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On the numericalsolution of the three-dimensioi~ialsemiconductor
deviceequationson vector-concurrentcomputers
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The discretizationof the semiconductorequationsin three-dimensionaldevicesimulatorsleadsto very largesparselinear
systemsof equations.While thesolutionof thePoissonequation— e.g.by theconjugate-gra~lientmethod— is straightforward,
theiterative solutionof thecarriercontinuityequationsis nontrivial dueto both thenonsyr~imetryandthepoor conditioning
of thecoefficientmatrices.As a consequencewe haveinvestigatedconjugate-gradient-likeiterativemethodssuchasconjugate
gradientsapplied to the normal equations,a symmetrizedconjugate-gradientmethod, C~RTH0MIN,GMRES and three
squaredbiconjugate-gradientalgorithms.All thesemethodswere implementedin conjunctionwith incompletefactorization
preconditioners,since the large condition number of the coefficient matrices makes preconditioning indispensable.We
demonstratethe effectivenessof our implementationon vectorand vector-concurrentsuj*rcomputers,suchas theFujitsu
VP200, Cray-2, andon minisupercomputers,suchas theALLIANT/FX4O andVAX 6260.

I. Introduction programexecution. In the caseof Gummel’s al-
gorithm the discretizationof the linearizedPois-

In this paper the computational “number- sonequationfor the electrostaticpotential i/i leads
crunching” aspectof the numericalsolution of the to a symmetricpositive-definitecoefficientmatrix,
three-dimensionalstationarysemiconductorequa- which, under favourableassumptionson the grid,
tions on arectangulardomain is considered.This is well conditioned.
nonlinearboundaryvalueproblem (BVP) is usu- For the carrier continuity equations,however,
ally tackled by either a damped (and possibly the situation is differe~it(see e.g. ref. [21). The
inexact) Newton technique[3,6], or by the well- coefficient matricesof the discretizedcarrier con-
known Gummel algorithm[8], a nonlinearblock tinuity equationsare nonsymmetric due to the
Gauss—Seidelschethe.While the first method ex- usualexponential(Scharfetter—Guminel)interpo-
hibits superimear local convergence,the latter lation scheme.Unlike the Poissonequation the
provessuperiorstability independentfrom a pos- continuity equation can be conditioned poorly,
sibly poor initial guess.No Jacobi matrix is re- especiallyin the caseof high terminalbias includ-
quired thus keeping memory requirementslow ing substantialimpactidmzation.
contraryto theNewtonmethod.Thelocally linear Iterative solvers for the linear systemsappear
convergenceof Guffimel’s algorithm,oftenconsid- to be the mostsuitablesolution methodsfor linear
ered as its major drawback,can be improved by systemsin the three-din~iensionalcase.The solu-
nonlinear convergenceacceleration [15]. In the tion of the Poisson eqpation by the precondi-
following we shall dealexclusively with the latter tioned conjugate-gradier~tmethod is straightfor-
method, ward[16]. For the nonsytmmetriccontinuity equa-

The decoupled and appropriately discretized tions rapidly convergen(and numerically stable
equationsproduce very large sparsesystemsof solversare sought.Conj~igate-gradient-Jikemeth-
equationsthe solution time of which dominates ods turn out to be the itiost suitablechoice [14].
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Convergence(and thus reliability) of the applied carrier continuity equations. Poisson’sequation
iterative method dependsquite critically on the for the electrostaticpotential 4’ reads
preconditioner. The high quality of precondi- div(e grad ~t) = —p, (1)
tioners basedupon incomplete LU factorization
(ILU) is firmly establishedin numericalanalysis, with the spacechargep = q(p — n + C), where C
thus we usedadaptivefill-in ILU preconditioning denotesthe net dopingconcentration,n the hole,
throughoutour investigations. p the electronconcentrationsand q the elemen-

The recursion operationsin the backsubstitu- tary charge. The carrier continuity equationsfor
tion processof the triangularL, U factors con- the electronandhole currentdensitiesJ~read
stitute the main computationalbottleneckon a
vectorcomputer.We haveimplementedthe trian- div I,, = qR, (2)
gular solversusinga list-vector techniqueresulting div .1,,, = — qR, (3)
in a 130 megaflopthroughputfor the triangular
solves on the VP200 supercomputer.The main where R denotes the carrier generationand re-
result of this paperis that the executiontime of combinationrate.
our three-dimensionaldevice simulatoron a vec- ThecurrentdensitiesJ,,,,
tor-supercomputeris comparableto the execution ,~ (4)
timeof the two-dimensionalprogramversionon a
commonminicomputeror workstation. ,1,~,= P..,,PF.,,, (5)

