.
For an exact LU factorization of A4 the sparsity
pattern of the triangular factors would result in
banded matrices where the bandwidth is given by
the distance NX X NY of the outermost diagonals
(denoting the coupling between the planes) from
the main diagonal in the coefficient matrix A4
(NX, NY and NZ denote the number of gridlines
in x-, y-, and z-direction). For k=1 the fill-in
caused by the ILU(0) nonzero pattern is taken
into account, for k=2 the fill-in caused by the
ILU(1) sparsity pattern and so on (ILU(NX X NY)
would be the exact LU factorization of A). It is
easy to see that a higher degree of fill-in reduces
the number of iterations which are necessary to
solve the linear system, but increases the work per
iteration and the storage requirements.

For the incomplete LU preconditioner D can
be computed such that diag(Py ;) = diag (A4) or
alternatively such that P, — A has zero column
sums, which leads to modified incomplete factori-
zation-type preconditioners (MILU) originated by
Gustafsson [9] for Poisson type equations (in the
symmetric case this is equal to rowsum (Pyc) =
rowsum ( A)). For the symmetric and positive defi-
nite Poisson equation, the magnitude of the main
diagonal element is greater or equal than the sum
of the offdiagonal elements of the same row (or
column). For the coefficient matrices of the dis-
cretized carrier continuity equations, an analogous
relationship for the columns holds. A modification
factor « in the interval [0,1] is usually introduced
to smoothly sweep between ILU and MILU fac-
torization. Our results concerning the choice of
such a modification factor do not admit a clear
statement. It seems that a« =1 always decreases
the performance with respect to a = 0 slightly. We
found a number of device examples where a choice
of a=0.5 yields a performance enhancement of
about 10-30% concerning the iteration count.

However, this gain is partly compensated by the
higher arithmetic work for the factorization. This
is rather disappointing, as for the symmetric Pois-
son equation a modification factor of a=0.95
reduces the iteration count up to 50%.

The (M)ILU(0) preconditioners can be imple-
mented very efficiently. For the left (M)ILU(0)
preconditioner we scale the coefficient matrix from
the left side by D. The scaled matrix 4, = DA
can be written as a sum of a strictly lower, a
diagonal, and a strictly upper matrix: A, =L,
+ D,  + U, . Using this scaling the matrix vector
product By, v can be simplified to
By b= (I + U

slcf() _1‘[0 + (I + leel()
X(D,, —I+T,)v|. (31)

Steft

-1

An analogous simplification for the split
(M)ILU(0) preconditioner is well known as Eisen-
stat’s trick [7]. The coefficient matrix A4 is scaled
symmetrically by D'/% A, = D'/24D"?. Then
By y_ v can also be written as

split

Buy,p=[t+(I+L,,) "(v— (20— D)1
(32)

with
t=(1+U,_) v (33)

The split (M)ILU(0) preconditioner requires two
additional scratch vectors, but only scalar-vector
multiplications and vector updates have to be
performed, whereas the left (M)ILU(0) needs no
extra storage but a triangular matrix vector multi-
ply. We are not aware of analogous tricks for
higher fill-in preconditioners.

There are a number of other preconditioners
such as the SSOR [1), least-squares polynomial,
Neumann polynomial and their line and/or block
variants. Numerical experiments carried out with
the NSPCG software package [18] identified none
of them competitive with ILU.