The paper is organizedas follows: section 2 are assumedto be proportional to the driving
gives a brief overviewof the basicpartial-differen- forces F,,.,,, proportionality being determinedby
tial equationsand section 3 treatsthe discretiza- the carrier mobilities ~ Solid-statethermody-
tion and the iterative solution of the nonlinear namical statisticsconfirm the applicability of an
systemof equations.Section 4 dealswith some extendeddrift-diffusion approachfor the driving
importantalgebraicpropertiesof the nonsymmet- forces[11]
tic coefficientmatrices.In section 5 a numberof
methodsfor the iterativesolution of nonsymmet-
nc linear systemsare reviewed and compared 1~= — q (grad 4’ — ~grad(~ (6)
against some new iterative methods. Section 6 ‘kT \\
gives theoreticaland section 7 implementational F,,, = — q (8rad 4’ + ~ grad(~—~~))~ (7)
noteson the usedpreconditioners.Section 8 con-
cludeswith numericalresults.

where carrier heating is modeledby carrier tem-
peratureT,,,,,. Approximationsfor the carrier tem-
peratures7,.,, canbederivedby a seriesexpansion
of the energyconservationequation

sat 2! 1 1 (8)

2. The basicpa~aldifferential equations ~n.p ~n,p)v,,~)

with the Boltzmannconstantk, the ambient tern-
We consider the time-invariant case of the peratureT0 and the energyrelaxation times r,~.

semiconductorequations only. In the transient The superscriptsof p,,,,, denotethe mobilities due
caseadditional termsincreasethe diagonaldomi- to lattice (L), impurity (I), andsurface(S) scatter-
nanceof the discretizedequationsand therefore ing and their decreasedueto carrier heating(F).
improve their condition number, if an implicit The carrier generationand recombinationrate
backward time-difference schemeis used. The R on the tight-handside of the carrier continuity
semiconductorequations[23] in the variables(4’, equationsrepresentsthe sumof theimpactioniza-
n, p) consist of the Poissonequation and the tion rate R”, the Shockley—Read—Hallrecombi-
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nation rate R5RH and the Auger recombination nal of the coefficient matricesare thereforedis-
rateRAU, carded.The resultingsthemereads

+~ q(a(p~n+C)”R = R11+ RSRH+ RAU. (9) div grad
4’k — — ____________

(10)

div.~,,(4’k~, ~k+I) = _q(R(4’k+1, ~k, pk+l)

3. Iterative solution of the nonlinear system of
equations +~~(p~1_pk)), (11)

div~(4’k+1,nh)=q(R(4’k,nk±1,pk~)
We usefinite-differencediscretizationin a rec-

tangularspatial domain to treatthe semiconduc- k+ I — ak)) (12)
tor equationsnumerically.At the idealizedOhmic an
terminal contactsDirichiet boundaryconditions In order to cope with the exponentialdepen-
hold, at artificial interfacesin the deepbulk ho- denceof the carrier densitieson the electrostatic
mogenousNeumannboundaryconditionshaveto potentialandin order tb allow carrier temperature
be applied. InhomogenousNeumann boundary dependentmobilities, a modified version of the
conditions are valid in case of interfacecharges Scharfetter—Gummelinterpolationscheme[22] for
for the electrostaticpotential and in caseof non- the carrier concentratic~nsis used.Nonpianarin-
vanishinginterfacerecombinationvelocity for the terfaces are discretizeci by the well-known box
carrier concentrations. integrationmethod.