7. Implementation of
on vector and vector-

U and IC preconditioners
current computers

Since the solution of the linear systems con-
sumes most of the overall CPU-time in a device



152 S. Selberherr et al. / 3D semiconductor device equations on vector-concurrent computers

simulator, it is important to implement the linear
solvers as efficiently as possible. Using the itera-
tive methods we have discussed in section 5, all
vector operations except for the backsolves of
triangular systems that are introduced by the in-
complete LU (or Cholesky) factorization precon-
ditioners can be vectorized and/or parallelized
straightforwardly. Our goal was to find an imple-
mentation of those backsubstitutions for vector
computers which is as generally applicable as pos-
sible and efficient on most of the modern vector
and vector-concurrent computers. On the other
hand we concentrated on vectorization techniques
that are unlikely to degrade the performance of
the incomplete factorization preconditioners,
hence we do not consider multicolor orderings
[19]. We further excluded computers that permit
only unity-stride vector operations such as the
CYBER 205 and did not care of decrease of the
performance due to possible memory bank con-
flicts on some machines. As for some vector com-
puters good performance can only be achieved for
long vector length this was also an aim developing
our vectorizable linear solver code.

A data dependence analysis shows that there
exist diagonal planes, so-called hyperplanes or
computational wavefronts H, in which the un-
knowns are only dependent on the unknowns in
the hyperplane H,,_, for the lower triangular ma-
trix or on those in the hyperplane H,,,, for the
upper triangular system [1,25]. If the matrix ele-
ments are denoted by the indices (il, i2, i3) in the
three spatial directions, the equation

i1+ (k+1)(i2+i3)=m (34)

is valid for the indices of all mesh points in the
hyperplane H,,. k denotes the degree of fill-in, m
is‘a constant. This allows an independent calcula-
tion of all unknowns in one hyperplane. The hy-
perplanes of course have to be treated sequen-
tially. It is obvious that the number of points in
one hyperplane first increases from one up to
0 (NX X NZ)/2 and then decreases to one pro-
vided that NY > MAX(NX, NZ) (otherwisé per-
mute the unknowns appropriately). The main
problem lies in the fact that the unknowns and the
matrix entries have either to be reordered or ad-

dressed indirectly. As explicitly reordering the ma-
trix entries requires a great amount of additional
storage for higher fill-in preconditioners (the ad-
dressing of the offdiagonal elements is also rather
complicated or has to be done indirectly), we
chose the second approach and compute a list
vector MASK which the addresses of the unknowns
in hyperplane-ordering are written in at the begin
of the iteration process. A second list vector LIST
contains the addresses of the elements of the first
list vector at which new hyperplanes begin. This
leads to the following source code for the. back-
ward substitution of the lower triangular precon-
ditioning matrix of the ILU(0) preconditioner (the
main diagonal is unity):

X(1)=R(1)

DO 1 L=2,NX+NY+NZ-2

DO 1 M=LIST(L-1)+1,LIST(L)

I=MASK(M)

1 X(I)=R(I)=-BCI)*X(I-1)-D(I)
*X(I-NX)=FC(I)*X(I-NX*NY)

R denotes the right-hand side and B, D, F the
strictly lower-triangular part of A,. The inner loop
is vectorizable. For the (M)ILU(1) preconditioner
the upper bound of the outer loop equals NX+
2*(NY+NZ-2) and the calculation of X(I) re-
quires taking into account the fill-in terms
“D1C(LI*X(L-NX+1) and -F1(L)*X{L~-
NX*NY +1). Analogously the upper bound for the
(M)ILU(2) preconditioner is NX+3*(NY+NZ-2)
and the additional terms -D2(L)*X(L-NX+2)
and -F2(L)*X(L-NX*NY+2) must be taken
into account. The above described approach is
used in a similar manner to vectorize the ILU
factorization at the beginning of the iteration. A
vectorization of the MILU preconditioner by this
approach is only p0551b1e for no fill-in (k=0)
preconditioners.