The nonlinearityof thediscretizedcoupledsys-
tem of equationscanbe treatedin different ways:
classicalNewtonor quasiNewtonschemesmakea
simultaneoussolution of the threesemiconductor 4. Algebraic properties of the coefficientmatrices
equationsnecessaryand have a locally quadratic
convergencebehavior.We restrictourselvesto the The linear interpolation of the electrostatic
block iterative Gummel algorithm [8], which al- potentialbetweenadjac~ntgridlines andthe mod-
lows a sequentialsolution of the threeequations ification by Gummel’s algorithm (using natural
within oneouteriteration.It is less sensitiveto the ordering) leadsto a symmetric,positive definite,
initial guess than Newton methodsbut has the 2-cyclic coefficientmatrix of the discretizedPois-
disadvantageof even sublinearconvergencebe- sonequation.The solutioncaneasilybe achieved
haviorin the caseof high-currentsimulations.The by the standardpreconditionedconjugate-gradient
nonlinear Gummel modification of Poisson’s algorithm. The expone*itial Scharfetter—Gummel
equationis linearizedby a first-orderseriesexpan- interpolation schemein the discretizationof the
sion. The nonlinearities in the carrier mobilities carrier continuity equationsproducesnonsymmet-
andcarrier temperaturesare neglected,thederiva- tic, 2-cyclic coefficient matricesA. The diagonal
tives of R” with respectto n and p are updated dominance is guaranteedby the derivatives of
in asuperimposedimpactionization subcycleand Shockley—Reed—Hall a~idAuger recombination
canthereforebeneglected,too. Both (aRsRt~~/an) with respect to the carrier concentrations.In the
and(aR~~”/ap)increasethe diagonaldominance absenceof recombinationtermsthemain diagonal
in theresultingcoefficientmatricesandare there- elementsequal the neg~tivecolumn sum of the
fore taken into account.(aR~/an)and (~R~/ offdiagonal elements.lihis implies at least semi-
dp) do not necessarilyhave such a stabilizing definitenessof A.
effect. Negativecontributionsto the main diago- From the exponentialinterpolation schemeit
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caneasily be seen,that A canbe transformedto a where r,, II 2 = mm, which is equal to the ortho-
symmetric,positivedefinite matrix A [4], gonalitycondition

A= J$T,,~AW,~, (13) rk±KAArO, (AAT)
2r

0,...,(AAT)”ro). (17)

by a diagonalmatrix W with positive elements~,. Becauseof thisminimizationproperty,theconver-
The ~ are given by genceis strictly monotonicbut it is determinedby

the squaresof the singularvaluesof A [17]. There-

/ 4’, \ ( 4’, \ fore it can be expectedthat the convergencebe-
w,,, = exp~— ~~)‘ w,~= exp ~-u)’ (14) havioris rather poor.Numericalexperimentscon-

firm, that this algorithm cannot satisfy our re-
for electronsand holes. U, = kT/q denotes the quirements.
thermal voltage. The enormousnumberrange of
the a,,,,, inhibits an explicit symmetrizationand 5.2. SymmetrizedCG
a solution of the resultingsymmetriclinearsystem
by conjugategradients.For a maximum electro- The similarity of the coefficient matrices to
static potentialof 5 volts anda minimumtemper- symmetric,positive-definite(SPD) matricescanbe
atureof 77 K (liquid nitrogentemperature)expo- exploited by a symmetrized conjugate-gradient
nentsof the orderlog10 (Wj,max) = 164 arise. method,which avoidsthe explicit symmetrization

The symmetrizabilityguaranteesa positivereal of A [12]. Thecumbersomesymmetrizationmatrix
spectrumof A. Therefore iterative methodsare W is only required for the computationof the
safelyapplicable. iteration parameters,where it appears in the

numeratorand denominator.This allows scaling
in order to avoid floating-point under- or over-

5. Selectediterative methodsfor the linear systems flow. This algorithmconstructsauniquesequence
of vectors

We have selected some basic projection-type Xk E x0 + (r0, Ar0,..., Ak~r0~. (18)
iterativemethods[20] for the nonsymmetric,linear
systems.In the following sectionsome theoretical The following orthogonalitycondition for the

residualsholds:aspectsand the practical applicability will be dis-
cussed.All of thesemethodsare preconditioned rk I (W

2r
0, W

2Ar
0,...,W

2A”~1r
0). (19)

by incompleteLU factorization.
This algorithm minimizes the [W

2Af”2-norm of
the error vector.In our applicationsthis algorithm

5.1. CGNR canonly beappliedin low-voltagesimulations,for
which the number range of the symmetrization

This algorithm appliesconjugategradientsto matrix W fits into the numberrangeof the corn-
the normal equations.It solves the symmetric, puterused.
positivedefinite problem

5.3. ORTHOMIN

ATAx=ATb (15)
by the classicalconjugate-gradientalgorithm.It is This algorithm [20] constructsa unique se-
clear, that the matrix-productATA is never built quenceof vectors
explicitly. It constructsa uniquesequenceof vec- Xk ~ x

0 + Kro, A,~,...,A’~
1r

0) (20)
tors

so that rk II 2 = mm. Thereforethe following or-
Xk ~ + (A

1r
0, (ATA)ATr0,...,(ATA)’(~iATro), thogonalitycondition for the residualsholds:

(16) rk .1. <Aro, A
2r

0 A’<r0). (21)
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ORTHOMIN convergesmonotonically.The mini- matrix in addition provides the residualfor no
mization propertyof this algorithmis guaranteed extracost.As the QR factorizationis updatedfor
by explicit A2-orthogonalizationof the k th search every iteration, the residualis alwaysknown and
direction Pk to all previous searchdirectionsPa’ the algorithm can immediately be stoppedwhen

Pi’~~Pk —1. This requiresthe storageof all previ- the requiredaccuracyis reached.
ous searchdirections and the computationof k The truncatedversion of courselosesoptimal-
innerproductsperiteration.Thisis notpossiblein ity, but restartingpreservesmonotonicity in the
practice, so we use a truncated version of the residual-norm.
ORTHOMIN algorithm. Only the last m (where
m is a constant)search-directionvectorsarekept. 5.5 BIOMIN2 (CGS),BIORES2,BIODIR2
This restricts the storage requirementsand the
arithmetic work per iteration, but the ORTHO- They are built by squaring the Lanczos bi-
MIN algorithm loses its optimality properties. orthogonalizationalgorithms BIOMIN, BIORES
About the truncatedversionfew theoreticalresults and BIODIR [10,24]. From the computational
are available, point of view they ai~emore efficient than the

original procedures.B~OMIN2(CGS) and BIO-
5.4. GMRES RES2do not involve the matrix-vectormultiplica-

tion ATv. This can be important,if the matrix-ele-
Similar to ORTHOMIN this algorithm [21] mentsare storedin a generaldatastructure.All

minimizes r,,, II 2~ Xk belongsto the sameKrylov threesquaredalgorithmsproducethe sameiterates
subspaceas with ORTHOMIN, but a uniquese- for the sameinitial guess(as do the nonsquared
quenceof vectors ones).

In contrastto ORTI-IOMIN and GMRES the
Xk E x

0 + <r0, Ar0,..., A”~r0) (22) storagerequirementsof BIOMIN
2 (CGS), BIO-

RES2 and BIODIR2 (~tlsoof CGNR and of the
is built my meansof an Arnoldi constructionof .

symmetrizedCG) do not increaseduring the itera-
an orthogonalbasis.Assumingthat the procedure

tion process.hasconvergedm k steps(II rk II 2 <). a (k + 1) x The Xk belongto the Krylov subspacek upperHessenbergleastsquaresproblemhas to

be solved,so that Xk is the bestapproximationto Xk Ex
0 + <ro, Ar0,..., 4k_l,b>. (24)

thetrue solution.
The minimizationpropertyof GMRESis equal For the residuals a biorthogonality condition

to the orthogonalitycondition holds (~denotes the initial residual for the
“transposed”system):

rk±<Aro, A
2r

0,...,Akro> (23)

rk I <Pa, AT~,...,(AT)k~J). (25)
andguaranteesmonotomcconvergence.

Full orthogonalizationrequiresthe storageof k The biorthogonalization algorithms have no
“back”-vectorsand the calculationof k + 1 inner minimization propertie~.Therefore the residual
products at the k th iteration. To limit storage doesnot decreasemonotonically. Very often an
requirements we use a restarted version of erraticconvergencebeh*viorcanbeobserved.This
GMRES.Thealgorithmis restartedafter m (where mayincreasethe influenceof roundofferrors,an
m is a constant)iterations,if it has not yet con- effect which has alway8 to be kept in mind be-
verged.The approximationto the solution at the causeof the enormousr~umberrangeof the coeffi-
end of every m iterations is usedas initial guess cient matricesof the Itnear systemswe have to
for the next m iterations. dealwith.