8. Numerical results and conclusions

At first the convergence of several iterative
methods which have been treated in section 5 is
examined. As test matrix serves the coefficient
matrix of the electron continuity equation of the
first Gummel-iteration of an n-channel silicon
MOSFET (1.5 micron channel length) from the



S. Selberherr et al. / 3D semiconduitor device equations on vector-concurrent computers 153

device simulator MINIMOS 5. Bias conditions
are: Us = Uy =0 V (source, bulk), Us =1 V (gate)
and Up = 3 V (drain). The mesh size is 29 X 31 X
35in x, y and z direction. As error measure the
maximum norm of the error vector e¢,= || x —
X, |l » is used. X denotes the solution vector ob-
tained by Gaussian elimination (this explaines the
small grid size of the chosen example). The tests
were carried out on a Digital VAX 8800 in double
precision arithmetic with precision of 1.0 of 1.387
x 107",

Figure 1 shows the convergence curves. CGNR
and GMRES(2) are certainly not competitive. The
convergence behavior of the symmetrized CG,
SYMCG, is not satisfactory, too. ORTHOMIN(S)
and especially GMRES(5) are save, but slow alter-
natives to BIOMIN? (CGS). The advantage of
GMRES(5) is the monotonic convergence behav-
jor. But in all our examples BIOMIN? (CGS) has
proved to be the best choice. This is clear if the
arithmetic work per iteration for the tested accel-
erators, which is shown in table 1, is taken into
account. A matrix-vector multiplication is the most
time-consuming, a scalar-vector multiplication is
the least time-consuming operation.

In the next figure we want to compare the
robustness of the three squared biorthogonaliza-
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Table 1

Comparison of arithmetic work

Solver Ax (x, y) x+y ax
CGNR 2 2 4 10
Symm. CG 1 3 4 10
ORTHOMIN(m) 3 m+2 m+2 m+2
GMRES(m) 1 im+1 im sm+1
BIOMIN? (CGS) 2 2 7 6
BIORES? 2 2 10 16
BIODIR? 2 2 9 13

tion algorithms' BIOMIN? (CGS), BIORES? and
BIODIR? against roundoff errors. The same test
problem as before is used and the convergence
curves starting from IT = 100 are displayed in fig.
2. Both BIOMIN? (CGS) and BIORES? stagnate
at a minimum error, however BIODIR? diverges
after having run through an error minimum. Obvi-
ously BIOMIN? (CGS) is the most stable al-
gorithm.

The ILU (k) preconditioners with levels k =0,
1, 2 are compared in fig. 3. As can be seen from
the nonmonotonic convergence behavior BIO-
MIN? (CGS) has been;chosen as accelerator. This
figure shows that a higher degree of fill-in really
improves the convergence behavior.
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Fig. 1. Convergence of accelators.
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Eig-2-Comparison-of-squared-Lanezes-methods.

Table 2 compares the performance of the hy-
perplane ILU(k) implementation on a Fujitsu
VP200 (VP), a Cray-2 (C2) and an ALLIANT/
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FX40 (AL) computer. The tests have been carried
out on a 40X 40 X 40 grid and the results are
mean values of 100 backsubstitutions. Besides the
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Fig. 3. Comparison of preconditioners.
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Table 2
Hyperplane-ILU(k) on vectorcomputers
FACT VP C2 AL

B S M B S M B S M
ILU(0) 4 13.75 96 14 4.30 27 212 1.34 1.8
ILUQ1) 8 12.12 96 26 4.76 30 327 1.51 23
ILUQ2) 8 12.62 128 30 5.93 34 410 1.64 25

CPU time for one backsubstitution (B) in millisec-
onds (ms), the overall achieved speed-up over the
trivial code in the solution (S) of the triangular
systems and the megafilop (MFlop) rate (M) are
presented. It seems that the code is better suitable
for the VP200 than for the Cray-2. One reason is
the good performance of the Fujitsu vector com-
puter for long vector length. Possible memory-
bank conflicts on the Cray due to the indirect
addressing according to the hyperplane-ordering
decrease the performance of the Cray supercom-
puter substantially.

In order to show that our code can also be
parallelized to a high extent on slightly coupled
multiprocessor computers, we carried out tests for
the hyperplane backsubstitutions on a 6-scalar-
processor Digital VAX 6260. Table 3 shows speed-
ups against one processor.
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