The least-squaresproblem is solved by QR The biorthogonalizat~onalgorithmsmay break
factorization using Householdertransformation. down by division by zero,if certaininnerproducts
The QR factorizatioti of the upper Hessenberg vanish.A breakdownis likely to occur,if r0 and/or
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i~are choseninappropriately,but was neverob- whereL and U arestrictly lower anduppertrian-
servedin our devicesimulations. gular matricesand i) is a diagonalmatrix. In the

A comparison of the squared Lanczos al- symmetriccase = U holds and the precondi-
gorithms shows,that BIOMIN2 (CGS) needsless tioner is the usual incomplete Cholesky(IC) de-
computationalwork per iteration than BIORES2 compositionpreconditioner.
and BIODIR2. Roundoff errorscausethe iterates For the block Jacobi preconditionerleft-pre-
of the threebiorthogonalizationalgorithmsto dif- conditioninghasbeenchosen,
fer from eachother during the iteration process.
BIOMIN2 (CGS) proves to be numericallymost P~1Ax B~x= P~b (28)
stableas illustratedby anexamplein section8.

A comparisonof all testedalgorithmshasshown for the ILU preconditionersleft- andsplit-precon-
that BIOMIN2 (CGS)performsbestfor our appli- ditioning hasbeenimplemented,
cations in the senseof minimizing the overall P

1~
1PII 1Ax BILUIeftX = P,~1Pj1 tb 1~ILU

1,,,, (29)
computationalwork and storage requirements.
This is remarkable,becauseit is out of the classof P~APj~PRxBILU i = P~

1b 1’ILU,~

1,,~ (30)
biorthogonalizationalgorithmswhich, in contrary
to theother testedmethods,haveno minimization For the split ILU preconditioner x has to be
property. unscaledat the end of the iterative process:x =

P1~~
It can be shownthat stationaryiterativemeth-

6. Preconditioning odsbasedon the ILU splittingconvergeat leastas
fast asmethodsbasedon ablock Jacobisplitting.

Due to the largeconditionnumberof the coef- It can be expectedthat the acceleratorswe have
ficient matricesof thediscretizedcontinuity equa- discussedin section5 behavein a similar way. On
tionsefficientpreconditiomngis necessaryinorder the other hand the computationalwork for the
to guaranteefast and reliableconvergenceof the block Jacobipreconditioneris smallerandas there
choseniterative methodsfor all of our different are only first-order recurrences, vectorization
simulation problems.We are searchingfor easily and/or parallelization is more straightforward
invertible approximationsto the matrix A which than for the ILU preconditioners.But therearea
allow a transformationof thelinearsystemAx = b few disadvantages:as canbeexpectedfrom theory
to the systemB~= ~ with superiorspectralprop- the block Jacobipreconditionercausesworsecon-
erties. The matrix B is of coursenever formed vergencebehaviorfor all testedacceleratorsthan
explicitly. In additionto every matrix vector mul- ILU preconditioners.For high bias simulations
tiplication Av, the linear systemP —

1w has to be where the drift term dominates in the current
solvedwhere w= Av and P is the preconditioning relations(6) and (7), unpleasantnumericaleffects
matrix. This systemmustbe solvablemuch easier can be observed,such as convergencestagnation
than A - 1b. or near-breakdownin the Lanczosprocessat the

Wehaveimplementeda block Jacobiprecondi- beginning of the iteration. Anotherpoint of dis-
tioner tressis the sensitivity of the block Jacobiprecon-

ditioner to the orientation of x, y, and z in the
F, = D, (26) three-dimensionalsimulationdomain.“Swapping”

the coefficient matrix in the most favourabledi-
where D is the tridiagonal part of A, and an rectioncausescomputationaloverhead.The main
incompleteLU (ILU) factorizationpreconditioner disadvantageis that this direction is not the same
[16] for all our examplesand sometimeschangesdur-

~ILU = ~L~R = (L + b)b1~2b~”2(U+~ ing the outer iterationprocessof oneexample.Asan efficient algorithmto detectthe bestprecondi-
(27) tioning direction could not be established,we do
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not recommendthis type of preconditioner for However, this gain is partly compensatedby the
generaluse. higher arithmetic work for the factorization.This

The secondclassof preconditionerswe tested is ratherdisappointing~as for the symmetricPois-
extensivelyare the incompleteLU preconditioners son equationa modification factor of a= 0.95
with allowablefill-in denotedby ILU(k) [1,5,13]. reducesthe iteration countup to 50%.
For k =0 the matricesL and U are equal to the The (M)ILU(0) preponditionerscan be imple-
strictly lowerandupperpartsL and U of A. The mented very efficientlfr. For the left (M)ILU(0)
sparsitypatternof the triangular factors (L + D) preconditionerwe scalethecoefficientmatrix from
+ D1 + (U+ D), therefore,is the sameas for A. the left side by D. The scaledmatrix A,,, = DA
For an exact LU factorizationof A the sparsity can be written as a Sum of a strictly lower, a
patternof the triangular factors would result in diagonal,and a strictly uppermatrix: A,, = L,,,~
bandedmatriceswherethe bandwidthis given by + D,,,,,+ U~,,,.Usingthis scaling the matrix vector
the distanceNX X NY of the outermostdiagonals product BILU,v canbe simplified to
(denoting the coupling betweenthe planes)from —ir -1

the main diagonal in the coefficient matrix A BILU,,,v = (i + u,,,,,) [V + (I + L,,,,)
(NX, NY and NZ denotethe numberof gridlines x (D — i + u ‘~v1 (31
in x-, y-, and z-direction). For k = 1 the fill-in \ S

1,~ S~/ J’
causedby the ILU(0) nonzeropattern is taken An analogous simplification for the split
into account,for k = 2 the fill-in causedby the (M)ILU(0) preconditiotieris well known as Eisen-
ILU(1) sparsitypatternandsoon (ILU(NX x NY) stat’s trick [7]. The coefficient matrix A is scaled
would be the exact LU factorization of A). It is symmetrically by ~1/2: A5 = .T)”

2A )l~~2,Then
easyto seethat a higherdegreeof fill-in reduces BILU,~~vcan also bewritten as
the numberof iterationswhich are necessaryto —1

solve thelinear system,but increasesthe work per BILU,,,,v = + (i + L,~,,,) (v — (21—D,,~,) t)],

iterationand the storagerequirements. (32)
For the incomplete LU preconditionerb can

with
be computedsuch that diag(P,Lu) = diag (A) or
alternativelysuch that ~IW —A has zero column t = (1+ ~ )1v. (33)
sums,which leadsto modified incompletefactori-
zation-typepreconditioners(MILU) originatedby The split (M)ILU(0) preconditionerrequires two
Gustafsson[9] for Poissontype equations(in the additional scratch vectors,but only scalar-vector
symmetric casethis is equal to rowsum (F

1~)= multiplications and v~ctorupdateshave to be
rowsum(A)). Forthe symmetricandpositivedefi- performed, whereasthe left (M)ILU(0) needsno
nite Poissonequation,the magnitudeof the main extra storagebut a triatigular matrix vector multi-
diagonalelementis greateror equalthan thesum ply. We are not aware of analogoustricks for
of the offdiagonal elementsof the samerow (or higherfill-in preconditioners.
column). For the coefficient matricesof the dis- There are a numbeitof other preconditioners
cretizedcarrier continuityequations,ananalogous such as the SSOR [1], least-squarespolynomial,
relationshipfor the columnsholds.A modification Neumannpolynomiala~idtheir line and/orblock
factor a in the interval [0,1] is usuallyintroduced variants.Numerical experimentscarriedout with
to smoothly sweepbetweenILU and MILU fac- the NSPCGsoftwarepackage[18] identified none
torization. Our results concerning the choice of of them competitivewidi ILU.
such a modification factor do not admit a clear
statement.It seemsthat a = 1 always decreases .

the performancewith respectto a=0 slightly. We ~ ImpLementation of ILfU and IC preconditionerson vector andvector-coi~currentcomputers
found a number of deviceexampleswherea choice
of a = 0.5 yields a performanceenhancementof Since the solution o~the linear systemscon-
about 10—30% concerning the iteration count. sumesmost of the oveirall CPU-timein a device
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simulator, it is important to implementthe linear dressedindirectly. As explicitly reorderingthema-
solversas efficiently as possible. Using the itera- trix entriesrequiresa greatamount of additional
tive methodswe havediscussedin section5, all storagefor higher fill-in preconditioners(the ad-
vector operationsexcept for the backsolvesof dressingof the offdiagonalelementsis also rather
triangularsystemsthat are introducedby the in- complicated or has to be done indirectly), we
completeLU (or Cholesky) factorizationprecon- chose the secondapproachand computea list
ditioners can be vectorized and/or parallelized vectorMASK which the addressesof theunknowns
straightforwardly.Our goal wasto find an imple- in hyperplane-orderingarewritten in at the begin
mentation of those backsubstitutionsfor vector of theiteration process.A secondlist vectorLIST
computerswhich is as generally applicableas pos- containsthe addressesof the elementsof thefirst
sibleand efficient on most of the modernvector list vector at which new hyperplanesbegin. This
and vector-concurrentcomputers.On the other leadsto the following source codefor the back-
handwe concentratedon vectorizationtechniques ward substitutionof the lower triangularprecon-
that are unlikely to degradethe performanceof ditioning matrix of the ILU(0) preconditioner(the
the incomplete factorization preconditioners, main diagonalis unity):
hence we do not consider multicolor orderings XCI) = R(1)
[19]. We further excludedcomputersthat permit DO I L 2, NX + NY + NZ —2
only unity-stride vector operationssuch as the DO 1 MLIST(L—1 )+1,LIST(L)
CYBER 205 and did not careof decreaseof the I MASK(M)
performancedue to possiblememory bank con- I XCI) = R( 1)—BCI )*X( I—I)— DCI)
flicts on somemachines.As for somevectorcom- *X( I —NX) — F( I )*X( I —NX*NY)
putersgoodperformancecanonly be achievedfor R denotesthe right-hand side and B, D, F the
long vectorlength this wasalso anaim developing strictly lower-triangularpart of A,. Theinnerloop
our vectorizablelinear solvercode. is vectorizable.For the (M)ILU(1) preconditioner

A data dependenceanalysisshows that there the upper bound of the outer loop equals NX +

exist diagonal planes, so-called hyperplanes or 2* C NY + N Z —2) and the calculationof X(I) re-
computationalwavefronts Hm in which the un- quires taking into account the fill-in terms
knowns are only dependenton the unknownsin — Dl CL ) * XC I — N X + 1) and — F IC L ) *X C L —

the hyperplaneHm-1 for the lower triangularma- NX*NY +1). Analogously the upperboundfor the
trix or on thosein the hyperplaneHm+ for the (M)ILU(2) preconditioneris NX +3* (NY + NZ —2)
upper triangularsystem[1,25]. If the matrix ele- and the additional terms —D2( L )*X( L — NX +2)
mentsare denotedby the indices(ii, i2, i3) in the and —F2(L)*X(L—NX*NY+2) must be taken
threespatialdirections,the equation into account. The above describedapproachis

used in a similar mannerto vectorizethe ILU
ii + (k+ 1)(i2 + i3) = m (34) factorizationat the beginningof the iteration. A

vectorizationof the MILU preconditionerby this
is valid for the indices of all mesh points in the approachis only possiblefor no fill-in (k 0)
hyperplaneH,,,. k denotesthe degreeof fill-in, m preconditioners.
is a constant.This allows an independentcalcula-
tion of all unknownsin one hyperplane.The hy-
perplanesof course have to be treated sequen- 8. Numericalresultsandconclusions
tially. It is obvious that the numberof points in
one hyperplane first increasesfrom one up to At first the convergenceof several iterative
(9 (NX x NZ)/2 and then decreasesto one pro- methodswhich havebeentreated in section 5 is
vided that NY> MAX(NX, NZ) (otherwiseper- examined. As test matrix servesthe coefficient
mute the unknowns appropriately). The main matrix of the electroncontinuity equationof the
problemlies in the factthat theunknownsandthe first Gummel-iterationof an n-channel silicon
matrix entrieshaveeither to be reorderedor ad- MOSFET (1.5 micron channellength) from the
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device simulator MINIMOS 5. Bias conditions Table 1

are: U~= UB = 0 V (source,bulk), UG = 1 V (gate) Comparisonof arithmetic work

and LTD = 3 V (drain). The meshsize is 29 X 31 X Solver Ax (x, y) x+y ax
35 in x, y and z direction. As error measurethe CGNR 2 2 4 10

maximum norm of the error vector e,,= X — Symm.CG 1 3 4 10
x,, ,,~ is used.~ denotesthe solution vector ob- ORTHOMIN(m) 3 m+2 m+2 m +2
tamedby Gaussianelimination (this explainesthe GMRES(rn) 1 ~m+ 1 ~m ~m + 1

small grid sizeof the chosenexample). The tests BION (CGS)
werecarriedout on a Digital VAX 8800 in double BIODIR2 2 2 9 13
precisionarithmeticwith precisionof 1.0 of 1.387
x 1017.

Figure1 showsthe convergencecurves.CGNR
andGMRES(2)are certainlynot competitive.The tion algotithms’BIOMIN2 (CGS), BIORES2 and
convergencebehavior of the symmetrized CG, BIODIR2 againstrout~dofferrors. The sametest
SYMCG, is not satisfactory,too. ORTHOMIN(5) problem as before is used and the,convergence
andespeciallyGMRES(5)are save,but slow alter- curvesstarting from IT = 100 are displayedin fig.
natives to BIOMIN2 (CGS). The advantageof 2. Both BIOMIN2 (CQS) andBIORES2 stagnate
GMRES(5) is the monotomcconvergencebehav- at a minimum error, however BIODIR2 diverges
ior. But in all our examplesBIOMIN2 (CGS) has afterhaving run throughan errorminimum. Obvi-
provedto be the best choice.This is clear if the ously BIOMIN2 (CGS) is the most stable al-
arithmeticwork periteration for the testedaccel- gorithm.
erators,which is shown in table 1, is taken into The ILU (k) preconditionerswith levelsk = 0,
account.A matrix-vectormultiplication is themost 1, 2 are comparedin fig. 3. As can be seenfrom
time-consuming,a scalar-vectormultiplication is the nonmonotonic cqnvergencebehavior BIO-
the leasttime-consumingoperation. MIN2 (CGS) hasbeen~chosenas accelerator.This

In the next figure we want to comparethe figure shows that a higher degreeof fill-in really
robustnessof the threesquaredbiorthogonaliza- improvesthe convergencebehavior.

log(e~)

SYMCG

—10 ~ I I I I I .1 I I I ~

20 40 60 80 100 120 140 160 180 200

Fig. 1. Convergenceof accelators.
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log(e~)

2~

i:I~111.1 ~ ~ IT110 120 130 140 150 160 liD 180 190 200Fig. 2. Comparisonof squaredLanczosmethods.

Table2 comparesthe performanceof the hy- FX4O (AL) computer.The testshavebeencarried
perplane ILU(k) implementationon a Fujitsu out on a 40 x 40 x 40 grid and the results are
VP200 (VP), a Cray-2 (C2) and an ALLIANT/ meanvaluesof 100 backsubstitutions.Besidesthe

log(e~)

-2

-4

-6 j
-8 ILU(0)

ILU(1)

-10

ILU(2)
-12 ~ I~,I, ~ ...I...,

20 40 60 80 100 120 140 160

Fig. 3. Comparisonof preconditioners.
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Table2
Hyperplane-ILU(k)on vectorcomputers

FACT VP C2 AL

B S M B S M B S M

ILU(0) 4 13.75 96 14 4.30 27 212 1.34 1.8
ILU(1) 8 12.12 96 26 4.76 30 327 1.51 2.3
ILU(2) 8 12.62 128 30 5.93 34 410 1.64 2.5

CPU time for onebacksubstitution(B) in millisec- poration) for perforn~ingmeasurementson the
onds(ms), theoverall achievedspeed-upover the VAX 6260. We wish to thank H. Dietrich, G.
trivial codein the solution (5) of the triangular KoesslandH. Wiktori~tof the ComputerServices
systemsand the megaflop(MFlop) rate (M) are of CooperateResearchand Development, SIE-
presented.It seemsthat thecodeis bettersuitable MENS AG, Munich, for valuablehelp in gaining
for the VP200 than for the Cray-2. Onereasonis accessto the VP200.
the good performanceof the Fujitsu vectorcom-
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